用户名: 密码: 验证码:
重要外来入侵害螨—木薯单爪螨的高温适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯单爪螨(Mononychellus mcgregori),是新入侵我国的重要危险性害螨,主要危害木薯叶片,导致叶片褪绿黄化,枝条干枯,严重时整株死亡,导致减产20~40%。该螨2008年首次在我国海南儋州发现,目前已在海南、广西、广东以及云南部分地区大量发生危害。其自2008年入侵我国热区后,种群数量在迅速增加,虽然这与缺乏有效天敌以及无其他相同生态位的螨类与其竞争等因素有关,但对入侵环境的适应性是木薯单爪螨种群快速扩张的前提。连续跟踪调查表明,该螨2008年较难采集到,至2010年年底已成片发生,且其发生期从一开始的仅在冬、春季发生已发展到目前的全年发生,因此,该螨已在逐渐对我国热区气候环境产生适应。
     外来物种对温度胁迫耐受力的高低对其入侵新环境后的扩散以及种群扩张具有重要影响。高温适应性的生理生化及分子机制对揭示外来物种种群扩张、种间替代和种群生态预测均有重要的理论和实践意义。木薯单爪螨原发生地为南美洲,作为一种热带土著害螨,对高温的适应性是其发生为害的重要基础,也是该螨入侵我国热区后,可用于预测其分布、扩散和成灾机制的最基础资料,对其高温适应性研究可为进一步探讨木薯单爪螨入侵我国后的生态适应性、种群扩张机制以及有效控制措施的制定奠定基础。
     因此,本研究在确定了适宜木薯单爪螨生长发育与繁殖的温度、湿度和光照条件,以及木薯品种后,采用人工气候箱室内饲养、分光光度计终点测定法及荧光定量PCR (RTFQPCR)方法探讨了高温(30℃、33℃、36℃、39℃和42℃)对木薯单爪螨发育与繁殖、保护酶(PPO、POD、AsA-POD、CAT和SOD)活性及其基因相对表达量以及热激蛋白Hsp70基因相对表达量的影响,旨在从生物学、生理学及分子生物学层面上初步阐明木薯单爪螨的高温适应性及其机制,为进一步探讨木薯单爪螨高温适应性的分子及其生态适应性机理提供理论依据和前期工作基础。
     主要研究结果如下:
     1.木薯单爪螨发育与繁殖的适宜温度为24~27℃,适宜湿度为70%~90%,适宜光照为12~14h,适宜木薯品种(系)为CM1210-10。在此适宜条件下,木薯单爪螨的发育历期为,卵期4.17±0.29d,幼螨期2.67±0.29d,前若螨期2.17±0.29d,后若螨期2.33±0.29d,卵到成螨期11.34±0.29d,后代孵化率为100%,平均每雌产卵量为49.00±1.00粒,后代性比为89.36%±1.53,成螨寿命为19.00±0.50d。
     2.高温对木薯单爪螨的发育与繁殖存在显著影响。42℃为木薯单爪螨发育与繁殖的极限温度,在42℃高温条件下,木薯单爪螨的卵不能孵化,不能完成后续发育;在30℃~39℃高温条件下,木薯单爪螨的发育历期和雌成螨寿命随着温度的升高逐渐缩短,发育历期由25℃(对照)时的11.34d缩短为39℃高温时的9.83d,成螨寿命由19.00d缩短为3.00d;后代产卵量随着温度升高而显著减少,由49.00粒减少为7.00粒;在30℃~33℃范围内,木薯单爪螨的卵均可完全孵化,但在36℃和39℃高温下,木薯单爪螨的后代卵孵化率极显著下降,仅分别为32.05%和13.42%;在30℃和33℃下,木薯单爪螨F1代雌性百分率分别为76.67%和76.40%,显著低于其它温度;36℃和39℃下木薯单爪螨F1代雌性百分率无显著变化。
     3.卵、幼螨、前若螨、后若螨和成螨受高温胁迫不同时间后均显著影响木薯单爪螨的生长发育与繁殖。各龄螨经高温胁迫不同时间后置于室温发育,其随后各龄期的发育历期随着胁迫温度的升高和胁迫时间的延长而显著延长,卵孵化率、后代雌性百分率与后代雌成螨寿命均显著下降;随着龄期的增加,木薯单爪螨对高温的耐受性有所增强,但前若螨对高温的耐受能力稍大于后若螨,其在经36℃及以上高温胁迫不同时间后,无论在后代产卵量上还是卵的孵化率上均高于后若螨。各龄螨对高温的耐受性大小表现为成螨>前若螨>后若螨>幼螨>卵。
     4.高温胁迫显著影响木薯单爪螨多酚氧化酶(PPO)、过氧化物酶(POD)、抗坏血酸过氧化物酶(AsA-POD)和过氧化氢酶(CAT)活性。木薯单爪螨各龄螨经高温胁迫不同时间后,体内PPO、POD、AsA-POD和CAT活性发生了不同程度的变化。高温胁迫后,前若螨和成螨PPO、POD和AsA-POD活性以及成螨CAT活性在1h时达最高,随后随处理时间的延长,活性逐渐降低,但前若螨经42℃极端高温胁迫1h后体内CAT活性降为最低。而胁迫幼螨和后若螨不同时间后,其体内PPO、POD、AsA-POD和SOD活性与对照均无显著差异,但经极端高温胁迫1h后幼螨体内CAT活性显著升高,而后若螨CAT活性却显著降低。各龄螨经高温胁迫后,SOD活性与对照相比无显著变化。
     5.高温胁迫1h是木薯单爪螨的最敏感时间。木薯单爪螨各龄螨经高温胁迫1h后,不但其产卵量、后代孵化率均显著降低,且体内酶活性发生了显著变化,尤其是42℃极端高温处理1h。经42℃高温处理各龄螨1h后平均每雌产卵量降低为幼螨9.00粒,前若螨18.67粒,后若螨11.33粒,成螨21.00粒;后代卵孵化率降低为幼螨30.82%,前若螨57.33%,后若螨54.11%,成螨61.19%。PPO、POD、AsA-POD和CAT活性分别为对照的0.92、5.85、2.9和1.56倍(幼螨),1.91、1.00、1.00和0.14倍(前若螨),0.92、0.99、1.00和0.17倍(后若螨),1.81、12.52、9.00和1.75(成螨)。
     6.极端高温胁迫1h后,木薯单爪螨成螨PPO、POD、AsA-POD、CAT和SOD基因的相对表达量显著升高,分别高达对照的5.19、4.38、152.23、321.42和3.41倍,且与其酶活性变化趋势存在一致性,酶活性值分别升高为对照的1.81、12.52、9.00、1.75和1.14倍。保护酶POD、AsA-POD、CAT和SOD可能在木薯单爪螨应对高温胁迫中具有协同防止氧自由基毒害及提高对高温胁迫的抵抗作用,PPO基因表达和酶活性的升高可能在提高木薯单爪螨对高温的免疫力中发挥着一定作用。
     7.极端高温胁迫1h后,木薯单爪螨成螨热激蛋白基因Hsp70的相对表达量显著升高,为对照的56.85倍。说明热激蛋白Hsp70可能在木薯单爪螨高温适应性中具有重要作用,其基因表达量的升高可能与木薯单爪螨的高温适应性有关。
Cassava green mite Mononychellus mcgregori is a newly invasive pest mite of cassava in China. It mainly harms the green components of buds, young leaves and stems of cassava, with damaged leaves deformed by yellow blot, which results in leaf chlorosis, dried branches and even plant death in serious cases, a40~60%reduction in production in the case of serious damage. It was firstly reported in Danzhou, Hainan province, China in2008and has since become more widespread. It is known to occur currently in important cassava-planting areas such as Guangxi, Guangdong and Yunnan where it causes significant damage to cassava. Since it's invasive in tropical area of China, the populations have increasing quickly. The adaptation to its invasive environment are the fundamental for the population expansion of M. mcgregori, although the population growth have something to do with the deficiency of natural enemies and that it dose not have other pest mite species with the same ecological niche to compete with. The continually survey showed that, the green mite were very difficult to collected in2008, but in2010, the mites developed to vast areas of land and occurrence not only in spring and winter, but also in summer and autumn. Therefore, the cassava green mite M. mcgregori has gradually developed adaptation to the climate of tropical area of China.
     Whether a alien species can survive the temperature stress after its invasive had important influence on its dispersal in the new environment as well as its population expansion. The physiological, biochemical as well as the molecular mechanism for an alien species to adapt the high temperature have important significance in theory and practice to reveal the population expansion, population replacement as well as the population prediction. The origin M. mcgregori is South America and as a tropical native mite, the adaptation to high temperature was the significant foundation for its occurrence and damage and was also the most fundamental material for us to predict the distribution, disperse as well as the population occurrence mechanism of the pest mite after its invasion in China. The study on the adaptation to high temperature of M. mcgregori can lay the groundwork for investigate further the ecological adaptation, population expansion mechanism as well as the forming of its effective control and management measures.
     Therefore, to understand more of the mechanisms behind the invasion and spread of M. mcgregori in China, as well as the adaptation of this mite to a tropical environment, the mainly ecological factors affected the development and reproduction of the mite were firstly studied, then the effects of high temperature exposure on the development and reproduction, protective enzyme activities and the relative expression of protective enzyme genes as well as the heat shock protein70(Hsp70) gene via spectrophotometry method and realtime fluorescence quantitative PCR(RTFQ PCR) were also studied, so that the thermostability as well as its mechanisms were revealed based on the biology, physiology as well as the molecular. The results will provide a theoretical basis and precondition for further research on the molecular mechanisms of the thermostability and ecological adaptability of M. mcgregori.
     The main results are as follows:
     1. The suitable temperature, humidity, photoperiod and host for the development and reproduction of M. mcgregori were24~27℃,70%~90%,12~14h and the local cassava cultivars "Bread", respectively. Under the above suitable conditions, the development duration of M. mcgregori were as follows:eggs durations was4.17±0.29d, larvae duration was2.67±0.29d, protonymphs duration was2.17±0.29d, detonymph duration was2.33±0.29d and eggs to adults duration was11.34±0.29d. The eggs hatchability was100%, the fecundity of per female was9.00±1.00, the female percentage was89.36%±1.53%and the female adult mite lifespan was19.00±0.50d.
     2. High temperature significantly affected the development and the reproduction of M. mcgregori.42℃was the extremely high temperature for the development and the reproduction of M. mcgregori and under the temperature the eggs could not hatch and not fullfill their subsequent development. With the increasing of the temperature from30℃to39℃, the development duration and the female adult mite lifespan decreased significantly. The development duration decreased fromll.34d (25℃) to9.83d (39℃), the female adult mite lifespan decreased from19.00d (25℃) to3.00d (39℃) and the fecundity of per offspring female decreased significantly, from49.00(25℃) to7.00(39℃). The eggs could completely hatch when temperature increase from30℃to33℃. but the hatchability significantly decreased at36℃with32.05%and39℃with13.42%, respectively. At24℃, the female percentage was the highest with89.36%, but significantly decreased30℃with76.67%and33℃with76.40%, respectively. In addition, there was no difference in the female percentage at36℃and39℃.
     3. Exposure of eggs, larvae, protonymphs, deutonymphs and adults to high temperature significantly affected the development and reproduction of M. mcgregori. With the increase of the temperature and exposure time, the development duration significantly prolonged, but the eggs hatchability, female percentage and longevity of female adults were all significantly decreased. The tolerance of M. mcgregori to high temperature was some improved with the increased of instars, however, the tolerance of pronymphs were some higher than deutonymphs, for that not only the fecundity but also the offspring hatchability of the exposed protonymphs were higher than deutonymphs. The tolerance of all the development stage to high temperature were ranked in the sequence:adults> protonymphs> deutonymphs> larvae> eggs. However, they usually recovered more slowly after the high temperature exposure termination.
     4. Exposure of eggs, larvae, protonymphs, deutonymphs and adults to high temperature for different time significantly affected the activities of polyphenol oxidase (PPO), peroxidase (POD), ascorbate peroxidase (AsA-POD) and catalase (CAT) in M. mcgregori. Activities of PPO, POD, AsA-POD and CAT in protonymphs and adults some varied with the increase of temperatures and exposure time, and were the highest at1h-exposure, and then decreased except in larvae in which the CAT activity decreased to the lowest after exposed to the extremely high temperature (42℃) for1h. Howerve, there were no significant difference in changes of activities of PPO, POD, AsA-POD and superoxide dismutase(SOD) in larvae and deutonymphs.Howerer, the activities of CAT increased significantly in larvae and decreased in detonymphs after exposed to the extremely high temperature (42℃) for1h. No significantly changes were observed in SOD activities after all the development stages were exposed to high temperature for different time.
     5. Exposure to high temperatures for1hour was the most sensitive time for M. mcgregori. The fecundity and the offspring eggs hatchability decreased significantly and the the activities of PPO, POD, AsA-POD and CAT in protonymphs and adults changed significantly after exposure to high temperatures for1h. After exposure to extremely high temperatures of42℃for1h especially, the fecundity per female decreased to9.00for larvae,18.67for protonymphs,11.33for deutonymphs and21.00for adults; the offspring hatchability decreased to30.82%for larvae,57.33%for protonymphs,54.11%for deutonymphs and61.19%for adults; and the activities of PPO, POD, AsA-POD and CAT were0.92,5.85,2.9and1.56times (larvae),1.91,1.00,1.00and0.14times (protonymphs),0.92,0.99,1.00and0.17times (deutonymphs),1.81,12.52,9.00and1.75(adults).
     6. The relative expression of PPO, POD, AsA-POD, CAT and SOD gene via RTFQ PCR were increased in adults after they were exposed to extremely high temperature (42℃) for1h, which increased5.19,4.38,152.23,321.42and3.41times that of the control, respectively, and were in accord with their enzyme activities. These results suggested that protective enzymes of POD, AsA-POD, CAT and SOD were associate with the thermostability of M. mcgregori and they might have synergistic effect on protect the mite against toxic oxygen intermediates and perhaps were associate with the resistance of high temperature in M. mcgregori.The increasing of PPO activities as well as its gene expression were associate with the immunity improvement of the mite to high temperature stress. These results provide a theoretical basis and precondition for further research on the molecular mechanisms of the thermostability and ecological adaptability of M. mcgregori.
     7. The relative expression of heat shock protein70(Hsp70) gene via realtime fluorescence quantitative PCR (RTFQ PCR) were increased to56.85times that of the control after exposure adults to extremely high temperature (42℃) for1h. It suggested that the elevated expression of HSP70gene was related to the adaptation of M. mcgregori to high temperature.
引文
[1]AbeleD, Heise K, Portner HO, Puntarulo S. Temperature-dependence of mitochondrial function and produetion of reactive oxygen species in the intertidal mud clam Mya arenaria. Journal of Experimental Biology.2002,205:1831-1841.
    [2]Ahearn G A. Changes in hemolym Ph properties accompanying heat death in the desert tenebrionid beetle Centrioptera muricata. Comparative Bioehem. Physiol, 1970,33:845-857.
    [3]Akinlosotua T A. Seasonal trend of green spider mite, Mononychellus tanajoa population on cassava, Manihot esculenta and its relationship with weather factors at Moor Plantation. International Journal of Tropical Insect Science,1982,3:251-254.
    [4]Almeselmani M, Deshmukh P.S., Sairam R.K., Kushwaha S.R., Singh T.P. Protective role of antioxidant enzymes under high temperature stress. Plant Science,2006,171:382-388.
    [5]An, M. I. and Choi, C. Y. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress:effects on hemolymph and biochemical parameters. Comp. Biochem. Physiol. Part B,2010,155:34-42.
    [6]Anderson A R, Collinge J E, Hoffmann A A,et al. Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster.Heredity,2003,90:195-202.
    [7]Audit C, Busson D. Oogenesis defects in the ecd-1 mutant of Drosophila melanogaster, deficient in ecdysteroid at high temperature. Insect Physiol,1981,27:829-837.
    [8]Bale J S. Insects and low temperatures:from molecular biology to distributions and abundance. Philos.Trans. R. Soc. LOnd. Ser. B.,2002,357:849-862
    [9]Barthell J F., Hranitz J M., Thorp R W., Shue M.K. High temperature responses in two exotic leafcutting bee species:Megachile apicalis and M. rotundata (Hymenoptera: Megachilidae). Pan-Pac. Entomol.,2002,78,235-246.
    [10]Bartosz G. Oxidative stress in plants, Acta Physiol. Plant,1997,19:47-64.
    [11]Bell C H. Effect of high temperatures on larvae of Ephestia elutella (lepidoptera:Pyralidae) in diapause. J. Stored Product Researeh,1983,19:153-157.
    [12]Bellotti A, Schoonhoven A. Mite and insect Pests of cassava. Ann Rev En,1978,23:39-67.
    [13]Bellotti A, Vanessa H C, Hyman G. Cassava production and pest management:present and potential threats in a changing environmeng. Tropical plant boil.,2012,5:39-72.
    [14]Bendena W G, Garbe J C, Traverse K L,et al. Multiple inducers of the Drosophila heat shock locus 93D (hsromega):inducer-specific patterns of the three transcripts. The Journal of Cell Biology,1989,108(6):2017-2028.
    [15]Bonaventure V A, Rachid H and Andreas V T. Molecular detection of establishment and geographical distribution of Brazilian isolates of Neozygites tanajoae, a fungus pathogenic to cassava green mite, in Benin (West Africa). Exp Appl Acarol,2011,53(3):235-244.
    [16]Charlotte D S, Lise S H, Gosta N, Christian H. The influence of temperature and relative humidity on the development of Lepidoglyphus destructor (Acari:Glycyphagidae) and its production of allergens:a laboratory experiment. Experimental and Applied Acarology,2004, 32:151-170.
    [17]Chen C P., Lee R E., Denlinger D L. Cold shock and heat shock:Aeomparison of the proteetion generated by brief pretreatment at less severe temperatures. Physiol.Entomol., 1991,16:19-26.
    [18]Chown S. Nicolson S W. Insect physiological ecology:mechanisms and patterns. Oxford: Oxford University Press,2004.
    [19]Dahlgaard J, Loeschcke V P, Michalak J. Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Functional Ecology,1998, 12:786-793.
    [20]Dean G J. Effeet of temperature on the cereal aphids Metopolophium dirkodum (WIk), Rhopalosiphum Padi (L.) and Macrosiphum avenue (F.) (Hem. Aphididae). Bulletin of Entomological Reasearch,1974,63:401-409.
    [21]Delalibera I J, Hajek A E, Humber RA. Neozygites tanajoae sp. nov., a pathogen of the cassava green mite. Mycologia.2004,96(5):1002-1009.
    [22]Delalibera I J, Humber R A, Hajek AE. Preservation of in vitro cultures of the mite pathogenic fungus Neozygites tanajoae. Can J Microbiol,2004,50(8):579-86.
    [23]Dennis D, Alan E, Paul R. The role of adult feeding in egg production and population dynamics of the checkerspot butterfly Euphydryas editha. Oecologia.1983, (56):2-3.
    [24]Domingo I, Heong K L. Evaluating high temperature tolerance in the brown planthopper (BPH). IRRN,1992,17(3):22.
    [25]Downer RG, Kallapur VL. Temperature-induced changes in lipid composition and transition temperature of flight muscle mitochondria of Schistocerca gregaria. Journal of Thermal Biology,1981,6:189-194.
    [26]Elizabeth P D, Natha N E. Rank functional and physiological consequences of genetic variation at phosphoglucose isomerase:heat shock protein expression is related to enzyme genotype in amontane beetle. Proceedings of the National Academy of Sciences of theUnited States of America,2000,97(18):10056-10061.
    [27]Elizabeth P, Dahlhoff, Nathan E R. The role of stress proteins in responses of a montane willow leaf beetle to environmental temperature variation. Journal of Biosciences,2007, 32(3):477-488.
    [28]Elliot S L, Moraes G J, Mumford J D. Failure of the mite-pathogenic fungus Neozygites tanajoae and the predatory mite Neoseiulus idaeus to control a population of the cassava green mite, Mononychellus tanajoa. Exp Appl Acarol.2008,46(1-4):211-222.
    [29]Feder M E., Hoffinann G E., Heat-shock proteins, molecular chaperones and the stress response:evolutionary and ecological physiology. Annu. Rev. Physiol.,1999,61:243-282.
    [30]Feder M.E., Krebs R.A. Ecological and evolutionary physiology of heat-shock proteins and the stress response in:complementary insights from genetic engineering and natural variation. In:Bijlsma R., Loeschcke V., eds. Environmental Stress, Adaptation and Evolution. Birkhauser Basel,1997,155-173.
    [31]Foyer C.H., Lopez-Delgado H., Dat J.F., Scott I.M. Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant,1997,100:241-254.
    [32]Fridovich I. Oxygen is toxic!. Bioscience,1977,27(7):462.
    [33]Gao J J, Li T and Yu X C. Gene expression and activities of SOD in cucumber seedlings were related with concentrations of Mn2+,Cu2+, or Zn2+ under low temperature stress. Agricultural Sciences in China,2009,8(6):678-684.
    [34]Guerr A D, Cavicch I S, Krebs R A. Resistance to heat and cold stress in Drosophila melanogaster. intra and inter population variation in relation to climate. GSE,1997,29: 497-510.
    [35]Gutierrez A P, Yaninek, J S, Wermelinger B, Herren H R and Ellis C K. Analysis of biological control of cassava pests in Africa. Ⅲ. Cassava green mite Mononychellus tanajoa. Journal of Applied Ecology,1988,25:941-950.
    [36]Gutierrez J. The Cassava Green Mite in Africa:One or Two Species? (Acari:Tetranychidae). Experimental & Applied Acarology,1987,3:163-168.
    [37]Hahna S K., Leuschnera K., Ezeiloa W. Carpentera A J., Khatibua A I and Constantina C A. Resistance of Cassava Clones to Cassava Green Mite, Mononychellus tanajoa. Tropical Pest Management,1980,26(3):265-267.
    [38]Hanna R. Yaninek J S., Toko M. Onzo A., Gnanvossou D., Ojo D., Zanou I. and Paraiso G. Current status of cassava green mite Mononychellus tanajoa Bondar (Acari:Tetranychidae) biological control in Africa. In:Proceedings of the Seventh Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch (ISTRC-AB).1998,11-17.
    [39]Hanna R., Onzo A., Lingeman R., Yaninek J S., Sabelis M W. Seasonal cycles and persistence in a predator-prey system on cassava in Africa. Population Ecology,2005,47, 107-117.
    [40]Harold H, Plough, Philip T. Induction of mutations by high temperature in Drosophila. Mutations in Drosophila,1934:42-69.
    [41]Heinrich B. The hot-blooded insects:strategies and mechanisms of thermoregulation. Boston USA:Harvard University Press,1993.
    [42]Herren H R. Cassava pest and disease management:an overview. African crop science journal,1994,2(4):345-353.
    [43]Hoffmann A A, Sorensen J G, Loeseheke V. Adaptation of Drosophila to temerature extremes bringing to gather quantitative and molecular approaches. J. Thermal Biol.,2003,28: 175-216.
    [44]Hoffmann A A., Dagher H., Hercus M., Berrigan D. Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. Insect Physiology,1997,43(4): 393-405.
    [45]Hoffmann A A., Parsons P A. The analysis of quantitative variation in natural populations with isofemale strains. Genet.Select. Evol.,1988,20:87-98.
    [46]Hoffmann K H. Metabolic and enzyme adaptation to temperature. In:Hoffmann K H. ed. Environmental Physiology and Biochemistry of Insects. Berlin, Heidelberg, New York and Tokyo:Springer Verlag,1985,1-2.
    [47]Hountondji F C C., Yaninek J S., Demoraes G J. and Oduor G I. Host specificity of the cassava green mite pathogen Neozygites foridana. BioControl,2002,47:61-66.
    [48]Ibrahim J. Al-Jboory, Taha M. Al-Suaide. Effect of temperature on the life history of the old world date mite, Oligonychus afrasiaticus (Acari:Tetranychidae). Trends in Acarology,2010, Part 9,361-363.
    [49]Jia F X, Dou W, Hu Fei, Wang J J. Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis (Diptera: tephritidae).Florida Entomologist,2011,94(4):956-963.
    [50]John V B, Fred P. Hain Effects of constant temperature, relative humidity, and simulated rainfall on development and survival of the spruce spider mite(Oligonychus ununguis). The Canada entomologist,1983,115:93-105.
    [51]Kariuki C W., Gitonga W. and Mambiri, A M. The population of cassava green mite, Mononychellus tanajoa Bodar and the potential for its biological control. In:Proceedings of the 2nd KARI Scientific Conference,5-7 September 1991, KARI Hqts, Nairobi.
    [52]Kariuki C W., Hanna R, Toko M and Ngari B M. The impact of an exotic Phytoseiid, Typhlodromalus aripo De Leon (Acari:Phytoseiidae) on cassava green mite and yield of two local cassava cultivars in the field. In:Proceedings of the 15th Biennial Congress of the African Association of Insect Scientists (AAIS) and Silver Jubilee Celebrations on 9-13 June 2003. ICIPE, Nairobi, Kenya.
    [53]Kariuki C W., Hanna R. and Toko M. The biological control of cassava green mite using Typhlodromalus aripo De Leon (Acari:Phytoseiidae) in Kenya. In:Proceedings of the 3rd Inter-regional Meeting of the Africa-wide Cassava Green Mite Biocontrol Project, Biological Control Centre for Africa, Eds R. Hanna and M. Toko,20-22 February 2002. Cotonou, Benin, 13-36.
    [54]Kariuki C W., Ngari B M. and Kusewa T M. The current situation on establishment of Typhlodromalus aripo De Leon (Acari:Phytoseiidae) in Kenya,529-533. Eds. Akorado M O. and Ngeve J M. International Society for Tropical Root Crops-Africa Branch, Seventh Triennial Symposium, Cotonou, Republic of Benin,1998,11-17.
    [55]Kariuki C W., Toko M., Hanna R. and Ngari B M. The progress in biological control of cassava green mite using a phytoseiid, Typhlodromalus aripo, in Kenya. In:Proceedings of the Regional Meeting of the Cassava Green Mite Biocontrol Project, Eds Hanna R. and Toko M.,15-17 November 2000. Dar es Salaam, Tanzania.27-41.
    [56]Ke S S. Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings. Agricultural Sciences in China,2007,6:1182-1192.
    [57]Kimura M T, Ohtsu T. Yoshida T, et al. Climatic adaptations and distributions in the Drosophila takahashii species subgroup (Diptera:drosophilidae). Journal of Natural History, 1994,28:401-409
    [58]Krebs R A., Loeschcke V., Resistance to thermal stress in preadult Drosophila buzzatii: variation among populations and changes in relative resistance across life stages. Biol.J.Linn.Soc.1995,56:517-531.
    [59]Kristen P, Goggy D H, Arthur W. Insect eggs protected from high temperatures by limited homeothermy of plant leaves. The Journal of Experimental Biology,2009,212:3448-3454.
    [60]Lale N E, Vidal S. Simulation studies on the effects of solar heat on egg's laying, development and survival of Callosobruchu smaculatus (F.) and Callosobruchus subinnotatus (Pic) in stored bambara groundnut Vigna subterranea (L.) Verdcourt Journal of Stored Products Research,2003,39(5):447-458.
    [61]Lema M K., Hangy K T., Toko M. and Hanna R. Perspective on cassava IPM in the Democratic Republic of Congo. In:Proceedings of the 3rd International Meeting of Africa-Wide Cassava Green Mite Biocontrol Project (Eds. R. Hanna and M. Toko.).20-22 February 2002. Cotonou, Benin.
    [62]Levins R., Thermal acclimation and heat resistance in Drosophilas species. Amer.Naturalist, 1969,103:483-499.
    [63]Lindquist S. The heat-shock response. Annual Review Biochem,1986,55:1151-1191.
    [64].Lopez MG, Elnitsky MA, Benoit JB, Lee Jr RE, Denlinger DL. High resistance to oxidative damage in the Antarctic midge Beigica anlarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology,2008,38:796-804.
    [65]Loveridge J P. The control of water loss in Locusta migratoria migratorioides R. and E.Ⅱ. water loss through the spiracles. Journal of Experimental Biology,1968,49:15-29.
    [66]Lu Hui, Chen Qing*, Lu Fu-ping, Xu Xue-lian. Suitability Assessment of Mononychellus tanajoa (Acari:Tetranychidae) in Yunnan Based on Maxent Model. Agricultural Science & Technology.2011,12(12):1905-1908.
    [67]Lu Hui, Ma Qingfen, Chen Qing*, Lu Fuping, Xu Xuelian. Potential geographic distribution of the cassava green mite Mononychellus tanajoa in Hainan, China. African Journal of Agricultural Research.2012,7(7):1206-1213.
    [68]Lyon W F. A green cassava mite recently found in Africa. FAO Plant Protection Bulletin. 1973,22(1):11-13.
    [69]Lyon, W F. A plant-feeding mite Mononychellus tanajoa (Bondar) (Acarina:Tetranychidae) new to the African continent threaten cassava (Manihot esculenta Crantz) in Uganda, East Africa. Pest Artic and New Summ.1973,19:36-37.
    [70]May M L. Insect thermoregulation. Annu Rev Entomol,1979,24:313-349.
    [71]Mccol L G, Hoffmann A A, Mckechnie S W. Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics,1996,143:1615-1627.
    [72]Mccol L G, Mckechnie S W. The Drosophila heat shock hsromega gene:An allele frequency cline detected by quantitative PCR. Molecular Biology and Evolution,1999,16:1568-1574.
    [73]Mckechni S W, Halford M M, Mccol LG, et al. Both allelic variation and expression of nuclear and cytoplasmic transcripts of Hsr-omegaare closely associated with thermal phenotype in Drosophila. Proceedings of the National Academy of Sciences of the United States of America,1998,95:2423-2428.
    [74]Mesa N C, Bellotti A. Biologically controlling destructive cassava mites with Phytoseiidae mites. Cassava Newsletter,1987,11(1):4-7.
    [75]Michael E S, Hendrix D L., Wolfe G R. Effeet of high temperature on the metabolic processes affeting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. J.Inseet Physiol.,1999,45(1):21-27.
    [76]Michael E S. Sorbitol aceumulation in whiteflies:evidence for a role in protecting proteins during heat stress. J. Therm. Biol.,2000,25:353-61.
    [77]Morewood W D, Gilkeson L A. Diapause induetion in the thrips predator Amblyseius eucumeris (Aearina:Phytoseiidae) under greenhouse conditions. BioConirol,1991,36(2): 253-263.
    [78]Morgan T J, Mackayt F C. Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster. Heredity,2006,96:232-242.
    [79]Nathan E R, Douglas A B, David M M, et al. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle. The Journal of Experimental Biology,2007,210:750-764.
    [80]Navajasa M., Gutierreza J., Bonatoa O., Bollandb H.R. and Mapangou-Divassac S. Intraspecific diversity of the Cassava Green Mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Experimental & Applied Acarology,1994,18:351-360.
    [81]Ntonifor N N., Hanna R., Awah E T., James B. and Ambe J T. Status and perspectives on cassava IPM in Cameroon. In:Proceedings of the 3rd Inter-regional Meeting of the Africa-wide Cassava Green Mite Biocontrol Project, Biological Control Centre for Africa, (Eds Hanna R. and Toko M.), Cotonou, Benin,2002,20-22.
    [82]Nukenine E N, Hassan A T, Dixon A G O and Fokunang C.N. Population dynamics of cassava green mite, Mononychellus tanajoa (Bondar) (Acari:Tetranychidae) as influenced by varietal resistance. Pakistan journal of Biological Sciences,2002,5(2):177-183.
    [83]Nyiira ZM. Mononychellus tanajoa (Bondar) biology, ecology and economic importance. Cali, Colombia:CIAT,1978.
    [84]Nyiira ZM; Mutinga MJ. Tetranychidae pests of cassava, Manihot esculenta Crantz, in Uganda and their natural enemies. East Afr.Agric.For.J,1977,43(1):1-4.
    [85]Ogwang J A., Toko M., Hanna R. and Otema M. Classical biological control of cassava green mitein Uganda-Biotic and agronomic impact. In:Proceedings of the 3rd Inter-regional Meeting of the Africa-wide Cassava Green Mite Biocontrol Project, Biological Control Centre for Africa. (Eds Hanna R. and Toko M.) 20-22,2002, Cotonou, Benin:51-66.
    [86]Onzo A., Hanna R., Sabelis M W. Within plant migration of the predatory mite, Typhlondromalus aripo from the apexto the leaves of cassava:Response to day-night cycle, prey location and density. Journal of Insect Behaviour,2009,22(3):186-195.
    [87]Onzo A., Hanna R., Zannou I., Sabelis M W., Yaninek J S. Dynamics of refuge use:diurnal, vertical migration of predatory and herbivorous mites within cassava plants. Oikos,2003b, 101:59-69.
    [88]Onzo A., Hanna, R. Janssen A. and Sabellis W M. Interactions in acarine predator quild: impact of Typhlondromalus aripo abundance and biological control of cassava green mite in Africa. Experimental and Applied Acarology,2003a,31:225-241.
    [89]Packer L. Oxygen radicals in biological systems. In:Harcourt B J ed. Methods in Enzymology. INC. Vol.105. London:Academic Press.1984:273-280.
    [90]Pallangyo B., Hanna R., Toko M., Kalyebi A. and Mgoo V. Cassava green mite biocontrol with Typhlondromalus aripo in Tanzania:predator spread, persistence and impact. In: Proceedings of the 3rd,2002.
    [91]Parduem L, Bendena W G, Fini M G. Hsr-omega, anovelgeneen-coded by a Drosophila heat shock puff. The Biological Bulletin,1990,179:77-86.
    [92]Parsellda, Lindquists. Heat shock proteins and stress tolerance//Morimoto R I, Tissieres A, Georgopoulous C, eds. The biology of heat shock proteins and molecular chaperones. New York:Cold Spring Harbor Laboratory Press,1994:457-494.
    [93]Pauli D, Arrigo A P and Tissi6res A. Heat shock response in Drosophila. Experientia,1992, 48:623-629.
    [94]Privalle C T, Fridovich I. Induction of superoxide dismutase in Escherichia coli by heat shock. Proc Natl Acad Sci USA.1987,84:2723-2726.
    [95]Quinlan MC, Hadley NF. Gas exchange, ventilatory patterns and water loss in two lubber grasshoppers:quantifying cuticular and respiratory transpiration. Physiological Zoology, 1993,66:628-642.
    [96]Reiber C L., Birehard G F., Effect of temperature on metabolism and hemolymph PH in the crab Stoloczia abbotti. J.Thermal Biol.,1993,18:49-52.
    [97]Richa A, Moushami M and Subhash C L. Heat shock genes integrating cell survival and deat. J. Biosci.2007,32(3):595-561.
    [98]Ritossa F M. Experimental activation of specific puff loci in polytene chromosomes of Drosophila. Experimental Cell Research,1964,35:601-607.
    [99]Salin C, Vernon P, Vannier G. Effects of temperature and humidity on transpiration in adults of the lesser mealworm, Alphitobius diaperinus (Coleop tera:Tenebrionidae). Journal of Insect Physiology,1999,45 (10):907-914.
    [100]Serge L A, Surendra K D. Predation of Neozygites tanajoae-infected cassava green mites by the predatory mite, Typhlodromalus aripo (Acari:Phytoseiidae). Agriculturae Conspectus Scientificus,2007,72 (2):169-172.
    [101]Shenker M, Plessner O E, Tel-Or E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity.Journal of Plant Physiology, 2004,161:197-202.
    [102]Shukla R M., Chand G., Saini M L. Effect of malathion resistance on tolerance to various environmental stresses in rust-red flour beetle (Tribolium castaneum). Indian J. Agrie. Seiences,1989,59:778-780.
    [103]Sohal RS, MullerA, Koletzko B, et al. Effect of age and ambient temperature on n-pentane production in adult housefly, Musca domestica. Mechanisms of Ageing and Development,1985,29 (3):317-326.
    [104]Solomon JM, Rossi JM, Golic K, et al. Changes in Hsp70 alter thermotolerance and heat-shock regulation in D rosophila. New Biologist,1991,3:1106-1120.
    [105]Sorensen J G, Dahlgaard J, Loeschcke V. Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii:down regulation of hsp70 expression and variation in heat stress resistance traits. Functional Ecology,2001,15(3):289-296.
    [106]Stanley S M, Parsons P A, Spence G E. Resistance of species of the Drosophila melanogaster subgroup to environmental extremes. Australia Journal of Zoology,1980,28: 413-421.
    [107]Stratman R, Markow I A. Resistance to thermal stress in desert Drosophila. Functional Ecology,1998,12:965-970.
    [108]Vollmer J H., Sarup P., Karsgaard C W., Dahlgaard J., Loeseheke V. Heat and cold induced male sterility in Drosophila buzzatii:genetic variation among populations for the duration of sterility. Heredity,2004,97:257-262.
    [109]Wang, Vinoeur B., Shoseyov O., Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci.,2004,9:244-252.
    [110]Wolfe G R., Hendrix D L., Salvucci M E., A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. J.Insect Physiol.,1998,44:597-603.
    [111]Woods H A. and Bonnecaze R T. Insect eggs at a transition between diffusion and reaction limitation:temperature, oxygen, and water. J. Theor. Biol.2006,243:483-492.
    [112]Woods H A. and Hill R I. Temperature-dependent oxygen limitation in insect eggs. J. Exp. Biol.2004,207:2267-2276.
    [113]Yang L H, Jin H H, Wang J. Antioxidant responses of citrus red mite Panonychus citri (McGregor) 2010.
    [114]Yaninek J S, Herren H R. Introduction and spread of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari:Tetranychidae), an exoticpest in Africa and the search for appropriate control methods. A review Bulletin Res,1988,78(1):1-13.
    [115]Yaninek J S, Moraes G J, Markham R H. Handbook on the cassava green mite (Mononychellus tanajoa) in Africa. Cotonou, Republic of Benin.1989.
    [116]Zundel C, Hanna R, Scheidegger U, Nagel P. Living at the threshold:where does the neotropical phytoseiid mite Typhlodromalus aripo survive the dry season? Exp Appl Acarol. 2007,41(1-2):11-26.
    [117]鲍晓文.补充营养和短期高温对梨小食心虫生殖及成虫寿命的影响.西北农林科技大学(硕士学位论文),2010.
    [118]曹华国,梁雪妮,杨子琦.温湿度对神泽氏叶螨发育历期和产卵量的影响.昆虫学报,1998,41(2):153-156.
    [119]陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化.自然科学进展,2005,15(3):265-271.
    [120]陈兵.外来斑潜蝇对热胁迫的适应:温度、生态生理调节与生物地理分布.中国科学院动物研究所(博士学位论文),2003.
    [121]陈革,潘洁珍,甘礼珍.高温对家蚕蛹期生殖细胞与产卵质量的影响.蚕业科学,1986,12(2):110-113.
    [122]陈革,潘洁珍,甘礼珍.高温对家蚕蛹期生殖细胞与产卵质量的影响.蚕业科学,1986,12:110-113.
    [123]陈景辉.松突圆蚧及其天敌花角蚜小蜂对极端温度的耐受性.福建农林大学(博士学位论文),2009.
    [124]陈科伟,周靖,龚静.高温对玉米螟赤眼蜂实验种群的影响.应用生态学报,2006,17(7):1250-1253
    [125]陈乃中.木薯单爪螨[J].植物检疫,1993,7(1):36-37
    [126]陈青,卢芙萍,黄贵修,等.木薯害虫普查及其安全性评估.热带作物学报,2010,31(5):819-827
    [127]陈青.辣椒抗蚜性的生化基础及其RAPD分析.华南热带农业大学(硕士学位论文),2002.
    [128]陈夜江,罗宏伟,黄建,杨阿龙.湿度对烟粉虱实验种群的影响.华东昆虫学报,2001,10(2):76-80.
    [129]程鹏,谭文彬,代玉华,刘丽娟,王海防,王怀位,公茂庆.酚氧化酶基因在3种淡色库蚊体内表达量比较.寄生虫病与感染性疾病,2011(01):11-13.
    [130]崔旭红.B型烟粉虱和温室粉虱热胁迫适应性及其分子生态机制.中国农业科学院(博士学位论文),2007
    [131]杜尧,马春森,赵清华.高温对昆虫影响的生理生化作用机理研究进展.生态学报,2007,27(4):1565-1572
    [132]范丽清,吕龙石,金大勇.温度和光照长度对雄性截形叶螨生长发育的影响.吉林农业科学,1999,24(3):35-38.
    [133]冯从经,戴华国,武淑文.褐飞虱高温条件下应激反应及体内保护酶系活性的研究.应用生态学报,2001,12(3):409-413.
    [134]冯宏祖,刘映红,何林.阿维菌素和温度胁迫对朱砂叶螨自由基及保护酶活性的影响.植物保护学报,2008,35(6):530-535
    [135]冯宏祖.朱砂叶螨适应阿维菌素高温胁迫机制的研究.西南大学(博士学位论文),2009
    [136]高飞.短期高温对小菜蛾(Plutella xylostella (Linn.))3龄幼虫耐药性的影响.福建农林科技大学(硕士学位论文),2007.
    [137]郭慧芳,陈长琨,李国清,等.高温胁迫影响雄性棉铃虫生殖力的生理机制.棉花学 报,2002,14:85-90.
    [138]郭慧芳,陈长琨,李国清.高温胁迫对雄性棉铃虫生殖力的影响.南京农业大学学报,2000,23:30-33.
    [139]郭同斌,嵇保中,蒋继宏,杜伟,诸葛强,黄敏仁.转基因杨树对杨小舟蛾体内三种保护酶活力的影响.昆虫学报,2006,49(3):381-386.
    [140]何林,赵志模,曹小芳.温度对抗性朱砂叶螨发育和繁殖的影响.昆虫学报,2005,48(2):203-207
    [141]金化亮,陈青,金启安,唐超,温海波,彭正强.热胁迫对椰甲截脉姬小蜂生长发育和繁殖的影响.热带作物学报,2010,31(4):631-635
    [142]金化亮.椰甲截脉姬小蜂耐热性生物学_生理学基础初步研究.海南大学(硕士学位论文),2010.
    [143]李定旭,张晓宁,杨玉玲,朱华伟.高温冲击对山楂叶螨的影响.生态学报,2010,30(16):4437-4444.
    [144]李鸿筠,刘映红,刘浩强.高温对尼氏钝绥螨的影响.中国生物防治,2009,25(增1):1-5
    [145]李会平,高大庄,高洁.保护酶在桑天牛与不同抗性杨树之间的互作过程.蚕业科学,2006,32(4):578-581
    [146]李俊杰,桑润滋,田树军,等.热激蛋白在动物应激中的应用.家畜生态,2004,25(3):44-46.
    [147]李汝铎.温度对褐飞虱种群增长的影响.植物保护学报,1996,11(2):101-106.
    [148]李守军,王洪斌.Hsp70研究进展.黑龙江畜牧兽医,2002,11:52-53.
    [149]李永利,张炎.邻苯三酚自氧化法测定SOD活性.中国卫生检验杂志,2000,(6):673
    [150]李志明.椰心叶甲啮小蜂耐热性机理初步研究.海南大学(硕士学位论文),2010.
    [151]李周直,沈惠娟.几种昆虫体内保护酶系统活力的研究.昆虫学报,1994,37(4):399-403.
    [152]梁光红,陈家骅,黄居昌.湿度对橘小实蝇及寄生蜂存活与发育的影响.华东昆虫学报,2006,15(3):196-200.
    [153]林延谋.国外木薯单爪螨研究概况.热带农业科学,1984,(4):89-91
    [154]林智慧,黄居昌,陈乾锦,陈家骅,张玉珍.日短期高温对南美斑潜蝇实验种群的影响.福建农业大学学报,2001,30(2):209-212.
    [155]刘禅民,马捷琼.不同温度对双齿多刺蚁的养殖及保护酶系的影响.徐州师范大学学 报(自然科学版),2007,25(1):72-74
    [156]刘缠民.不同温度对黄粉虫幼虫存活率和保护酶系的影响.西北林学院学报,2006,21(1):107-109
    [157]刘建宏,叶辉.光照、温度和湿度对桔小实蝇飞翔活动的影响.昆虫知识,2006,43(2):211-214.
    [158]刘井兰,于建飞,吴进才,印建莉,吴东浩.昆虫活性氧代谢.昆虫知识,2006,43(6):752-756.
    [159]刘守柱.昆虫酚氧化酶免疫学功能及其对杀虫剂等外来干扰因子的响应.山东农业大学(博士学位论文),2008.
    [160]刘永春,张东顺.三种家蝇酚氧化酶基因表达差异研究.济宁医学院学报,2011(01):12-14.
    [161]卢芙萍,符悦冠,陈青,等.温度对木薯单爪螨生长发育与繁殖的影响.热带作物学报,2011,32(9):1720-1724.
    [162]卢芙萍,符悦冠,郭容琦,蔡源,经福林,徐雪莲,卢辉,陈青*.极端高温对木薯单爪螨保护酶活性的影响研究.中国农学通报,2012,28(18):223-230.
    [163]卢芙萍,符悦冠,经福林,赖开枕,郑友枫,卢辉,徐雪莲,陈青*.卵高温胁迫对木薯单爪螨发育与繁殖的影响.中国农学通报,2012,28(21):229-236.
    [164]鲁新,周大荣.湿度对复苏后越冬玉米螟幼虫的影响.植物保护,1999,25(1):1-3.
    [165]吕志创.高温热激下雌雄B型烟粉虱差异表达基因的筛选和Hsps基因功能的鉴定.中国农业科学院(博士学位论文),2008.
    [166]马骏,万方浩,郭建英,等.豚草卷蛾对温湿度的适应性.中国生物防治,2003,19(4):158-161.
    [167]钦俊德.昆虫与植物的关系—论昆虫与植物的相互作用及其演化.北京:科学出版社,1987.
    [168]曲鹏.温度对B型烟粉虱和温室白粉虱的影响.山东农业大学(硕士学位论文),2005.
    [169]沈佐锐.昆虫生态学及害虫防治的生态学原理.北京:中国农业大学出版.2009.
    [170]孙儒泳.普通生态学.北京:高等教育出版社.1992.
    [171]孙涛.温度和寄主对黑粪蚊生长发育和代谢酶活性的影响.西北农林科技大学(硕士学位论文),2009
    [172]谭彩霞,郭静,陈静,等.小麦籽粒淀粉合成酶基因表达与酶活性特征的研究.2009,29 (1):24-30.
    [173]王枫,于芳,曹瑞,徐文.HSP70高表达对K562细胞热耐力的影响.中国公共卫生,2000,16:687-688.
    [174]王竑晟.温度和营养对甜菜夜蛾生殖的影响.山东农业大学(博士学位论文),2003.
    [175]王珂.巴氏钝绥螨实验种群生态学研究.西南大学(硕士学位论文),2009.
    [176]王林玲,周泽扬.昆虫耐热机制的研究进展.安徽农业科学,2008,36(16):6783-6842.
    [177]王满,李周直.滞育期间鞭角华扁叶蜂保护酶系统活力.林业科学,2002,38(4):100-104
    [178]王小娇.不同地理纬度蝇类耐寒耐热性研究.浙江大学(硕士学位论文),2008.
    [179]王艳敏.温度锻炼与交互胁迫对Q型烟粉虱存活及生殖的影响.西北农林科技大学(硕士学位论文),2010.
    [180]王荫长,陈长混,卢中建,李国清,尤予平.高温对小地老虎和粘虫精子发生和形成的影响.昆虫学报,1996,39:253-259.
    [181]温小遂,施明清,匡元玉,刘飞彪.湿度对萧氏松茎象取食繁殖及存活的影响.江西农业大学学报,2005,27(1):89-91.
    [182]文丽萍,王振营,宋彦英,何康来,高云霞.温、湿度对亚洲玉米螟成虫繁殖力及寿命的影响.昆虫学报,1998,41(1):70-76.
    [183]吴千红,丁兆荣.光照对朱砂叶螨生长发育的影响.生态学杂志,1985,3:22-26.
    [184]肖顺根.光照时间对巴氏新小绥螨生长发育影响及其应用基础研究.南昌大学(硕士学位论文),2010.
    [185]徐亚玲,李文楚.昆虫酚氧化酶作用机制的研究进展.安徽农业科学,,2010,38(27):14844-14846.
    [186]杨大兴.高温对三个朱砂叶螨品系生长发育及热激蛋白的影响.西南大学(硕士学位论文),2009.
    [187]杨丽红.柑橘全爪螨Panonychus citri (McGregor)对热胁迫的响应机制研究.西南大学(博士学位论文),2011.
    [188]杨唐斌,梅尚筠.热休克对家蚕幼虫抗氧化酶活性的影响.生物化学与生物物理进展,1996,23(2):153-156.
    [189]杨唐斌,梅尚筠.热休克对小白鼠组织中抗氧化酶活性的影响.生物化学杂志,1993,9(6):736-739.
    [190]杨唐斌,梅尚筠.应激反应与抗氧化酶.航天医学与医学工程,1994,7(1):75-78.
    [191]杨效文,张孝羲,陈晓峰.烟蚜抗性的生化及分子生物学机制.世界农业,1998,235(11):37-38.
    [192]叶恭银,胡萃,龚和.高温对珍贵绢丝昆虫-天蚕辜丸生长发育的影响.应用生态学报,2000,11(6):851-855.
    [193]叶恭银,胡萃,龚和.高温对珍贵绢丝昆虫-天蚕卵巢生长发育的影响.生态学报,2000,20(3):490-494.
    [194]尹丽红,王琛柱,钦俊德.棉铃虫齿唇姬蜂对棉铃虫血淋巴酚氧化酶的影响.科学通报,2001(15):1303-1307.
    [195]余昊.入侵粉虱热激蛋白基因表达与功能.中国农业科学院(博士学位论文),2009.
    [196]余露.温度、湿度与害虫.农药市场信息,2008,23.
    [197]袁燕萍.热冲击对家蚕五龄幼虫抗氧化酶的影响.苏州大学(硕士学位论文),2011.
    [198]张明.高温处理对温室黄瓜四种害虫生存能力的影响.内蒙古农业大学(硕士学位论文),2010
    [199]张小玉,汪贞,黄泽夫,王国秀,刘绪生.棉铃虫不同虫态及虫龄血淋巴中酚氧化酶活力的比较.昆虫知识,2006(03):330-332.
    [200]赵卓,李校,金立,任炳忠.温度对不同发育阶段东亚飞蝗酚氧化酶活性的影响.吉林农业大学学报,2011,33(6):613-616.
    [201]郑有飞尹继福吴荣军.我国大陆极端高温基于去趋势波动及排列熵法的时空分布特征研究.热带气象学报,2012,28(2):251-257.
    [202]郑炳宗,高希武,王政国.北京及河北省北部地区瓜-棉蚜对拟除虫菊酯抗性初步研究[J].植物保护学报,1988,15(1):55-61
    [203]钟景辉.松突圆蚧及其天敌花角蚜小蜂对极端温度的耐受性.福建农林科技大学(博士学位论文),2009.
    [204]周福才,陈丽芳,李祥,等.美洲斑潜蝇蛹的抗逆性研究.扬州大学学报(自然科学版),2000,3(1):45-47.
    [205]周良,岳碧松,邹方东.温湿度对柑桔始叶螨发育历期和产卵量的影响.四川大学学报(自然科学版),2000,37(1):98-102.
    [206]邹宇晓.昆虫应激代谢产物—热休克蛋白及保护酶研究概况.广东蚕业,2000,34(1):55-58.
    [207]邹钟琳.昆虫生态学.上海:上海科学技术出版社,1979:24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700