用户名: 密码: 验证码:
脉冲耦合神经网络在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:结合人类视觉机理的图像处理方法与应用是目前数字图像处理技术的热点领域,研究的思路一般为根据人类视觉机理、现象构建数学模型,并将数学模型用于相应的图像处理任务,目前研究大致分为三类:一是人类视觉感知信息的表示与建模;二是人类视觉神经元机理及其运行机制建模;三是视觉皮层功能机理及其信息处理机制建模。脉冲耦合神经网络(Pulse Coupled Neural Network:PCINN)作为视觉皮层神经元模型的典型,由于接近人类视觉神经元机理及其运行机制,成为研究基于人类视觉神经元机理及其运行机制的图像处理方法的重要手段。但是,PCNN无法通过数学方法清晰的描述内在特性,使其在图像处理中无法充分发挥模型的优势,如何解决该问题对于提升PCNN图像处理的性能,进一步完善基于人类视觉机理的图像处理新方法意义重大。
     本论文针对PCNN存在的问题,在分析视觉皮层神经元工作机理的基础上,以PCNN为研究对象,从解决PCNN存在的问题,提升PCNN图像处理性能的角度,进行以下三个层次的研究:1)PCNN关键参数的特性及其在图像处理中的应用研究,2)结合任务多种特征的PCNN图像处理方法研究与应用,3)自适应PCNN及其在图像处理中的应用。主要的研究内容和贡献有以下三个方面:
     1.针对标准PCNN在图像处理中参数设置没有规律以及参数多、计算复杂等问题,提出了一种改进PCNN及其关键参数设置的图像边缘检测方法。该方法改进并简化了标准PCNN模型使其更符合边缘检测,同时在边缘检测中针对改进PCNN的关键参数提出了不同的设置方法。该方法首先将标准PCNN的参数由9个简化至4个,然后采用以下方法设置改进PCNN的参数:(1)通过图像灰度值的局部特征设置连接系数β,(2)考虑神经元之间的灰度值差异设置权值矩阵,(3)结合局部梯度确定放大系数VE以及时间衰减常数αE,(4)结合最大方差比确定最佳迭代次数Ⅳ等。在实验中与同类型视觉皮层神经元模型标准PCNN算法、交叉视觉皮层算法进行比较,实验结果表明本章提出的改进模型以及关键参数的设置方法能够精确的提取图像边缘,提出的方法优于同类型的标准PCNN、ICM以及其他对比算法,提取结果符合人类视觉的感受。
     2.针对标准PCNN与图像处理任务之间的关系不明确,影响PCNN图像处理性能的问题,提出结合图像离散系数特征以及侧抑制特性的PCNN阴影检测方法,结合人类视觉亮度特性和图像亮度对比度特征的PCNN图像融合方法。提出的方法根据图像处理任务特征的数学描述建立与PCNN之间的联系,从而指导PCNN在图像处理中的运行状态,达到提升PCNN图像处理性能的目的。(1)在结合PCNN的阴影检测中针对PCNN进行以下改进,一是针对PCNN对灰度值相近但分属不同区域的像素区分能力弱的问题,引入人类视觉侧抑制特性改进PCNN模型;二是引入图像阴影离散系数特征指导PCNN的阴影检测过程;(2)针对结合PCNN的图像融合提出以下改进PCNN的方法:一是提出适合PCNN图像融合的Main-Auxiliary PCNN模型;二是通过图像融合常用的对比度和亮度特征建立PCNN模型与图像融合任务之间的联系,指导图像融合过程。
     3.针对标准PCNN数学方法无法清晰的描述,参数之间的协作机制不明,使得PCNN在图像处理中无法根据图像处理任务动态调整PCNN运行状态的问题,提出结合优化算法的PCNN性能提升方法并将提出的方法用于图像分割。具体应用中,通过免疫克隆算法优化PCNN,该方法利用免疫克隆算法理论要求弱的优势,将PCNN在图像处理中动态调整运行状态的问题转化为基于免疫克隆算法的优化问题,实现PCNN在图像处理中动态调整运行状态的目的。该方法首先在标准免疫克隆算法的基础上加入自适应操作和梯度操作,提高免疫克隆算法收敛速度和全局收敛性,然后在标准PCNN的基础上采用简化PCNN模型,将简化PCNN的参数定义为抗原,将图像分割结果的熵定义为抗体,通过一系列克隆变异机制动态调整PCNN的运行完成图像分割任务。实验中与标准PCNN分割方法、ICM分割方法、PSO-ICM分割方法、PSO-PCNN分割方法、ISCA-PCNN等同类型算法以及其他多种分割方法进行比较,实验结果表明提出的方法达到了PCNN在图像分割中动态自适应调整运行状态的目的,图像分割的性能优于同类型算法和其他对比算法。
Abstract:Image processing approaches and their applications inspired by human vision mechanism have become one of most active topics in digital image processing field recently. The general framework is to develop a mathematic model for human vision mechanism and apply it to a specific image processing task. Generally, there are three principle categories in recent research:the representation and modeling for human vision perceptual information, modeling for mechanism of human visual neurons and its working mechanism, and modeling for the function mechanism of visual cortex and its information processing mechanism. As one of the most successful computational models, PCNN has become one of the most important accesses to studying image processing based on mechanism of human visual neurons and its working mechanism. However, PCNN's intrinsic characteristics cannot be demonstrated with elegant mathematic methods, which laminate its application in image processing. Therefore, solving the above issue is of great significance to improve the performance of PCNN and motivate new image processing methods based on human vision mechanism.
     In order to solve the aforementioned issue, we analyze the working mechanism of visual cortex neurons. In this dissertation, the study object is PCNN, and our goal is to solve the aforementioned issue in PCNN and improve its performance in image processing. Our research mainly focuses on the following three aspects. First, we discuss the characteristics of the key parameters in PCNN and their applications in image processing. Second, we study the task dependent PCNN and apply it to image processing. Finally, we introduce the adaptive PCNN and its application in image processing. The key contributions of this thesis lie in three-fold:
     1. Aiming at the issues that the computation complexity of the standard PCNN is high and numerous parameters have to be set without any regulation when applying to image processing, we propose a novel method for image detection via the updated PCNN, mainly focusing on the key parameters. The proposed method improves the performance of the standard PCNN and simplifies it so that it meets the needs of edge detection in a more rational way. Meanwhile, in edge detection, difference parameter setting strategies are introduced according to the updated key parameters in PCNN. A four step method is proposed to decrease the parameter number of the standard PCNN from9to4:(1) setting the connection coefficient β according to the local gray level,(2) setting the weight matrix according to the dissimilarity between two neurons,(3) computing the amplification coefficient VE and time attenuation constants aE based on the local gradient,(4) deciding the optima number of iteration N based on the maximum variance ratio. Experimental results show that our method outperforms the standard PCNN and ICM with higher edge detection precision and our detection results meet the needs of human visual perception better.
     2. Focusing on the ambiguous relationship between the PCNN and image processing tasks, which adversely affects PCNN's application, we present a novel shadow detection method, which combines the discrete coefficients of the image and the lateral inhibition of the PCNN. Meanwhile, a new image fusion method is proposed, where brightness features of human vision and image intensity contrast are considered. The proposed method focuses on the relationship between the mathematic formulation of the specific image processing task and PCNN to guide the running state when applying PCNN into image processing and improve the performance further. In terms of shadow detection based on PCNN, first we introduce the lateral inhibition to improve the discrimination ability to pixels with similar intensity from different regions. Then we introduce the shadow coefficient feature to guide the shadow detection. In terms of the image fusion based on PCNN, we first present Main-Auxiliary PCNN model, and then guide the image fusion via establishing the relationship between PCNN and image fusion by combining the contrast and intensity features.
     3. We propose an adaptive immune clone PCNN based image segmentation method to address the problem that the standard PCNN cannot be described definitely in mathematic language, which results that the running state of the PCNN cannot be adjusted to the specific image processing task. We formulate the image segmentation problem as an optimization problem of immune clone algorithm to change the PCNN running state dynamically. First, the adaptive operation and gradient are added into the standard immune clone algorithm to accelerate the convergence. Then the standard PCNN is simplified, and its corresponding parameters are viewed as antigen of biological immune system while the entropy of the segmentation result is the antibody. After a series of dynamic clonal variation, we finally obtain the segmentation result.We compare our methods with PSO-PCNN, standard immune clone based PCNN, PCNN, ICM, PSO-ICM and other methods, the experimental results indicate that our method can dynamically adapt to the segmentation task and outperforms the state-of-the arts.
引文
[1]寿天德.视觉信息处理的脑机制(第二版)[M].安徽:中国科学技术大学出版社,2010.
    [2]H.E. Gerhard, F.A. Wichmann, M. Bethge. How sensitive is the human visual system to the local statistics of natural images? [J]. PLoS Computational Biology,2013,9(1):e1002873.
    [3]N. Davis, F. Pittaluga,K. Panetta. Facial recognition using human visual system algorithms for robotic and UAV platforms [C]. IEEE International Conference on Technologies for Practical Robot Applications (TePRA),2013:1-5.
    [4]P. Ramkumar, M. Jas, S. Pannasch, et al. Feature-Specific Information Processing Precedes Concerted Activation in Human Visual Cortex [J]. The Journal of Neuroscience,2013,33(18):7691-7699.
    [5]Z. Wang, Y. Ma, F. Cheng, et al. Review of pulse-coupled neural networks [J]. Image and Vision Computing,2010,28(1):5-13.
    [6]M. Tamietto, P. Pullens, B. de Gelder, et al. Subcortical connections to human amygdala and changes following destruction of the visual cortex [J]. Current Biology,2012,22(15):1449-1455.
    [7]P.C. Kind, F. Sengpiel, C.J. Beaver, et al. The development and activity-dependent expression of aggrecan in the cat visual cortex [J]. Cerebral Cortex,2013,23 (2):349-360.
    [8]J.S. Albus. Reverse engineering the brain [J]. International Journal of Machine Consciousness,2010,2(02):193-211.
    [9]M.B. Hoffmann, F.R. Kaule, N. Levin, et al. Plasticity and stability of the visual system in human achiasma [J]. Neuron,2012,75(3):393-401.
    [10]S. Nishimoto, A. Huth, N. Bilenko, et al. Human visual areas invariant to eye movements during natural vision [J]. Journal of Vision,2013,13(9): 1061-1061.
    [11]S. Laughlin. The influence of metabolic energy on neural computation [J]. BMC Neuroscience,2013,14(Suppl 1):1471-2202.
    [12]A.A. Brewer, B. Barton. Visual field map organization in human visual cortex [J]. Visual Cortex, InTech,2012:31-60.
    [13]A. Vidovszky-Nemeth, J. Schanda. White light brightness-luminance relationship [J]. Lighting Research and Technology,2012,44(1):55-68.
    [14]Y. Wang, K. Liu, Q. Hao, et al. Robust active stereo vision using Kullback-Leibler divergence [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2012,34(3):548-563.
    [15]Y. Jia, C. Huang, T. Darrell. Beyond spatial pyramids:Receptive field learning for pooled image features [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2012:3370-3377.
    [16]K.M. Aquino, M.M. Schira, P.A. Robinson, et al. Hemodynamic traveling waves in human visual cortex [J]. PLoS computational biology,2012,8(3): e1002435.
    [17]G Collin, O. Sporns, R.C.W. Mandl, et al. Structural and Functional Aspects Relating to Cost and Benefit of Rich Club Organization in the Human Cerebral Cortex [J/OL]. Oxford Journals of Cerebral Cortex,2013.
    [18]J.P. Gallivan, D.A. McLean, J.R. Flanagan, et al. Where one hand meets the other:limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas [J]. The Journal of Neuroscience,2013,33(5):1991-2008.
    [19]R.W. Rodieck, J. Stone. Analysis of receptive of cat retina ganglion cells [J]. Journal of Neurophysiology,1965,28(5):833-849.
    [20]S.D. Van Hooser, A. Roy, H.J. Rhodes, et al. Transformation of Receptive Field Properties from Lateral Geniculate Nucleus to Superficial V1 in the Tree Shrew [J]. The Journal of Neuroscience,2013,33(28):11494-11505.
    [21]罗四维.视觉信息认知计算理论[M].北京:科学出版社,2010.
    [22]B. Tian, P. Kusmierek, J.P. Rauschecker. Analogues of simple and complex cells in rhesus monkey auditory cortex [J]. Proceedings of the National Academy of Sciences,2013,110(19):7892-7897.
    [23]H. Terashima, H. Hosoya, T. Tani, et al. Sparse coding of harmonic vocalization in monkey auditory cortex [J]. Neurocomputing,2013,103(1): 14-21.
    [24]A.J. Bell, T.J. Sejnowski. The"Independent Components"of natural scenes are edge filters [J]. Vision Research,1997,37(23):3327-3338.
    [25]T.S. Lee. Computations in the early visual cortex [J]. Journal of Physiology, 2003,97(2):121-139.
    [26]T.S. Lee, D. Mumford. Hierarchical Bayesian inference in the visual cortex [J]. Journal of the Optical Society of America A,2003,20(7):1434-1448.
    [27]李清勇,史忠植.视觉感知的稀疏编码理论及其应用研究[D].北京:中国科学院计算技术研究所,2006.
    [28]C.A. Henry, M.J. Hawken. Stability of simple-complex classification with contrast and extra-classical receptive field modulation in macaque V1 [J]. Journal of Neurophysiology,2013,109(7):1793-1803.
    [29]K. Sakai, S. Tananka. Spatial pooling in the second-order spatial structure of cortical complex cell [J]. Vision Research,2000,40(7):855-871.
    [30]I. Lampl, M. Riesenhuber, T. Poggio, et al. The max operation in cells in the cat visual cortex [J]. Society of Neuroscience Abstracts,2000,610-619.
    [31]P.O. Hoyer, A. Hyvarinen. A multi-layer sparse coding network learns contour coding from natural images [J]. Vision Research,2002,42(12):1593-1605.
    [32]A.K. Jansen-Amorim, M. Fiorani, R. Gattass. GABA inactivation of area V4 changes receptive-field properties of V2 neurons in Cebus monkeys [J]. Experimental neurology,2012,235(2):553-562.
    [33]S. Mihalas, Y. Dong, R. von der Heydt, et al. Event-related simulation of neural processing in complex visual scenes [C]. The 45th Annual Conference on Information Sciences and Systems (CISS), IEEE,2011:1-6.
    [34]G.M. Boynton, J. Hegde. Visual cortex:the continuing puzzle of area V2 [J]. Current Biology,2004,14(13):523-524.
    [35]A. Plebe. A model of angle selectivity development in visual area V2 [J]. Neurocomputing,2007,70(10):2060-2063.
    [36]M.T. Murphy, L.H. Finkel. Shape representation by a network of V4-like cells [J]. Neural Networks,2007,20(8):851-867.
    [37]W.A. Catterall, I.M. Raman, H.P.C. Robinson, et al. The Hodgkin-Huxley Heritage:From Channels to Circuits [J]. The Journal of Neuroscience,2012, 32(41):14064-14073.
    [38]J. Baladron, D. Fasoli, O. Faugeras, et al. Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons [J]. The Journal of Mathematical Neuroscience (JMN),2012,2(1):1-50.
    [39]D.Q. Wei, X.S. Luo, B. Zhang, et al. Controlling chaos in space-clamped FitzHugh-Nagumo neuron by adaptive passive method [J]. Nonlinear Analysis:Real World Applications,2010,11(3):1752-1759.
    [40]T. Lindblad, J.M. Kinser. Biological Models [M]. Image Processing using Pulse-Coupled Neural Networks. Springer Berlin Heidelberg,2013:1-11.
    [41]T. Lindblad, J.M. Kinser. The PCNN and ICM [M]. Image Processing using Pulse-Coupled Neural Networks. Springer Berlin Heidelberg,2013:57-86.
    [42]M. Murugavel, J.M. Sullivan Jr. Automatic cropping of MRI rat brain volumes using pulse coupled neural networks [J]. Neuroimage,2009,45(3): 845-854.
    [43]I.A. Rybak, N.A. Shevtsova, L.N. Podladchikova, et al. A visual cortex domain model and its use for visual information processing [J]. Neural Networks,1991,4(1):3-13.
    [44]I.A. Rybak, N.A. Shevtsova, V.M. Sandler, et al. The model of a neural network visual preprocessor [J]. Neuroeomputing,1992,4(1):93-102.
    [45]H. Zhuang, K.S. Low, W.Y. Yau. Multichannel Pulse-Coupled-Neural-Network-Based Color Image Segmentation for Object Detection [J]. Industrial Electronics, IEEE Transactions on,2012,59(8):3299-3308.
    [46]J.L. Johnson. Pulse-coupled neural nets:translation, rotation, scale, distortion, and intensity signal invariance for images [J]. Applied Optics.1994,33(26): 6239-6253.
    [47]J.L. Johnson, M.L. Padgett. PCNN models and applications [J]. Neural Networks, IEEE Transactions on,1999,10(3):480-498.
    [48]Y. Zhang, L. Wu, S. Wang, et al. Color Image Enhancement based on HVS and PCNN [J]. Science China Information Sciences,2010,53(10): 1963-1976.
    [49]J.M. Kinser, C. Nguyen. Image object signatures from centripetal autowaves [J]. Pattern Recognition Letters,2000,21(3):221-225.
    [50]U. Ekblad, J.M. Kinser. The intersecting cortical model in image processing [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2004,525 (1):392-396.
    [51]U. Ekblad, J.M. Kinser. Theoretical foundation of the intersecting cortical model and its use for detection of aircrafts, cars and nuclear explosion tests [J]. Signal Processing,2004,84(7):1131-1146.
    [52]绽琨,张红娟,马义德.交叉皮层模型及其在图像处理中的应用[J].北京邮电大学学报,2009,32(4):40-45.
    [53]T. Ueno, S. Saito, T.T. Rogers, et al. Lichtheim 2:synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal-ventral language pathways [J]. Neuron,2011,72(2):385-396.
    [54]S.R. Arnott, C. Alain. The auditory dorsal pathway:orienting vision [J]. Neuroscience and Biobehavioral Reviews,2011,35(10):2162-2173.
    [55]T. Serre, M. Kouh, C. Cadieu, et al. A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex [R]. MASSACHUSETTS INST OF TECH CAMBRIDGE MA CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING,2005.
    [56]T. Serre, T. Poggio. A neuromorphic approach to computer vision [J]. Communications of the ACM,2010,53(10):54-61.
    [57]T. Serre T, L. Wolf, S. Bileschi, et al. Robust object recognition with cortex-like mechanisms [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2007,29(3):411-426.
    [58]E. Meyers, L. Wolf. Using biologically inspired visual features for face processing [J]. International Journal of Computer Vision,2008,76(1):93-104.
    [59]H. Jhuang, T. Serre, L. Wolf, et al. A biologically inspired system for action recognition [C]. The 11th International Conference on Computer Vision (ICCV), IEEE,2007:1-8.
    [60]T. Poggio, S. Ullman. Vision:are models of object recognition catching up with the brain? [J]. Annals of the New York Academy of Sciences,2013.
    [61]H. Kuehne, H. Jhuang, E. Garrote, et al. HMDB:a large video database for human motion recognition [C]. IEEE International Conference on Computer Vision (ICCV),2011:2556-2563.
    [62]R. Poppe. A survey on vision-based human action recognition [J]. Image and vision computing,2010,28(6):976-990.
    [63]M.J. Escobar, P. Kornprobst. Action recognition via bio-inspired features:The richness of center-surround interaction [J]. Computer Vision and Image Understanding,2012,116(5):593-605.
    [64]M.C. Casey, P.T. Sowden. Modeling learned categorical perception in human vision [J]. Neural Networks,2012,33:114-126.
    [65]P.H. Tseng, I.GM. Cameron, G Pari, et al. High-throughput classification of clinical populations from natural viewing eye movements [J]. Journal of neurology,2013,260(1):275-284.
    [66]A. Borji, D.N. Sihite, L. Itti. Salient object detection:A benchmark [M]. Computer Vision-ECCV 2012. Springer Berlin Heidelberg,2012:414-429.
    [67]J.B. Kim. Detection of traffic signs based on eigen-color model and saliency model in driver assistance systems [J]. International Journal of Automotive Technology,2013,14(3):429-439.
    [68]彩色视觉[EB/OL].维基百科,2013-8-10 [2013-9-16].http://zh.wikipedia.org/wiki/%E5%BD%A9%E8%89%B2%E8%A7%86%E8 %A7%89.
    [69]I.A. Rybak, V.I. Gusakova, A.V. Golovan, et al. A model of attention-guided visual perception and recognition [J]. Vision Research,1998,28:2387-2400.
    [70]A.A. Salah, E. Alpaydin, L. Akarun. A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition [J]. IEEE Trans Pattern Analysis Machine Intelligence, 2002,24(3):420-425.
    [71]L. Itti. Models of bottom-up and top-down visual attention [D]. Pasadena: California Institute of Technology,2000.
    [72]V. Navaplakkam, L. Itti. Search goal tunes visual features optimally [J]. Neuron,2007,53(40):605-617.
    [73]D. Walther, C. Koch. Modeling attention to salient Proto-objects [J]. Neural Networks,2006,19(9):1395-1407.
    [74]C. Breazeal, B. Seassellati. A context-dependent attention system for a social robot [C]. In:Proeeedings of International joint conference of Artifieial Intelligence,1999,2:1144-1151.
    [75]F.W.M. Stentiford. An attention based similarity measure with application to content based information retrieval [C]. In:Proceedings of the Storage and Retrieval for Media Databases conference,2003,3:345-351
    [76]K. Lee, H. Buxton, J. Feng. Cue-guided search:a computational model of selective attention [J]. IEEE Transactions on Neural Networks,2005,16(4): 567-574.
    [77]X. Hou, L. Zhang. Saliency detection:A spectral residual approach [C]. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2007,1:1-8.
    [78]C. Guo, Q. Ma, L. Zhang. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform [C]. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008,1:1-8.
    [79]漫谈 ANN(1): M-P 模型[EB/OL].2011-10-16[2013-9-16].http://hahack.com/reading/%E6%BC%AB%E8%BO%88ann-l-m-p%E6%A8 %A1%E5%9E%8B/.
    [80]马义德,李廉,绽琨等.PCNN与数字图像处理[M].北京,科学出版社2008.
    [81]A.S. Elons, M. Abull-ela, M.F. Tolba. Neutralizing lighting non-homogeneity and background size in PCNN image signature for Arabic Sign Language recognition [J]. Neural Computing and Applications,2013:1-7.
    [82]X. Deng, Y. Ma. PCNN Automatic Parameters Determination in Image Segmentation Based on the Analysis of Neuron Firing Time [J]. Advances in Intelligent and Soft Computing,2012,122:85-91.
    [83]N. Yang, H. Chen, Y. Li, et al. Coupled parameter optimization of PCNN model and vehicle image segmentation [J]. Journal of Transportation Systems Engineering and Information Technology,2012,12(1):48-54.
    [84]高山,毕笃彦,魏娜.基于交叉视觉皮质模型的彩色图像自动分割方法[J].中国图象图形学报,2009,14(8):1638-1642.
    [85]辛国江,邹北骥,李建锋,等.结合最大方差比准则和PCNN模型的图像分割[J].中国图象图形学报,2011,16(7):1310-1316.
    [86]C. Gao, D. Zhou, Y. Guo. An iterative thresholding segmentation model using a modified pulse coupled neural network [J]. Neural Processing Letters,2013:1-15.
    [87]Y. Zhao, X. Gu. Vehicle license plate localization and license number recognition using unit-linking pulse coupled neural network [C]. Neural Information Processing Lecture Notes in Computer Science,2012,76:100-108.
    [88]视锥细胞[EB/OL]. 互动百科,2013-8-10[2013-9-16].http://www.baike.com/ipadwiki/%E8%A7%86%E9%94%A5%E7%BB%86% E8%83%9E.
    [89]Z. SHI, J. HU. A Modified Pulse Coupled Neural Network with Anisotropic Synaptic Weight Matrix for Image Edge Detection [J].2013,96(6): 1460-1467.
    [90]P. Wang, X. Meng, K. Zhang, et al. Research on edge detection algorithm for plate image [C]. Control and Decision Conference (CCDC),2013 25th Chinese. IEEE,2013:5123-5127.
    [91]R. Wang, J. Song, X. Zhang, et al. SAR Image Classification in Urban Areas Using Unit-Linking Pulse Coupled Neural Network [M]. Advances in Multimedia, Software Engineering and Computing Vol.1. Springer Berlin Heidelberg,2012:39-44.
    [92]鞠明,李成,高山,等.基于向心自动波交叉皮质模型的非均匀光照图像增强[J].自动化学报,2011,37(7):799-810.
    [93]S. Gao, C. Li, D. Bi. Image enhancement algorithm based on NF-ICM [J]. Chinese Optics Letters,2010,8(5):474-477.
    [94]W. Zheng, T. Pu, J. Cheng, et al. Image contrast enhancement by contourlet transform and PCNN [C]. IEEE International Conference on Audio, Language and Image Processing,2012,6:735-739.
    [95]正常人体解剖学精品课程:感觉系统[EB/OL].百慕论坛,2007-8-29[2013-9-16]. http://www.biomsn.com/html/37/t-1637.html.
    [96]W. Kong, J. Liu. Technique for image fusion based on nonsubsampled shearlet transform and improved pulse-coupled neural network [J]. Optical Engineering,2013,52(1):017001-017001.
    [97]A.E. Hassanien, N. El-Bendary, M. Kudelka, et al. Breast Cancer Detection and Classification Using Support Vector Machines and Pulse Coupled Neural Network [C]. Proceedings of the Third International Conference on Intelligent Human Computer Interaction (IHCI 2011), Prague, Czech Republic, August, 2011. Springer Berlin Heidelberg,2013:269-279.
    [98]C. Gao, D. Zhou, Y. Guo. Automatic iterative algorithm for image segmentation using a modified pulse-coupled neural network [J]. Neurocomputing,2013,119(7):332-338.
    [99]H. Deng, D. Zhou, R. Nie, et al. Iris Recognition Based on Pulsed Coupled Neural Networks [J]. Applied Mechanics and Materials,2013,380: 2637-2640.
    [100]X. Li, H. Zheng, C. Liu. Face Recognition Scheme based on HSI-PCNN[J]. Journal of Multimedia,2013,8(5):573-579.
    [101]邹北骥,周浩宇.基于PCNN的点云曲面去噪[J].电子学报,2012,40(11):2221-2225.
    [102]R.Nie, S. Yao, D. Zhou, et al. A Salt and Pepper Noise Image Filtering Method Using PCNN [C]. Proceedings of The Eighth International Conference on Bio-Inspired Computing:Theories and Applications (BIC-TA), 2013. Springer Berlin Heidelberg,2013:1029-1036.
    [103]Y. Zhang, P. Zhang, G. Wang, et al. A Denoising Method Based on Modified PCNN for Color Images [C]. Proceedings of the 2012 Second International Conference on Electric Information and Control Engineering-Volume 01. IEEE Computer Society,2012:29-33.
    [104]B. Zou, H. Zhou, H. Chen, et al. Multi-Channel Image Noise Filter based on PCNN [J]. Journal of Computers,2012,7(2):475-482.
    [105]S. Cheng, M. Qiguang. A novel algorithm of remote sensing image fusion based on Shearlets and PCNN [J]. Neurocomputing,2013,117(6):47-53.
    [106]G Xin, B. Zou, H. Zhou, et al. Image Fusion Based on the Discrete Wavelet Transform [J]. International Journal of Digital Content Technology and its Applications,2012,6(6):8-16.
    [107]S. Yang, M. Wang, Y. Lu, et al. Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN [J]. Signal Processing,2009, 89(12):2595-2608.
    [108]B. Zou, H. Zhou. PCNN-HIS Based Pixel-level Image Fusion Method [J]. Journal of Computational Information Systems,2012,8(10):4303-4313.
    [109]X. Li, Y. Ma, X. Feng. Self-adaptive autowave pulse-coupled neural network for shortest-path problem [J]. Neurocomputing,2013,115(4):63-71.
    [110]X. Li, Y. Ma, Z. Wang, et al. Geometry-invariant texture retrieval using a dual-output pulse-coupled neural network [J]. Neural computation,2012, 24(1):194-216.
    [111]X. Wang, L. Lei, M. Wang. Palmprint verification based on 2D-Gabor wavelet and pulse-coupled neural network [J]. Knowledge-Based Systems, 2012,27:451-455.
    [112]Y. Wang, J. Ge, H. Zhang, et al. Intelligent injection liquidparticle inspection machine based on two-dimensional Tsallis Entropy with modified pulse-coupled neural networks [J]. Engineering Application of Artificial Intelligence,2011,24(4):625-637.
    [113]J. Ge, Y. Wang, B. Zhou, et al. Intelligent foreign particle inspection machine for injection liquid examination based on modified pulse-coupled neural networks [J]. Sensors,2009,9(5):3386-3404.
    [114]J.M. Kinser. Implementation of the Pulse-Couple Neural Network in CNAPS environment [J]. IEEE Transaction on Neural Network,1999,10(3):591-599.
    [115]X. Gu, D Yu. Image shadow removal using pulse coupled neural network [J]. IEEE Transactions on Neural Networks,2005,16(3):692-698.
    [116]X. Gu, Y. Fang, Y. Wang. Attention Selection Using Global Topological Properties Based on Pulse Coupled Neural Network [J]. Computer Vision and Image Understanding,2013,117(10):1400-1411.
    [117]刘勃.基于PCNN的图像处理若干问题研究[D].西安:西安电子科技大学,2011.
    [118]绽琨.脉冲发放皮层模型及其应用[D].兰州:兰州大学,2010.
    [119]李小军.PCNN改进模型及其在不变纹理检索和最短路径求解中应用[D].兰州:兰州大学,2010.
    [120]徐志平.基于交叉视觉皮质模型的图像处理关键技术研究[D].上海:复旦大学,2007.
    [121]于江波.视觉感知计算模型若干问题的研究及其应用[D].北京:北京交通大学,2007.
    [122]王成.基于PCNN的感兴趣区图像检测方法及庆用[D].华南理工大学,2010.
    [123]葛继.安瓿药液可见异物视觉检测机器人技术研究[D].长沙:湖南大学2012.
    [124]王志慧,赵保军,沈庭芝.基于MMPN和可调节链接强度的图像融合[J].电子学报,2010,38(5):1163-1166.
    [125]Y. Chai, H. Li, J. Qu. Image fusion scheme using a novel dual-channel PCNN in lifting stationary wavelet domain [J]. Optics Communications,2010, 283(19):3591-3602.
    [126]章毓晋.图像处理和分析技术[M].北京:高等教育出版社,2009.
    [127]Z. Wang, Y. Ma. Medical image fusion using m-PCNN [J]. An International Journal on Multi-Sensor Multi-Source Information Fusion,2008,9(2): 176-185.
    [128]Z. Wang, Y. Ma. Multi-focus image fusion using PCNN [J]. Pattern Recognition,2010,43(6):2003-2016.
    [129]顾晓东,张立明,余道衡.用无需选取参数的Unit-linking PCNN进行自动图像分割[J].电路与系统学报,2007,12(6):54-58.
    [130]Z. Kun, H. Zhang, Y. Ma. New spiking cortical model for invariant texture retrieval and image processing [J]. IEEE Transactions on Neural Network, 20(12):1980-1986.
    [131]姚畅,陈后金,李居朋.改进型PCNN在图像处理中的动态行为分析[J].自动化学报,2008,34(10):1291-1297.
    [132]马义德,齐春亮.基于遗传算法的PCNN自动系统的研究[J].系统仿真学报,2006,18(3):722-725.
    [133]于江波,陈后金,王巍.PCNN在图像处理中的参数确定[J].电子学报, 2008,36(1):81-85.
    [134]赵峙江,张田文.一种新的基于PCNN的图像自动分割算法研究[J].电子学报,2005,33(7):1342-1344.
    [135]K. Gao, H. Duan, Y. Xu, et al. Artificial Bee Colony approach to parameters optimization of Pulse Coupled Neural Networks [C]. The 10th IEEE International Conference on Industrial Informatics (INDIN),2012:128-132.
    [136]毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650.
    [137]G. Shi, J. Ma, Y. Jing. An Adaptive Immune Genetic Algorithm and Its Application [C]. Advanced Technology in Teaching-Proceedings of the 2009 3rd International Conference on Teaching and Computational Science (WTCS 2009). Springer Berlin Heidelberg,2012:373-380.
    [138]绽琨,张红娟,马义德.交叉皮层模型及其在图像处理中的应用[J].北京邮电大学学报,2009,32(4):40-45.
    [139]曹银详.感觉器官的功能[EB/OL].生理学第七版补充读物,[2013-9-16].http://srjpkc.fudan.edu.cn/physio7/page10-4c.html.
    [140]肖泉,丁兴号,王守觉,等.有效消除光晕现象和颜色保持的彩色图像增强算法[J].计算机辅助设计与图形学学报,2010,22(8):1242-1256.
    [141]H. Liu, J. Ding. Optimization and Implementation of the Sobel Edge Detection on Davinci Platform [C]. Proceedings of 2013 Chinese Intelligent Automation Conference,2013,255:271-276.
    [142]W. Gao. Based on soft-threshold wavelet denoising combining with Prewitt operator edge detection algorithm [C]. The 2nd International Conference on Education Technology and Computer (ICETC),2010,5:155-162.
    [143]孟祥林,王正志.基于视觉掩蔽效应的图像扩散[J].自动化学报,2011,37(1):21-22.
    [144]J. Ma, L. Lu. Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model[J]. Computer Vision and Image Understanding,2013,117(9):1072-1083.
    [145]R. Biswas, J. Sil. An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets [J]. Procedia Technology,2012,4:820-824.
    [146]马银平,江伟.基于局部均值和标准差的图像增强算法[J].计算机工程,2009,35(22):205-209.
    [147]A. Sanin, C. Sanderson, B.C. Lovell. Shadow detection:A survey and comparative evaluation of recent methods [J].Pattern recognition,2012,45(4): 1684-1695.
    [148]Y. Chen, S.K. Park, Y. Ma, et al. A new automatic parameter setting method of a simplified PCNN for image segmentation [J]. IEEE Transactions on Neural Networks,2011,22(6):880-892.
    [149]M. Cohen, M. Georgiou, N.L. Stevenson, et al. Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition [J]. Developmental Cell,2010,19(1):78-79.
    [150]吴岳洲,熊运余,周磊,等.基于HSV颜色空间检测与Gabor筛选器的阴影检测[J].光电子.激光,2009,20(12):1626-1630.
    [151]王玥,王树根.高分辨遥感影像阴影检测与补偿的主成分分析方法[J].应用科学学报,2010,28(2):136-141.
    [152]J, Yang, Z. Zhao. Shadow processing method based on normalized RGB color model [J]. Opto-Electronic Engineering,2007,34(12):92-96.
    [153]L. Tang, W. Xie, J. Huang. Detection of shadow in urban color aerial images [J]. Chinese Journal of Stereology and Image Analysis,2003,8(3):129-134.
    [154]李美丽,李言俊,王红梅,等.基于自适应PCNN图像融合新算法[J].光电子激光,2010,21(5):779-782.
    [155]苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报,2006,28(3):466-470.
    [156]刘贵喜,杨万海.基于多尺度对比度塔的图像融合方法及性能评价[J].光学学报,2001,21(11):1336-1442.
    [157]俞斯乐,侯正信,冯启明,等.电视原理[M].北京:国防工业出版社2000.
    [158]S. Ferradans, M. Bertalmio. An analysis of visual adaptation and contrast perception for tone mapping [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(10):2002-2012.
    [159]C. Wei, L.M. Kaplan. Diffuse prior monotonic likelihood ratio test for evaluation of fused image quality measures [J]. IEEE Transactions on Image Processing,2011,20(2):327-344.
    [160]I. Alimuddin, J.T.S. Sumantyo, H. Kuze. Spectral quality evaluation of pixel-fused data for improved classification of remote sensing images [J]. IEEE International Geoscience and Remote Sensing Symposium,2011,483-486.
    [161]A. Lavanya, K. Vani. Image fusion of the multi-sensor lunar image data using wavelet combined transformation [J]. IEEE International Recent Trends in Information Technology,2011,920-925.
    [162]A. Saha, G. Bhatnagar, Q.M. Jonathan Wu. Mutual spectral residual approach for multifocus image fusion [J]. Digital Signal Processing,2013,23(4): 1121-1135.
    [163]P.J, Burt, R.J. Kolczynski. Enhanced image capture through fusion [C]. Proceedings of 4th International Conference on Computer Vision (ICCV). Berlin, Germany,1993:173-182.
    [164]P.J. Burt, E.H. Adelson. A multiresolution spline with application to image mosaics [J]. ACM Transaction on Graphics,1983,2(4):217-236.
    [165]J. Zhao, Q. Zhou. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition [J]. Infrared Physics and Technology,2013,56(2):93-99.
    [166]X. Bai. Image analysis through feature extraction by using top-hat transform-based morphological contrast operator [J]. Applied Optics,2013, 52(6):3777-3789.
    [167]M. Sumathi. Qualitative evaluation of pixel level image fusion algorithms [C]. IEEE International Conference on Pattern Recognition, Informatics and Medical Engineering,2012,3:312-317.
    [168]D.E. Nirmala, B.S. Paul. A novel multimodal image fusion method using Shift Invariance Discrete Wavelet Transform and Support Vector Machines [J]. IEEE International Conference on Recent Trends in Information Technology, 2011:932-937.
    [169]V.K. Shettigara. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set [J]. Photogrammetric Engineering and Remote Sensing,1992,58(3):561-567.
    [170]K. Gao, H. Duan, Y Xu, et al. Artificial Bee Colony approach to parameters optimization of Pulse Coupled Neural Networks [C]. The 10th IEEE International Conference on Industrial Informatics (INDIN), Beijing,2012:128-132.
    [171]S. Zhao, T. Zhang, Z. Zhang. A study of a new image segmentation algorithm based on PCNN [J]. Acta Electronica Sinica,2005,33(7):1342-1344.
    [172]C. Yao, H. Chen. Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm [J].Journal of Central South University of Technology,2009,16(4):640-646.
    [173]J. Yu, H. Chen, W. Wang. Parameter determination of Pulse Coupled Neural Network in image processing [J]. Acta Electronica Sinica,2008,36(1):81-85.
    [174]X. Xu, S. Ding, Z. Shi, et al. Particle Swarm Optimization for Automatic Parameters Determination of Pulse Coupled Neural Network [J]. Journal of Computers,2011,6(8):1546-1553.
    [175]毕晓君,施展.基于克隆选择算法的PCNN参数自动选取算法研究[J].控制理论与应用,2009,28(2):4-8.
    [176]J. Wu, J. Zhang, X. Zhang, et al. Hierarchical Co-evolution immune algorithm and its application on TSP [J]. Acta Electronica Sinica,2011,39(2):336-344.
    [177]A. Shiozaki. Edge extraction using entropy operator [J]. Computer Vision, Graphics and Image Processing,1986,36(1):1-9.
    [178]尚荣华,焦李成,公茂果,等.免疫克隆算法求解动态多目标优化问题[J].软件学报,2007,18(11):2700-2711.
    [179]杨秋辉,游志胜,冯子亮.自适应遗传算法在飞机调度问题中的应用[J].四川大学学报:自然科学版,2004,41(6):1158-1162.
    [180]傅清平.基于新型免疫算法的多峰函数优化[J].计算机应用研究,2011,28(10):10-15.
    [181]S. Poornachandra. Retinal blood vessel segmentation using morphological structuring element and entropy thresholding [C]. The 3rd IEEE International Conference on Computing Communication and Networking Technologies (ICCCNT),2012:1-5.
    [182]N.R. Pal, S.K. Pal. A review on image segmentation techniques [J]. Pattern Recognition,1993,26(3):1277-1294.
    [183]M. Milev, P.N. Inverardi, A. Tagliani. Moment information and entropy evaluation for probability densities [J]. Applied Mathematics and Computation,2012,218(9):5782-5795.
    [184]T. Hopp, P. Baltzer, M. Dietzel, et al.2D/3D image fusion of X-ray mammograms with breast MRI:visualizing dynamic contrast enhancement in mammograms [J]. International journal of computer assisted radiology and surgery,2012,7(3):339-348.
    [185]H. Vojodi, A. Fakhari, A.M.E. Moghadam. A New Evaluation Measure for Color Image Segmentation Based on Genetic Programming Approach [J]. Image and Vision Computing,2013,31(11):877-886.
    [186]S.H. Park, S. Lee, I.E. Yun, et al. Hierarchical MRF of globally consistent localized classifiers for 3D medical image segmentation [J]. Pattern Recognition,2013:2408-2419.
    [187]B.F. Moghaddam, R. Ruiz, S.J. Sadjadi. Vehicle routing problem with uncertain demands:An advanced particle swarm algorithm [J]. Computers and Industrial Engineering,2012,.62(1):306-317.
    [188]M.H. Moradi, M. Abedini. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems [J]. International Journal of Electrical Power and Energy Systems, 2012,34(1):66-74.
    [189]K. Abdi, M. Fathian, E. Safari. A novel algorithm based on hybridization of artificial immune system and simulated annealing for clustering problem [J]. The International Journal of Advanced Manufacturing Technology,2012, 60(5-8):723-732.
    [190]Y. Chai, H. Li, X. Zhang. Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain [J]. Optik-International Journal for Light and Electron Optics,2012,123(7): 569-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700