用户名: 密码: 验证码:
掺杂BiFeO_3性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多铁性材料同时具有铁电性和铁磁性,并且存在磁电耦合效应,从而可以实现铁电性和磁性的相互调控,可能成为一种新型功能材料,有着广阔的应用前景。BiFeO_3作为几乎唯一的室温单相多铁材料,引起人们越来越多的关注,成为当前多铁性研究最主要的材料体系之一。在铁电性方面,BiFeO_3薄膜大的漏导问题已经基本解决,具有大的剩余极化的BiFeO_3薄膜已经被制备出来;但是,BiFeO_3材料室温下的铁磁性非常弱,离应用还有差距,因此如何增强BiFeO_3的磁性是目前需要解决的最主要的问题之一。
     随着密度泛函理论和计算机硬件的不断发展,基于第一性原理的计算已成为研究多铁材料的一个常规方法。本文采用密度泛函理论(DFT)结合投影缀加波PAW(projector augumented wave)方法的VASP(Vienna ab-initio simulation package)软件包,对BiFeO_3以及对其B位掺杂替代形成的材料进行第一性原理研究。
     本论文主要包括了两个部分,第一部分包含四个章节,主要内容包括:论文研究背景和意义,多铁性及实现多铁性的思路,BiFeO_3的铁电性、铁磁性及其不足,密度泛函理论。论文第二部分包含两个章节:第五章计算了多铁材料BiFeO_3的磁结构、电子结构、能带结构;在第六章中为提高BiFeO_3的铁磁性,对其进行了B位过渡元素替代掺杂,计算了BiFe_(0.5)Mn_(0.5)O3、BiFe_(0.5)Ni_(0.5)O3、BiFe0.75Co0.25O3材料的磁结构、电子结构、能带结构。
     本文第五章计算结果表明:BiFeO_3的铁电性主要来源于Bi原子的相对位移,保持Bi和其他原子的相对位移不变,就可以较好地保持BiFeO_3材料的铁电性;尽管Fe原子具有较大的磁矩,但由于体系的反铁磁结构导致原子磁矩大部分相互抵消,整体几乎不显示铁磁性。在第六章中研究了对BiFeO_3的B位过渡元素替代掺杂,计算结果表明:B位上Co、Ni、Mn杂质的掺入基本不会改变BiFeO_3原有的铁电结构,可以推断掺杂对材料铁电性影响不大;同时掺杂导致原有的G型反铁磁序发生变化,形成了亚铁磁序的磁结构,材料的铁磁性有了较大的提高;然而,杂质的掺入使材料的绝缘性发生了明显变化,Ni、Mn杂质的掺入使材料变为了导体,不再满足铁电材料对绝缘性质的要求,Co杂质掺入后材料的绝缘性也有所减弱。
The multiferroic material, in which the ferroelectricity and ferromagnetism coexist, may become one kind of new functional materials and has a broad application prospect. It makes the mutual control of the magnetic and electric properties to be possible due to its magnetoelectricity coupling effect. As the only room-temperature multiferroic material, BiFeO_3 attracts more and more attention and becomes the primary material for the investigation to multiferroism. For BiFeO_3 film, the large drain conductance problem has been solved, and the film of large remnant polarization has been made. But its ferromagnetism is too weak to be used at room temperature. So, the enhancement of its magnetism is a key problem waiting to be solved.
     Owing to the development of density functional theory and computer technique, the first-principle calculation becomes a regular method to study multiferroic materials. By using the VASP (Viena ab-initio simulation package), which bases on the density functional theory combined with the projector augumented wave (PAW), we have conducted the first-principle investigation to BiFeO_3 and the B-site doped ones.
     This thesis consists of two parts. There are four chapters in the first part which involve mainly in the background and significance of research, multiferroism and its realization, the ferroelectricity and ferromagnetism of BiFeO_3, and the density functional theory. The second part consists of two chapters. The magnetic, electronic, and energy band structures of BiFeO_3 are studied in the fifth chapter. To improve its ferromagnetism, BiFeO_3 is doped on B-site. Those structures of BiFe_(0.5)Mn_(0.5)O3, BiFe_(0.5)Ni_(0.5)O3, and BiFe0.75Co0.25O3 are investigated in the sixth chapter.
     The results in the fifth chapter show that the ferroelectrism of BiFeO_3 mainly comes from the relative displacement of Bi atoms. The ferroelectricity of BiFeO_3 could be kept as long as the relative positions of Bi and other atoms are almost unchanged. Fe atom has a great magnetic moment, but the lattice has almost no ferromagnetism because of its antiferromagnetic structure. In the sixth chapter, the B-site doping to BiFeO_3 is studied. The numerical results show that the impurities of Co, Ni and Mn can’t significantly change the geometrical structure so that BiFe_(0.5)Mn_(0.5)O3, BiFe_(0.5)Ni_(0.5)O3, BiFe0.75Co0.25O3 keep the obvious ferroelectricism. The ferromagnetism can be significantly improved since the doping changes the G-type antiferromagnetic order into the ferromagnetic one. But the doping lowers the insulativity. The doping of Mn or Ni makes the material to be conductor, and the impurity of Co will weaken its insulativity.
引文
[1]G A Smolenskii, I E Chupis Sov. Phys. Usp 1982 25 475
    [2]H Schmid Ferroelectrics, 1994 162 31
    [3]N A Hill, K M Rabe Phys. Rev. B 1999 59 8759
    [4]N A Hill J. Phys. Chem B 2000 104 6694
    [5]M Fiebig Nature 2002 419 818
    [6]Science 21 December 2007 318 1848
    [7]Ziese M, Tohornton M J Spin Electronics. Berlin: Springer 2001
    [8]Prinz G A Science 1998 282 1660
    [9]Wolf S A, Awschalom D D, Buhrman R A Science 2001 294 1488
    [10]Zutic I, Fabian J, Das Sarma S Rev. Mod. Phys. 2004 76 323
    [11]Scott J F Berlin: Springer Verlag 2000
    [12]王克锋,刘俊明,王雨科学通报2008 53 1098
    [13]南策文科学通报2008 53 1097
    [1]G A Smolenskii, I E Chupis Sov. Phys. Usp 1982 25 475
    [2]H Schmid Ferroelectrics 1994 162 31
    [3]N A Hill J. Phys. Chem. B 2000 104 6694
    [4]M Fiebig Nature 2002 419 818
    [5]闵乃本香山科学会议第306次学术讨论会铁电超晶格材料的研究2007
    [6]Curie P J Physique1894 3 393
    [7]Fiebig M, Lottermoser Th, Frshlich D, et al. Nature 2002 419 818
    [8]Sirnivas A, Dong W K, Kug S H Appl. Phys. Lett. 2003 83 2217
    [9]Landau L D, Lifshitz E. Translation of a Russian edition of 1958 1960
    [10]Pimenov A, Mukhin A A, Lvanov V Y, et al. Nature Physics 2006 2 97
    [11]Kimura T, Goto T, Shintani H, et al. Nature 2003 426 55
    [12]Hur N, Park S, Sharma P A, et al. Nature 2004 429 392
    [13]Lawes G, Harris A B, Kimura T, et al. Phys. Rev. Lett. 2005 95 087205
    [14]Tokura Y Science 2006 312 1481
    [15]Schmid H Ferroelectrics 1994 162 317.
    [16]Smolenskii G A , Chupis I E Sov. Phys. Usp. 1982 25 475.
    [17]Dzyaloshinsky I E J. Expt. Theor. Phys. 1959 881.
    [18]熊锐,周忠坡信息记录材料2006 7(6) 26
    [19]Rado G T, Folen V J Phys. Rev. Lett. 1961 7 310.
    [20]M Mahesh Kumar, V R Palkar Appl. Phys. Lett. 2000, 76 2764
    [21]Y Yang, J M Liu, H B Huang, W Q Zou, P Bao Phys. Rev. B 2004 70 132101
    [22]H. Zheng, et al. Science 2004 303 661
    [23]T Lottermoser, et al. Nature 2004 430 541
    [24]T Kimura, et al. Nature 2003 426 55
    [25]Lines M E, Glass A Oxford University Press 2001
    [26]Scott J F Berlin: Springer-Verlag 2000
    [27]Khomskii D I. J. Magn. Mater. 2006 306 1
    [28]王克锋,刘俊明,王雨科学通报2008 53 1098
    [1]王克锋,刘俊明,王雨科学通报2008 53 1098
    [2]Smolenskii G A, Chupis I Sov. Phys. Usp. 1982 25 475
    [3]Fischer P, Sosnowska I J. Phys. C 1980 13 1931
    [4]Sosnowska T, Peterlin N J. Phys. C 1982 15 4835
    [5]Lebeugle D, Colson D, Forget A, et al. Appl Phys Lett 2007 91 022907
    [6]孙源,黄祖飞,范厚刚,明星,王春忠,陈岗物理学报2009 58 0193
    [7]Baetting P, Ederer C, Spaldin N A Phys. Rev. B 2005 72 214108
    [8]I Sosnowska, et al. J. Phys. C: Solid State Phys 1982 15 4835
    [9]J Bucci, B Robertson, W James. J. Appl. Cryst. 1972 5 187
    [10]W Naigang, et al. Phys. Rev 2005 72 104434
    [11]Y H Lee, J M Wu. Appl. Phys. Lett. 2006 88 042903
    [12]K Ueda, H Tabata, T Kawai Science 1998 280 1064
    [13]P Baettig, N A Spaldin Appl. Phys. Lett. 2005 86 012505
    [14]P Baettig, C Ederer, N A Spaldin Phys. Rev. B 2005 72 214105
    [15]H Naganuma, N Shimura J. Appl. Phy. 2008 103 07834
    [1]谢希德,陆栋主编,固体能带理论,复旦大学出版社1998
    [2]李正中著,固体理论,高等教育出版社2002
    [3]W Kohn, Nobel Lecture Rev. Mod. Phys. 1999 71 1253
    [4]P Hohenberg, W Kohn Phys. Rev. B 1964 13 6864.
    [5]W Kohn, L J Sham Phys. Rev. A 1965 140 l133.
    [6]J P Perdew, A Zunger Phys. Rev. B 1981 23 5048
    [7]J P Perdew, K Burke, M Ernzerhof Phys. Rev. Lett. 1996 77 3865.
    [8]http://cms.mpi.univie.ac.at/vasp/
    [9]D Vanderbilt Phys. Rev. B 1990 41 7892.
    [10]http://www.wien2k.at/
    [11]http://www.gaussian.com/
    [12]http://www.accelrys.com/
    [13]http://www.pwscf.org/.
    [14]http://www.democritos.it/
    [15]http://www.uam.es/departamentos/ciencias/smateriac/siesta
    [1]B F Kubel, H Schmid Acta. Cryst. B 1990 46 698
    [2]J B Neaton, C Ederer, U V Waghmare, N A Spaldin. Phys. Rev. B 2005 71 014113
    [3]D Lebeugle, D Colson, A Forget Appl. Phys. Lett. 2007 91 022907
    [4]I Sosnowska, et al. J. Phys. C: Solid State Phys 1982 15 4835
    [5]J Bucci, B Robertson, W James J. Appl. Cryst. 1972 5 187
    [6]W Naigang, et al. Phys. Rev. 2005 72 104434
    [7]孙源,黄祖飞,范厚刚,明星,王春忠,陈岗物理学报2009 58 0193
    [8]Sosnowska I Phys. B. 1997 180 117.
    [9]P Ravindran, R Vidya, A Kjekshus Phys. Rev. B 2006 74 224412
    [10]计算所得BiFeO3材料中两个Fe离子的磁矩分别为3.699μB与-3.702μB;O原子提供了微小的磁矩,将其考虑在内得出晶格总的磁矩为0.000μB。
    [1]Goodenough J B New York: Wiley 1963
    [2]Ueda K, Tabata H, Kawai T Science 1998 280 1064
    [3]Baettig P, Ederer C, Spaldin N A Phys. Rev. B 2005 72 214105
    [4]Kim D H, Lee H N, Biegalski M D, et al. Appl. Phys. Lett 2007 91 042906
    [5]H Naganuma, N Shimura J. Appl. Phy 2008 103 07834
    [6]Anisimov V, Aryasetiawan F Phys. Condens. Matter 1997 9 797

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700