用户名: 密码: 验证码:
非金属元素掺杂纳米TiO_2的制备和光催化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO_2)由于具有化学性质稳定、抗光腐蚀、无毒和成本低等优点,在光电转化和光催化领域具有广阔的应用前景。然而,TiO_2的禁带宽度较大(3.0-3.2 eV),只能被波长小于387nm的紫外光激发,且光生电子和空穴易复合,因此限制了其在光催化领域的广泛应用。为了增强TiO_2可见光吸收和提高TiO_2光催化效率,本论文采用溶胶-凝胶法制备了一系列B、C、N、C-N掺杂TiO_2,采用高温分解法制备了N-F共掺杂TiO_2,采用吸附法制备了锌卟啉修饰的N掺杂TiO_2。通过TG-DTA、XRD、TEM、XPS、FT-IR和UV-Vis光谱等手段来考察非金属掺杂TiO_2的组成和结构,并研究了其光催化特性。
     第一,采用溶胶-凝胶法制备了B-TiO_2,并对其结构和催化特性进行了研究。研究结果表明:掺杂的B元素以B~(3+)的形式进入了TiO_2晶格的间隙,形成了Ti-O-B结构;B元素的存在可有效抑制TiO_2颗粒的生长,促进TiO_2从锐钛矿向金红石的相转变。但当B掺杂量过大时会在TiO_2颗粒表面形成B2O3,从而抑制TiO_2相转化;采用NADH的再生体系来评价B-TiO_2在紫外光下的光催化活性,发现其光催化活性均高于未掺杂TiO_2,这是由于B掺杂提高了TiO_2的禁带宽度和紫外光吸收。当B和Ti的原子比达到5 at.%时,再生效率最高,达到了94%。
     第二,采用溶胶-凝胶法制备了C-N-TiO_2,并对其结构和光催化特性进行了研究。研究结果表明:N原子取代TiO_2晶格中氧原子,形成了N2p能带,从而降低TiO_2的禁带宽度,提高TiO_2对可见光的吸收。而C原子不能进入TiO_2晶格,而是在TiO_2颗粒表面形成活性炭和碳氧化合物的复合物薄层,该薄层有类似染料敏化剂的作用,可增强可见光吸收;C和N掺杂均可抑制TiO_2颗粒的生长,其中,C掺杂作用更明显;采用亚甲基蓝降解体系比较不同掺杂量的C-TiO_2、N-TiO_2和C-N-TiO_2在可见光下的光催化活性,由于掺杂的C和N元素的协同效应,C-N-TiO_2表现出比单掺杂TiO_2更高的可见光催化活性。
     第三,采用高温煅烧(NH4)2TiF6法制备了N-F-TiO_2,并对其结构和光催化特性进行了研究。研究结果表明:随着煅烧温度升高和煅烧时间延长,(NH4)2TiF6先分解为NH4TiOF3和TiOF2,而后逐渐转变成锐钛矿型N-F-TiO_2。硼酸作为氧源可促进TiO_2的形成,提高TiO_2的结晶度和产率;N和F原子取代了TiO_2晶体中的氧原子,且掺杂效率比溶胶-凝胶法高。此外,掺杂N原子提高了TiO_2的可见光吸收,掺杂F原子增加了TiO_2的表面酸性和活性位点,因此N和F共同掺杂会产生协同效应;亚甲基蓝可见光催化降解实验表明,所合成的N-F-TiO_2表现比商业化产品Degussa P25更高的光催化活性。
     第四,采用吸附法制备了锌卟啉修饰的N-TiO_2,并对其结构和光催化特性进行了研究。研究结果表明:由于羧基的存在,ZnTCPP(四羧基苯基锌卟啉)和TiO_2发生配合形成C-O-Ti键,使得ZnTCPP更容易吸附在N-TiO_2的表面;亚甲基蓝可见光催化实验表明,由于吸附的染料分子和N掺杂的协同效应,ZnTCPP修饰的TiO_2表现出比N-TiO_2和ZnTCPP修饰的纯TiO_2更高的光催化活性。
Titanium dioxide (TiO_2) has been considered as one of the most promising materials for its application in photocatalysis and photoelectric conversion because of its high chemical stability, corrosion resistance, non-toxicity and low cost etc. However, the wide band gap (3.0-3.2eV, only absorbing the UV light ofλ<387nm) and the easy recombination of photoinduced electrons and holes result in a low efficiency of photocatalysis and seriously limit the practical application of TiO_2. In order to improve the photocatalytic activity or extend the optical absorption to the visible light region, in this dissertation, a sol-gel method was developed to prepare the B-TiO_2, C-TiO_2, N-TiO_2 and C-N-TiO_2 nanopaticles, the dye adsorption was employed to prepare the N-doped TiO_2 modified by Zn porphyrins, and a pyrolysis method using (NH4)2TiF6 as the precursor was introduced to prepare the N-F-TiO_2, respectively. The chemical composition and structural properties of these nonmetals doping TiO_2 nanoparticles were investigated by TG-DTA, XRD, TEM, XPS, FT-IR and UV-Vis spectroscopy, and their photocatalytic activity were studied in detail.
     Firstly, TiO_2 nanoparticles only doped with B element were prepared by a sol-gel method, and their structure and photocatalytic properties were studied. The results showed that B~(3+) was likely to weave into the interstitial TiO_2 structure, forming the chemical environment like Ti-O-B. The doping of boron ions could efficiently inhibit the grain growth and facilitate the anatase-to-rutile transformation prior to the formation of diboron trioxide phase. When the B amount is high enough to form the diboron trioxide, the doping of boron ions could inhibit the anatase-to-rutile transformation. The photocatalytic activity of the B-doped TiO_2 nanoparticles was evaluated by the photoregeneration of nicotinamide adenine dinucleotide (NADH) under UV-Vis light. All B-doped TiO_2 nanoparticles calcined at 500oC showed higher photocatalytic activity than pure TiO_2 sample due to the increase of band gap and absorption in the UV range. When the molar ratio of B to Ti was 5%, the TiO_2 nanoparticles could photocatalytically reproduce 94% NADH.
     Secondly, C-N-codoped TiO_2 nanoparticles were prepared by a sol-gel method, and their structure and photocatalytic properties were studied. The results revealed that N atoms could incorporate into the lattice of anatase through substituting the sites of oxygen atoms and induce N2p state, which can narrow the band gap of TiO_2 and enhance the visible light absorption, while most of C atoms could form a mixed layer of deposited active carbon and carbonate species on the surface of TiO_2, which can act the role of photosensitiser like the organic dyes and widen the region of visible light absorption. The doping of C and N atoms could suppress the crystal growth of TiO_2, and the effect of C doping was more pronounced than that of N doping. The photocatalytic activity of resulting C-TiO_2, N-TiO_2 and C-N-TiO_2 samples with different C and N content were evaluated by methylene blue degradation under visible light irradiation. It was found that C-N-TiO_2 nanomaterials exhibited the highest photocatalytic activity, which could be attributed to the synergistic effect of doped C and N atoms.
     Thirdly, N-F-codoped TiO_2 nanoparticles were prepared by pyrolysis of (NH4)2TiF6, and their structure and photocatalytic properties were studied. The results demonstrated that, with the increase of calcination temperature and time, (NH4)2TiF6 was decomposed into NH4TiOF3 and TiOF2 firstly, and then transformed into anantase N-F-codoped TiO_2. H3BO3 as oxygen source can promote the formation of anantase TiO_2, increase the crystallinity and productivity of TiO_2. N and F atoms replaced oxygen sites of anatase TiO_2, meanwhile, the amount of doping N and F of N-F-TiO_2 prepared by this approach was greater than those prepared by the sol-gel approach. N doping enhanced the visible light absorption, and F doping led to the enhancement of surface acidity and active sites. So, there is the synergetic effect of doped N and F atoms together. The photocatalytic activity of N-F-TiO_2 was evaluated by methylene blue degradation under visible light. It was found that N-F-TiO_2 exhibited higher photocatalytic activity than Degussa P25.
     Finally, N-TiO_2 nanoparticles sensitized by dye were prepared by direct adsorption of Zn porphyrin onto the surface of N-TiO_2, and the characterization and photocatalytic properties of these TiO_2 nanoparticles were carried out. The results showed the ZnTCPP was chemisorbed on the surface of TiO_2 through a C-O-Ti bond, while the ZnTPP was physically adsorbed. Therefore, it was easier for ZnTCPP to adsorb on the surface of N-TiO_2 than ZnTPP. The photocatalytic activity of N-TiO_2 sensitized by ZnTCPP was evaluated by methylene blue degradation under visible light. It was found that N-TiO_2 sensitized by ZnTCPP exhibited higher photocatalytic activity than N-TiO_2 and undoped TiO_2 sensitized by ZnTCPP due to the synergistic effect of adsorbed dye and doped N atoms.
引文
[1] Regan O, Gratzel M, A low-cost high efficiency solar cell based on dye- sensitized colloidal TiO_2 Films, Nature, 1991, 353: 737-741.
    [2] 吴海宝,太阳能-TiO_2光催化氧化有机物在水处理上的应用,太阳能学报,1996,17:288-292.
    [3] Hofman M R, Martin S T, Choi W, et al., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev., 1995, 95: 69-96.
    [4] Herrmann J M, Guilard C, Pichat P. Heterogeneous photocatalysis: An emerging technology for water treatment. Catal. Today, 1993, 17: 7-17.
    [5] 李洪斌,刘滔,李云苍,太阳能光催化污水处理的研究现状,云南师范大学学报,2002,22: 24-28.
    [6] 沈伟韧,赵文宽,贺飞等,TiO_2光催化反应及其在废水中的应用,化学进展,1998,4:349-361.
    [7] Yamashita H, Ichihashi Y, Anpo M, et al., Photocatalytic decomposition of NO at 275K on titannium oxides included within Y-zeolite cavities: The structure and role of the activesites, J. Phys. Chem., 1996, 100: 16041-16044.
    [8] Yamashita H, Ichihashi Y, Harada M. et al., Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO_2 powder catalysts, J. Catal., 1996, 158: 97-101.
    [9] 樊安,祖庸,新型抗菌剂-纳米TiO_2的研究进展,钛工业进展,1998, 3:3-34.
    [10] Serpone N, Brief introductory remarks on heterogeous photocatalysis, Sol. Energy Mater. Sol. Cells, 1995, 38: 369-379.
    [11] 祖庸,雷闫盈,李晓娥等,纳米TiO_2一种新型的无机抗菌剂, 现代化工,1999,8:46-48.
    [12] Wang R, Hashimoto K, Fujishima A, et al., Light induced amphiphilic surfaces, Nature, 1997, 388: 431-432.
    [13] Fujishima A, Rao T N, Tryk D A, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C, 2000, 1: 1-21.
    [14] Fujishima A, Honda K, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238: 38-38.
    [15] Frank S N, Bard A J, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc., 1977, 99: 303-304.
    [16] 高远,徐安武,祝静艳等,RE/TiO_2用于NO2-光催化氧化的研究,催化学报,2001,22:53-56.
    [17] 张峰,李庆霖,杨建军等,TiO_2光催化剂的可见光敏化研究,催化学报,1999,20:329-332.
    [18] Xu A, Ciao Y, Liu H, The preparation, characterization and their photocatalytic activitiesof rare earth doped TiO_2 nanoparticles, J. Catal., 2002, 207: 151-157.
    [19] Li W, Wang Y, Lin H, et al., Band gap tailoring of Nd3+-doped TiO_2 nanoparticles, Appl. Phys. Lett., 2003, 83: 4143-4145.
    [20] Paola A D, Marei G, Palmisano L, et al., Preparation of polycrystalline TiO_2 photocatalysis impregnated with various transition metal inons: characterization and photocatalytic activity for the degradation of 4-nitropheno, J. Phys. Chem.B, 2002, 106: 637-645.
    [21] Iwasaki M, Hara M, Kawada K, Cobalt ion-doped TiO_2 photocatalyst response to visible light, J. Colloid and interface Sci., 2000, 20: 202-204.
    [22] Choi W Y, Terrain A, Hoffmann M R, et a1., Role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 1994, 98: 13669-13679.
    [23] Blazková A, Cs?lleová L, Brezovká V, Effect of light sources on the phenol degradation using Pt/TiO_2 photocatalysts immobilized on glass fibres, J. Photochem. Photobiol. A: Chemistry, 1998, 113: 251-256.
    [24] 程沧沧,李太友,李华禄等,载银TiO_2光催化降解2、4-二氯苯酚水溶液的研究,环境科学研究, 1998,1l:212-2l5.
    [25] 蒋伟川,谭湘萍,载银TiO_2半导体光催化剂降解染料水溶液的研究, 环境科学,1998,16:l7-20.
    [26] S?kmen M, ?zkan A, Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis, J. Photochem. Photobiol. A: Chem., 2002, 147: 77-81.
    [27] Kim S, Choi W, Dual photocatalytic pathway of trichloroacetate degradationon TiO_2: efects of nanosized platinum deposits on kinetics and mechanism, J. Phys. Chem. B., 2002, 106: 13311-3317.
    [28] Li X Z,Li F B, Study of Au/Au -TiO Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, 3+2Environ. Sci. Techno1., 200l, 35: 238l-2387.
    [29] Ohtani B, lwaj K, Nishimoto S, Role of Platinum deposits on titanium (IV) oxide particles: structural and kinetics analyses of photocatalytic reaction in aqueous alcohol and amino acid solution, J. Phys. Chem. B., 1997, 101: 3349-3359.
    [30] Mario S, Some Working Principles of Hete?ogeous Photocatalysis by Semiconductors, Electrochemical Acts, 1993, 38: 1056-1062.
    [31] Vogel R, Quantum sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles assensitizers for various nanoporous wide band gap semiconductors, J. Phys. Chem., 1994, 98: 3183-3188.
    [32] Kohtant S, Spectral sensitization of a TiO_2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties, Chem. Phy. Lett., 1993, 206: 166-170.
    [33] Liu D, Kamat P V, Electrochemical rectification in CdSe+TiO_2 coupled semiconductor films, J. Electroanal. Chem., 1993, 347: 451-456.
    [34] Gopidas K R, Bohorquez N, Kamat P V, Photophysical and Photochemical Aspects of Coupled Semiconductors Charge-Transfer Processes in Colloidal CdS-TiO_2 and CdS-AgI System, J. Phys. Chem., 1990, 94: 6435-6440.
    [35] Fu H,Ohtaki M, Eguchi K, et al.,Photocatalytic Activities of CdS Crystallites Embedded in TiO_2 Gel as a Stable Semiconducting Matrix, J. Mater. Sci. Lett., 1997, 16: 1086-1089.
    [36] 颜秀茹,李晓红,霍明亮等, 纳米SnO2-TiO_2的制备及其光催化性能,物理化学学报,2001, 17:23-28.
    [37] Do Y R, Lee W, Dwight K, et al., The effect of WO3 on the photocatalytic activity of TiO_2, J. Solid State Chem., 1994, 108: 198-201.
    [38] 李芳柏,古国榜,李新军, WO3/TiO_2复合半导体的光催化性能,物理化学学报,2000,16:997-1002.
    [39] Li X Z, Li F B, Yang C L, et al., Photocatalytic acitivity of WO3-TiO_2 under visible light irradiation. J. Photochem. Photobiol. A: Chem., 2001, 141: 209-217.
    [40] 施利毅,古宏晨,李春忠等, SnO2/TiO_2复合光催化剂制备和性能,催化学报,1999, 20:338-342.
    [41] Loddo V, Marci G,Martin C, et al., Preparation and Characterization of TiO_2 (anatase) Supported on TiO_2 (rutile) Catalysts Employed for 4-Nitrophenol Photodegradation in Aqueous Medium and Comparation with TiO_2 (anatase) Supported on Al2O3, Appl. Catal., B, 1999, 20: 29-45.
    [42] Zorn M E, Tompkins D T,Zoltner W A, et al., Photocatalytic Oxidation of Acetone Vapor on TiO_2/ZrO2 Thin Films, Appl. Cataly., B, 1999, 23: 1-8.
    [43] 孙晓君,井立强,蔡伟民等, 用于可见光下Pt(Ⅳ)/TiO_2光催化剂的制备和表征,硅酸盐学报,2001,30:761-765.
    [44] 方靖淮,张向阳,吴敬文等,双染料共敏化的纳米晶二氧化钛多孔电极的光伏特性研究,太阳能学报,1997,18:164-167.
    [45] 李敏,王振玲,石恒真等,敏化的TiO_2纳米晶表面形貌、晶相、光谱及光催化灭菌研究, 无机材料学报,2003,18:1261-1266.
    [46] 杨蓉,王维波,敬炳文等,苯基磷酸联吡啶料络合物敏化钠晶多孔TiO_2薄膜电极光电性能研究,感光科学与光化学,1997,15:293-296.
    [47] 秦元东,王晶晶,杨蓉等,TiO_2的联吡啶-钌化合物敏化及电子转移过程,物理化学学报,1998,14:520-526.
    [48] Watanabe T, Fujishima A, Tatsuoki O, et al., pH-dependence of spectral sensitization at semicondutor electrodes, Bull. Chem. Soc. Jpn., 1976, 49: 8-11.
    [49] Ranjit K T, Willner I, Bossmann S, et al., Iron(Ⅲ) phthalocyanine-modified titanium dioxide: A novel photocatalyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B, 1998, 102: 9397-9403.
    [50] Qu P, Zhao J C, Zhang L, et al., Enhancement of the photoinduced electron transfer from cationic dyes to colloidal TiO_2 particles by addition of an anionic surfactant in acidic media, Colloids. Surf., A, 1998, 138: 39-50.
    [51] Zhang F L, Zhao J C, Shen T, et al., TiO_2-assisted photodegradation of dye pollutants.Ⅱ, Adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation, Appl. Catal., B, 1998, 15: 147-156.
    [52] Wu T X,Lin T, Zhao J C, et al., TiO_2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation, Environ. Sci. Techno1., 1999, 33: 1379-1387.
    [53] Liu G M, Li X Zh, Zhao J C, et al., Photooxidation mechanism of dye alizarin red in TiO_2 dispersions under visible illumination: an experimental and theoretical examination, J. Mol. Catal. A, 2000, 153: 221-229.
    [54] Anpo M, Takeuto M, The design and development of highly reactive titanium oxide photocatalyst operating under visible light irradiation, J. catal., 2003, 216: 505-516.
    [55] Yamashita H, Harada M, Misaka J, et a1., Photocatalytic degradation of organic compound diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts:Fe ion-implanted TiO_2, Catal. Today, 2003, 84: 191-196.
    [56] Yamashita H,Harada M,Misaka J,et a1., Degradation of propanal diluted in water under visible light irradiation using metal ion-impanted titanium dioxide photocatalysts., J. Photochem. Photobio1. A: Chem., 2002, 148: 257-261.
    [57] Ihara T, Miyoshi M, Iriyama Y, et al., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal., B, 2003, 42: 403-409.
    [58] Cronemeyer D C, Infrared Absorption of Reduced Rutile TiO_2 single crystals, Phys. Rev., 1959, 113:1222-1226.
    [59] Nakamura I, Negishi N, Kotsuna S, et al., Role of oxygen vacancy in the plasma treated TiO_2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A., 2000, 161: 205-212.
    [60] Takeuchi K, Nakamura I, Matumoto O, et al., Preparation of Visible-light-Responsive Titanium oxide photocatalysts by plasma Treatment,Chem. Lett., 2000, 29: 1354-1355.
    [61] Nakamura I, Sugihara S, Takeuchi K. Mechanism for NO photooxidation over the Oxygen-Deficient TiO_2 powder under Mecvisible light irradiation. Chem. Lett., 2000, 29: 1276-1277.
    [62] Asahi R, Morikawa T, Ohwaki T, et al.,Visible-light photocatalysis in nitrogen doped titanium oxides, Science, 2001, 293: 269-271.
    [63] Diwald O, Thompson T L, Zubkov T, et a1.,Photochemical activity of nitrogen-dopedfutile TiO_2(111)in visible light, J. Phys. Chem. B, 2004, 108: 6004-6008.
    [64] Diwald O,Thompson T L, Coralski E G, et a1., The effect of nitrogen ion implantation on the photoactivity of TiO_2 futile single crystals, J. Phy. Chem. B, 2004, 108: 52-57.
    [65] Irie H, Watanabe Y, Hashimoto K J, Nitrogen-concentration dependence on photocatalytic activity of TiO_2, J. Phys. Chem. B, 2003, 107: 5483-5486.
    [66] Irie H, Washizuka S, Yoshino N, et a1., Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films, Chem. Commun., 2003, 11: 1298-1299.
    [67] Linsgren T, Mwabora J M, Arenda?o E, et al., Granqvist C-G, Lindquist S-E. Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering, J. Phys. Chem. B., 2003, 107: 5709-5716.
    [68] Burda C, Lou Y, Chen X, et a1., Enhanced Nitrogen Doping in TiO_2 Nanoparticles, Nano Lett., 2003, 3: 1049-1051.
    [69] Gole J L, Stout J D, Burda C, et a1., Chen X, Highly Efficient Formation of Visible Light Tunable TiO_2-XNX Photocatalysts and Their Transformation at the Nanoscale, J. Phys. Chem. B, 2004, 108: 1230-1240.
    [70] Gole J L, Burda C, Fedorov A, et a1., Enhanced reactivity and phase transformation at the nanoscale, efficient formation of active silica and doped and metal seeded TiO_2-XNX photocatalysts, Rev. Adv. Mat. Sci., 2003, 5: 265-269.
    [71] Di Valentin C, Pacchioni G, Selloni A, Origin of the different photoactivity of N-doped anatase and rutile TiO_2, Phy. Rev. B, 2004, 108: 10617-10620.
    [72] Nakamura R, Tanaka T, Nakato Y, Mechanism for Visible Light Responsesj in Anodic Photocurrents at N-Doped TiO_2 Film Electrodes, J. Phy. Chem. B, 2004, 108: 10617-10620.
    [73] Miyauchi M, Ikezawa A, Tobimatsu H, et a1., Zeta potential and photocatalytic activity of nitrogen doped TiO_2 thin films, Phys. Chem. Chem. Phys., 2004, 6: 865-870.
    [74] Lee J Y, Park J, et a1., Electronic properties of N- and C-doped TiO_2, Appl. Phys. Lett., 2005, 87: 011904-011906.
    [75] Di Valentin C, Pacchioni G, Selloni A, et a1., Characterization of Phramagnetic Species in N-Doped TiO_2 Powders by EPR Spectroscopy and DFT Calculations, J. Phys. Chem. B, 2005, 109: 11414-11419.
    [76] Mrowetz M, Balcerski W,Colussi A J, et a1., Oxidative Power of Nitrogen-Doped TiO_2 Photocatalysts under Visible Illumination, J. Phys. Chem. B, 2004, 208: 17269-17273.
    [77] Khan S U M, Al-Shahry M, Ingler W B, et a1., Efficient Photochemical Water Spliting by a Chemically Modified n-TiO_2, Science, 2002, 297: 2243-2245.
    [78] Irie H,Watanabe Y, Haahimoto K, Carbon-doped anatase TiO_2 powders as a visible-light sensitive photoeatalyst, Chem. Lett., 2003,32: 772-777.
    [79] Sakthivel S, Kisch H, Daylight photocatniysis by carbon-modified titaniunl dioxide, Angew. Chem. Int. Edit, 2003, 42: 4908-4911.
    [80] Tachikawa T, Tojo S, Kawai K, et a1., Photocatalytic Oxidation Reactivity of Holes in the Sulfur-and Carbon-Doped TiO Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy,2J. Phys. Chem. B, 2004, 108: 19299-19306.
    [81] Nagaveni K, Hegde M S, Ravishankar N, et al., Synthesis and structure of nanoerystalline TiO_2 with lower band gap showing high photocatalytie activity, Langmuir, 2004, 20: 2900-2907.
    [82] Di Valentin C, Pacchioni G, Selloni A, Theory of Carbon Doping of Titanium Dioxide, Chem. Mater, 2005, 17: 6656-6665.
    [83] Choi Y, Umebayashi T, Yoshikawa M, Fabrication and characterization of C-doped anatase TiO_2 photocatalysts, J. Mater. Sci., 2004, 39:1837-1839.
    [84] Wang H, Lewis J P, Effects of dopant states on photoactivity in carbon-doped TiO_2, J. Phys.: Condens. Matter, 2005, 17:L209-L213.
    [85] Li Y, Hwang D S, Lee N H, et al., Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phy. Lett., 2005, 404: 25-29.
    [86] Ohno T, Tsubota T, Nishijima K, et al., Degradation of Methylene Blue on Carbonate Species-doped TiO_2 Photocatalysts under Visible Light, Chem. Lett., 2004, 33: 750-751.
    [87] Gómez R, López T, Ortiz-Islas E, et al., Effect of sulfation on the photoactivity of TiO_2 sol-gel derived catalysts, J. Mot. Catal. A: Chem., 2003, 193: 217-226.
    [88] Ohno T, Mitsui T, Matsumura M, Photocatalytie activity of S-doped TiO_2 photocatalyst under visible light, Chem. Lett., 2003, 32: 364-365.
    [89] Ohno T, Akiyoshi M, Umebayashi T, et al., Preparation of S-doped TiO_2photocatalysts and their photocatalytic activities under visible light, Appl. Catal., A, 2004, 265: 115-121.
    [90] Ohno T, Preparation of visible light active S-doped TiO_2 photocatalyats and their photocatniytie activities, Water. Sci. Technol., 2004, 49: 159-163.
    [91] Baesa R, Kiwi J, Ohno T, et a1., Preparation, testing and characterization of doped TiO_2 active in the peroxidation of biomoleeules under visible light, J. Phys. Chem. B., 2005,109: 5994-6003.
    [92] Umebayashi T, Yamaki T, Itoh H, et al., Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 2002, 81: 454-456.
    [93] Umebayashi T, Yamaki T, Tanaka S, et al., Visile light-induced degradation of methylene blue on S-doped TiO_2, Chem. Lett., 2003, 32: 330-331.
    [94] Hatori A, Yamamoto M, Tada H, et al., A promoting efect of NH4F addition on the photocatalytic activity of sol-gel TiO_2 films. Chem. Lett., 1998, 27: 707-708.
    [95] Yu J C, Yu J, Ho W, et al., Efects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders, Chem. Mater., 2002, 14: 3808-3816.
    [96] Wang J S, Yin S, Zhang Q W, et a1., Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties, Chem. Lett., 2003, 32: 540-541.
    [97] Wang J S,Yin S, Zhang Q W, et a1., Mechanochemieal synthesis of SrTiO3-XFX with high visible light photocatalytie activities for nitrogen monoxide destruction, Mater. Chem., 2003, 13: 2348-2352.
    [98] Yamaki T, Umebayashi T, Sumita T, el a1., Fluorine-doping in titanium dioxide by ion implantation technique, Nucl. Instrum. Methods Phys. Res. Sect. B, 2003, 206: 254-258.
    [99] Yamaki T, Sumita T, Yamamoto S, Formation of TiO_2-XFX compounds in fluorine implanted TiO_2, J. Mater. Sci. Lett., 2002, 21: 33-35.
    [100] Luo H M, Takata T, Lee Y G,el a1., Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine, Chem. Mater., 2004, 16: 846-849.
    [101] Hong X T, Wang Z P, Cai W M, et al., Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide, Chem. Mater., 2005, 17: 1548-1552.
    [102] Wei Zhao, Ma W, Chen C, et al., Eficient degradation of toxic organic pollution with Ni2O3/TiO_2-XBX under visible irradiation, J. Am. Chem. Soc., 2004, 126: 4782-4783.
    [103] Sakthivel S, Kisch H, Photocatalytic and Photoelectrochemical Properties ofNitrogen-Doped Titanium Dioxide, CHEMPHYSCHEM, 2003, 4: 487-490.
    [104] 高廉,郑珊,张青红,纳米氧化钛光催化材料及应用, 北京:化学工业出版社,2002.
    [105] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2002.
    [106] Hattori A, Hiroaki T, High photocatalytic activity of F-doped TiO_2 Film on glass, J. Sol-Gel Sci. Tech., 2001, 22: 47-52.
    [107] Yu J C, Ho W, Yu J G, et al., Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol., 2005, 39: 1175-1179.
    [108] Yu J C, Zhang J Z, Zhang J, et al., Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity, Chem. Mater., 2003, 15: 2280-2286.
    [109] Sato S, Nakamura R, Abe S, Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping, Appl. Catal., A, 2005, 284: 131-137.
    [110] Torres G R, Lindgren T, Lu J, et a1., Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, J. Phys. Chem. B, 2004, 108: 5995-6003.
    [111] Choi Y, Umebayashi T, Yamamoto S, et al., Fabrication of TiO_2 photocatalysts by oxidative annealing of TiC, J. Mater. Sci. Lett., 2003, 22: 1209-1211.
    [112] Morikawa T, Asahi R, Ohwaki T, et a1., Band-gap narrowing of titanium dioxide by nitrogen doping, Jpn. Appl. Phys. Part 2, 2001, 40(6A): 561-563.
    [113] Yin S, Yantaki H, Komatsu M, et a1., Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine, J. Mater. Chem., 2003, 13: 2996-3001.
    [114] Yin S, Zhang Q, Saito F, et a1., Preparation of visible light-activated litania photocatalyst by mechanochemical method, Chem. Lett., 2003, 32: 358-359.
    [115] Zhang Q W, Wang J, Yin S, et al., Synthesis of Visible-Light Active TiO_2-xSx Photocatalyst by means of Mechanochemical Doping, J. Am. Ceram. Soc., 2004, 87: 1161-1163.
    [116] Okada M, Yamaki Y, Jin P, et al., Fabrication of multifunctional coating which combines low property and visible-light-responsive photocatalytic activity, Thin Solid Films, 2003, 442: 217-221.
    [117] Umebayashi T, Yamaki T, Yamamoto S, et al., Sulfur-doping of rutile-titanium dioxiede by ion implanation: Photocurrent spectroscopy and first-principles band calculation studies, Appl. Phys., 2003, 93: 5156-5160.
    [118] Aita Y, Komatsu M, Yin S, et al., Phase-compostional control and visible light photocatalytic axtivity of nitrogen-doped titania via solvothemal process, J. Solid State Chem., 2004, 177: 3235-3238.
    [119] Yin S, Aita Y, Komatsu M, et al., Synthesis of excellent visible-light responsive TiO_2-XNY photocatalyst by a homegenous prepitation-solvothemal process, J. Mater. Chem., 2005, 15: 674-682.
    [120] Yin S, Aita Y, Komatsu M, et al., Visible-light-induced photocatlytic activity of TiO_2-XNY prepared by solvothermal process urea-alcoho system, J. Eur. Ceram. Soc., 2006, 26: 2735-2742.
    [121] Shin H, Joo H, Park J, et al., Photocatalytic ecomaterials, Mater. Sci. Forum, 2004, 449-452: 1257-1260.
    [122] Rhee C H, Bae S W, Lee J S, Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst sctive under visible light, Chem. Lett., 2005, 34: 660-661.
    [123] Sane T, Negishi N, Koike K, et al., Preparation of a visible light-responsive photocatalyst from a complex of Ti4+with a nitrogen-containing ligand, J. Mater. Chem., 2004, 14: 380-384.
    [124] Suda Y, Kawasaki H, Ueda T, et al., Preparation of High Quality Nitrogen Doped TiO_2 Thin Film as a Photocatalyst Using a Pulsed Laser Deposition Method, Thin Solid Films, 2004, 453-454: 162-166.
    [125] Miao L, Tanemura S, Watanabe H, et al., The improvement of optical reactivity for TiO_2 thin films by N2-H2 plasma surface-treatment, J. Cryst. Growth., 2004, 260: 118-124.
    [126] Moon S C, Mametsuka H, Suzuki E, Nalahara Y, Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water, Catal. Today, 1998, 45: 79-84.
    [127] Moon S C, Mametsuka H, Soichi T, et al., Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catal. Today, 2000, 58: 125-132.
    [128] Grey I E, Li C, Macrase C, Boron Incorporation into Rutile. Phase Equilibria and Structure Considerations, J. Solid state Chem., 1996, 127: 240-247.
    [129] Jung K Y, Park S B, Ihm S-K, Local structure and photocatalytic activity of B2O3-SiO2/TiO_2 ternary mixied oxides prepared by sol-gel method, Appl. Catal., B, 2004, 51: 239-245.
    [130] Jin Z L, Lu G X, Efficient Photocatalytic Hydrogen Evolution over Pt /TiO B Catalysts in a Ternary System of K , Mg /B O /H O,x-2-y y+ 2+4 72- 2 Energy & Fuels, 2005, 19: 1126-1132.
    [131] Hollmann F, Witholt B, Schmid A, [Cp*Rh(bpy)(H2O)]2+: A Versatile Tool for Efficient and Non-Enzymatic Regeneration of Nicotinamide and Flavin Coenzymes, J. Mol. Catal. B: Enzymatic, 2003, 19-20: 167-176.
    [132] Arbiol J, Cerdà J, Dezanneau G, et al., Effects of Nb doping on the TiO_2 anatase-to-rutile phase transition, J. Appl. Phys., 2002, 92: 853-860.
    [133] Vrtis J M, White A K, Metcalf W, et al., Phosphate Dehydrogenase: A Versatile Cofactor-Regeneration Enzyme, Angew. Chem. Int. Ed., 2002, 41, 3257-3259.
    [134] Vrtis J M, White A K, Metcalf W W, et al., Phosphite Dehydrogenase: an Unusual Phosphoryl Transfer Reaction, J. Am. Chem. Soc., 2001, 123: 2672-2673.
    [135] Servat K D, Bassegury R, Bergel A, Designing Membrane Electrochemical Reactors for Oxidoreductase-Catalysed Synthesis, Bioelectrochemistry, 2002, 55: 93-95.
    [136] Kim S Y, Yun S E, Kang C, Electrochemical Evaluation of the Reaction Rate between Methyl Viologen Mediator and Diaphorase Enzyme for the Electrocatalytic Reduction of NAD+ and Digital Simulation for Its Voltammetric Responses, J. Electroanal. Chem., 1999, 465: 153-159.
    [137] Mandler D, Willner I, Photosensitized NAD(P)H Regeneration Systems: Application in the Reduction of Butan-2-One, Pyruvic, and Acetoacetic Acids and in the Reductive Amination of Pyruvic and Oxoglutaric Acid to Amino Acid, J. Chem. Soc. Perkin Trans., 1986, 2: 805-812.
    [138] Asada H, Itoh T, Kodera Y, et al., Glutamate Synthesis via Photoreduction of NADP+ by Photostable Chlorophyllide Coupled with Polyethylene-Glycol, Biotechnol. Bioeng., 2001, 76: 86-90.
    [139] Jiang Z Y, Lü C Q, Wu H, et al., Photoregeneration of NADH using Carbon-containing TiO_2., Ind. Eng. Chem. Res., 2005, 44: 4165-4170.
    [140] Carp O, Huisman C L, Reller A, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 2004, 32: 33-177.
    [141] Sagawa T, Sueyoshi R, Kawaguchi M, et al., Photosensitized NADH formation system with multilayer TiO_2 film, Chem. Commum., 2004, 7: 814-815.
    [142] Li D, Haneda H, Hishita S, et al., Visible-Light-Driven N-F-Codoped TiO_2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization, Chem. Mater, 2005, 17: 2588-2595.
    [143] Li D, Haneda H, Hishita S, et al., Visible-Light-Driven N-F-Codoped TiO_2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification, Chem. Mater., 2005, 17: 2596-2602.
    [144] Cong Y, Chen F, Zhang J, et al., Carbon and Nitrogen-codoped TiO_2 with High Visible Light Photocatalytic Activity, Chem. Lett., 2006, 35: 800-801.
    [145] Zhang J Y, Wang X Y, Xiao M, et al., Lattice contraction in free-standing CdSe nanocrystals, Appl. Phys. Lett., 2002, 81: 2076-2078.
    [146] Chen X, Lou Y, Samia A C, et al., Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures, Nano. Lett., 2003, 3: 799-803.
    [147] Minero C, Mariella G, Maurino V, et al., Photocatalytic Transformation ofOrganic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide-Fluoride System, Langmuir, 2000, 16: 2632-2641.
    [148] Vohra M S, Kim S, Choi W. Effects of surface fluorination of TiO on the photocatalytic degradation of tetramethylammonium, J. Photochem. Photobiol. A: Chem., 2003, 160: 55-60.
    [149] Huang D G, Liao S J, Liu J M, et al., Preparation of visible-light responsive N–F-codoped TiO_2 photocatalyst by a sol-gel-solvothermal method , J. Photochem. Photobiol. A. Chem., 2006, 184: 282-288.
    [150] Nukumizu K, Nunoshige J, Takata T, et al., TiNxOyFz as a Stable Photocatalyst for Water Oxidation in Visible Light (<570 nm), Chem. Lett., 2003, 32: 196-197.
    [151] 杨孔章,冯绪胜,对羟基苯基-10,15,20,-三对甲氧基苯基卟啉镍LB膜的研制与表征,高等学校化学学报,1991,12:400-402.
    [152] Yfroad G S, Liddell P A, Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centers, Nature, 1997, 385: 239-241.
    [153] Antohe S, Tugulea L, Electrical and Photovoltaic Properties of a Two-Layer Organic Photovoltaic Cell, Phys. Stat. Sol. (A), 1991, 128: 253-260.
    [154] Gratzel M, Light induced Redox Reaction of Water Soluble Porphyrins, sensitization of hydrogen generation from water by zinporphyrin derivation, Helvetica Chimica Acta., 1980, 63: 478-482.
    [155] Liu C Y, Pan H L, High Density Nanosecond Charge Trapping in Thin Films of the Photoconductor Zinc-octakis-beta-decoxyethyl)porphyrin, Science, 1993, 261: 897-899.
    [156] Kishii N, Asai N, Photochemical hole burning of tetraphenylporphine derivatioves, Appl. Phys. Lett, 1988, 52: 16-17.
    [157] Finnie K S, Bartlett J R, Woolfrey J L, Vibrational Spectroscopic Study of the Coordination of (2,2’-Bipyridyl-4,4’-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania, Langmuir, 1998, 14: 2744-2749.
    [158] Nuzeeruddin M K, Kay A, Rodicio I, et al., Conversion of light to electricity by cis-X Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl , Br , I , CN , and SCN ) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., 1993, 115: 6382-6390. 2- - - - -

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700