用户名: 密码: 验证码:
基于倾斜刃边法的遥感图像调制传递函数计算及图像复原技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨对地观测是航天遥感领域的关键技术之一。在对地观测中,地面采样距离(ground sample distance, GSD)代表空间像元分辨率(空间相机探测器的像元尺寸)对应的地面采样间隔。高分辨对地观测,顾名思义,是指在对地观测中,追求更高GSD的遥感图像。GSD的大小取决于空间载体(人造卫星或航天飞机)的轨道高度,其上搭载的光学系统的焦距和空间相机探测器的像元尺寸。在像元尺寸一定的情况下,为了获得更小的GSD,就需增大系统的焦距和通光口径。然而,大的通光孔径一来会给光学系统的像差校正带来困难,二来会给光学系统的加工和装配增加麻烦,同时,载荷的增加也将大大提高其在航天领域的使用成本。目前,高分辨星载遥感光学系统大多采用反射式或折射一反射式结构,通常存在中心遮拦现象,降低了系统的成像质量。因此,当前高分辨对地观测系统呈现出两个主要发展趋势,一方面,使用小孔径光学系统配合图像后处理技术;另一方面,使用中心遮拦光学系统配合传递函数补偿(modulation transfer function compensation, MTFC)技术。本文开展了针对遥感成像系统MTF测量工作,意在对小孔径和中心遮拦光学系统进行MTFC,提高系统的成像质量,为系统的总体设计提供理论依据。
     对于MTFC技术,如何精确估计系统的MTF乃是后期图像处理的基础和关键。首先,介绍了基于图像分析的各种传递函数测量方法,如针孔法,狭缝法和刃边法;其中,着重介绍了刃边法MTF测量的基本原理和计算流程;分析了成像器件的采样孔径,边缘扩散函数(edge spread function, ESF)的有限元差分,MTF的频率域压缩和刃边图像中的噪声等因素对MTF计算结果的影响,并给出了相应的校正方法;列举了已有的三种不同ESF函数模型,并从标量衍射理论出发,推导出一种新型的函数模型用于对ESF数据进行拟合,并通过它来计算得到系统的MTF。
     其次,将成像过程看作是一个线性平移不变(linear shift-invariant, LSI)系统,建立了图像的退化和复原模型;介绍了常用的图像复原算法和图像质量客观评价方法,特别的,介绍了基于MTF的图像质量评价方法。
     再次,分析了一个具有圆形光瞳的成像系统的退化机理,根据光学传递函数(optical transfer function, OTF)的自相关特性,推导了中心视场和边缘视场的OTF表达式;仿真实验中,针对不同噪声条件下(信噪比为∞,40和30 dB)的退化刃边图像,首先使用四种ESF函数模型和ISO 12233标准方法进行MTF计算,然后从计算精度和时间复杂度两个方面进行比较和分析;完成了一个小孔径成像系统的光学,结构和系统的设计与加工;实拍实验中,针对由该系统拍摄得到的两种不同类型的退化图像(分辨率板图和遥感图),基于四种ESF函数模型和ISO 12233标准方法计算系统的MTF,首先使用Lucy-Richardson (RL),总变分(total variation,TV)和稀疏反卷积(sparse deconvolution, SD)三种算法进行复原,然后使用灰度平均梯度(gray mean gradients, GMG),拉普拉斯算子和(Laplacian summation,LS),最大熵(large entropy, LE)和调制传递函数面积(modulation transfer function area, MTFA)四种客观评价方法对复原结果进行了评价。
     最后,分析了一个具有中心遮拦的成像系统的退化机理,根据OTF的自相关特性,分别计算了系统在中心视场和边缘视场的OTF;完成了一个中心遮拦成像系统的光学,结构和系统的设计与加工;针对由该系统拍摄得到的不同遮拦比(原始,20%和30%)条件下的两种不同类型的退化图像(分辨率图和遥感图),计算系统的MTF,首先使用RL,TV和SD三种算法进行复原,然后使用GMG, LE, LS和MTFA四种客观评价方法对复原图进行了评价;针对由该系统拍摄得到的退化图像中的不同对比度(0.27,0.47和0.70)条件下的刃边区域,计算系统的MTF并使用SD算法进行复原,然后使用GMG,LE和LS三种客观评价方法对复原图进行评价。
High resolution earth observation is one of the key technologies in the space optical remote sensing. In remote sensing, ground sample distance (GSD) is the spacing of areas represented by each pixel in a digital photo of the ground from air or space. The purpose of high resolution earth observation is to seek a digital photo with a less GSD. GSD is determined by several factors, such as the pixel dimensions of the camera and the resolution of the optical system. To improve the resolution, we must enlarge the aperture of the system. However, a larger aperture will result in difficulties in aberration correction, fabrication and adjustment. Meanwhile, a larger aperture means more mass, which will increase the cost of launch. Therefore, the developments of high resolution earth observation focus on two aspects:one is to apply image processing to the optical system with a small aperture; the other is to use a reflection optical system combined with modulation transfer function compensation (MTFC).
     How to estimate the MTF of the system accurately is the most important premise of MTFC. First, we introduce some methods that can be used to measure the MTF based on image analysis, such as pinhole method, slit method and edge method. Particularly, the slanted-edge method has been presented. Then, we analyze the factors, such as sample aperture of the sensor, finite differentiation of edge spread function (ESF), MTF compression in the frequency domain and noise in the image, which can affect the measurement. The corresponding correction methods have also been given. Finally, we propose a new analytical ESF fitting model to measure the MTF. By fitting the ESF data to the analytical expression, the LSF and the MTF can be easily calculated from the ESF fitting coefficients.
     Second, we consider an optical system as a linear shift-invariant system (LSI), and establish a model to character its degradation and restoration. Some typical restoration algorithms and objective image quality metrics have been presented. Particularly, we introduce a method based on MTF.
     Third, we analyze the degradation of an optical system with a circular aperture, and derive its optical transfer function (OTF) in both on-axis and off-axis fields. In simulation, four ESF fitting models and the ISO 12233 standard method have been used to estimate the MTF under different levels of noise (SNR=∞,30 and 20 dB). We compare them from both accuracy and complexity. Then we design and fabricate an imaging system, which is composed of a charge-coupled device (CCD) camera and an optical system with a small aperture. A resolution chart image and a remote sensing image have been used as objects, and we compute the MTF based on above five methods. Then, degraded images have been restored by Lucy-Richardson (RL), total variation (TV) and sparse deconvolution (SD), respectively. Finally, we assessed the restoration results by gray mean gradients (GMG), large entropy (LE), Laplacian summation (LS) and modulation transfer function area (MTFA), respectively.
     At last, we analyze the degradation of an optical system with an obscuration aperture, and derive OTF of the system in both on-axis and off-axis fields. Then we design and fabricate an imaging system, which is composed of a digital camera and an optical system with an obscuration aperture. MTF under different levels of obscuration (10.56%,20% and 30%) have been computed. Then, degraded images have been restored by four restoration algorithms and evaluated by three objective image quality metrics, respectively. Similar processes have been applied to MTF calculation under different levels of contrast (0.27,0.47 and 0.70).
引文
[1]胡其正,杨芳.宇航概论.北京:中国科学技术出版社,2010,
    [2]J. C. Leachtenauer, R. G. Driggers. Surveillance and Reconnaissance Imaging Systems:Modeling and Performance Prediction. London:Artech House,2001,.
    [3]http://www.geoeye.com/CorpSite/products-and-services/imagery-sources/Default.aspx#ikonos.,.
    [4]http://www.digitalglobe.com/index.php/85/QuickBird.,.
    [5]http://www.digitalglobe.com/index.php/86/WorldView-1.,
    [6]http://www.digitalglobe.com/index.php/88/WorldView-2.,
    [7]饶建珍,叶玉堂,肖峻.光学教程.北京:清华大学出版社,2005,
    [8]杨秉新.星载遥感器轻型化设计技术途径.航天返回与遥感,1997,(2):19-21
    [9]刘新平,高英俊,鲁昭,等.遥感器小型化技术研究.遥感技术与应用,1999,(3):30-33
    [10]李相国,汶德胜,王华,等.TDICCD亚像元技术应用于小相对孔径光学系统.光子学报,2004,(10):1243-1246
    [11]沈为民.轻小型高分辨空间光学系统的参数选取和设计.红外与激光工程,2006,(S2):38
    [12]李旭阳,李英才,马臻,等.轻小型CCD相机光学系统设计.光子学报,2010,(6):994-997
    [13]丁学专,刘银年,王欣,等.航天遥感反射式光学系统设计.红外技术,2007,(5):253-256
    [14]闫阿奇,祝青,曹剑中,等.用于航天的高分辨率大视场光学系统设计.光子学报,2008,37(10):1975-1977
    [15]李志来,薛栋林,张学军.长焦距大视场光学系统的光机结构设计.光学精密工程,2008,(12)
    [16]韩昌元.高分辨力空间相机的光学系统研究.光学精密工程,2008,(11):2164-2172
    [17]郭永祥,李英才,梁天梅,等.一种大视场离轴三反射光学系统研究.光学学报,2010,(9)2680-2683
    [18]邹谋炎.反卷积与信号复原.北京:国防工业出版社,2001,
    [19]Gonzalez Rafael C., Woods Richard E数字图像处理.北京:电子工业出版社,2002,
    [20]Castleman Kenneth R数字图像处理.北京:电子工业出版社,2002,
    [21]H. C. Andrews, B. R. Hunt. Digital Image Restoration. New Jersey:Prentice Hall,1977,.
    [22]A. K. Katsaggelos. Digital Image Restoration. New York:Springer Verlag,1991,.
    [23]M. R. Banham, A. K. Katsaggelos. Digital image restoration. Signal Processing Magazine, IEEE, 1997,14 (2):24-41.
    [24]杨秉新.航天TDICCD相机静态调制传递函数的研究.航天返回与遥感,2004,(3):22-24
    [25]戴奇燕.MTF评估方法研究及性能分析.硕士,南京理工大学,2006
    [26]黄巧林,姜伟.航天光学遥感器MTF测试技术研究.航天返回与遥感,2006,(4):33-37
    [27]王先华,乔延利,王乐意,等.基于小靶标法的星载CCD相机MTF在轨检测研究.量子电子学报,2005,(1):106-110
    [28]戴奇燕,夏德深,何红艳,等.刀刃法在轨MTF测量性能分析.航天返回与遥感,2006,(3)22-27
    [29]王先华,乔延利,洪津.遥感图像恢复与遥感器MTF在轨检测技术.遥感技术与应用,2006,(5):440-444
    [30]陈正超,张兵,罗文斐,等.北京1号小卫星遥感器性能在轨测试.遥感学报,2008,(3)468-476
    [31]赵占平,付兴科,黄巧林,等.基于刃边法的航天光学遥感器在轨MTF测试研究.航天返回与 遥感,2009,(2):37-43
    [32]周川杰,吕政欣,产晓冰,等.基于刃边法的星载相机在轨MTF测量精度分析.航天返回与遥感,2011,(1):33-37
    [33]S. K. Nayar, M. Ben-Ezra. Motion-based motion deblurring. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004,26 (6):689-698.
    [34]A. Rav-Acha, S. Peleg. Two motion-blurred images are better than one. Pattern Recogn. Lett.,2005, 26 (3):311-317.
    [35]J. Chen, L. Yuan, C. K. Tang, et al.. Robust dual motion deblurring. NEW YORK:IEEE,2008, 3791-3798.
    [36]付中梁,冯华君,徐之海,等.基于快速CCD位移探测的运动模糊图像的恢复.光电工程,2009,(3):69-73
    [37]麦伟麟.光学传递函数及其数理基础.:国防工业出版社,1979,
    [38]赵达尊.光学传递函数.物理,1979,
    [39]庄松林,钱振邦.光学传递函数.北京.机械工业出版社,1981,
    [40]C. B. Johnson. Point-Spread Functions, Line-Spread Functions, and Edge-Response Functions Associated with MTFs of the Form EXP[-(OMEGA-OMEGA-C)N]. WASHINGTON,1973,1031-1033.
    [41]O. P. Nijhawan, S. K. Gupta, R. Hradaynath. Polychromatic MTF of electrostatic point symmetric electron lenses. Appl. Optics,1983,22 (16):2453-2455.
    [42]Y. M. Zhu, V. Kaftandjian, G. Peix, et al.. Modulation transfer function evaluation of linear solid-state x-ray-sensitive detectors using edge techniques. Appl. Optics,1995,34 (22):4937-4943.
    [43]G. C. Loney, M. E. Beach. Imaging studies of a real-time galvanometer-based point scanning system. San Jose, CA, USA,1996,2-13.
    [44]I. A. Cunningham, B. K. Reid. Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques. Med. Phys.,1992,19 (4):1037-1044.
    [45]E. Samei, M. J. Flynn, D. A. Reimann. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys.,1998,25 (1):102-113.
    [46]E. Beuville, R. Cahn, B. Cederstrom, et al.. High resolution scanned-slit X-ray imaging using a refractive lens for X-ray focusing. San Diego, CA, United states,1998,95-103.
    [47]E. Samei, N. T. Ranger, J. T. Dobbins, et al.. Intercomparison of methods for image quality characterization.Ⅰ. Modulation transfer function. Med. Phys.,2006,33 (5):1454-1465.
    [48]J. T. Olson, R. L. Espinola, E. L. Jacobs. Comparison of tilted slit and tilted edge superresolution modulation transfer function techniques. Opt. Eng.,2007,46 (1).
    [49]R. Barakat. Determination of the Optical Transfer Function Directly from the Edge Spread Function. Journal of the Optical Society of America,1965,55 (10P1):1217.
    [50]B. Tatian. New Technique for Estimating the MTF of an Imaging System from its Edge Response. Appl. Optics,1972,11 (12):2974.
    [51]K. W. Logan, K. A. Hickey, S. R. Bull. Gamma camera MTFs from edge response function measurements. Med. Phys.,1983,10 (3):361-364.
    [52]I. A. Cunningham, A. Fenster. A method for modulation transfer function determination from edge profiles with correction for finite-element differentiation. Med. Phys.,1987,14 (4):533-537.
    [53]J. J. Shea. Lunar limb knife-edge optical transfer function measurements. J. Electron. Imaging,1999, 8(2):196-208.
    [54]E. Buhr, S. Gunther Kohfahl, U. Neitzel. Simple method for modulation transfer function determination of digital imaging detectors from edge images. San Diego, CA, United states,2003, 877-884.
    [55]U. Neitzel, E. Buhr, G. Hilgers, et al.. Determination of the modulation transfer function using the edge method:Influence of scattered radiation. Med. Phys.,2004,31 (12):3485-3491.
    [56]T. Yamazaki, M. Nokita, S. Hayashida, et al.. A method to measure the presampling MTF using a novel edge test device and algorithm. San Diego, CA, United states,2004,696-704.
    [57]D. Williams, P. D. Burns. Low-frequency MTF estimation for digital imaging devices using slanted edge analysis. San Jose, CA, United states,2004,93-101.
    [58]S. Lashansky, S. Mansbach, M. Berger, et al.. Edge response revisited. Orlando, FL, United states, 2008, TheInternationalSocietyforOpticalEngineering(SPIE).
    [59]A. Kuhls-Gilcrist, A. Jain, D. R. Bednarek, et al.. Accurate MTF measurement in digital radiography using noise response. Med. Phys.,2010,37 (2):724-735.
    [60]F. Viallefont-Robinet, D. Leger. Improvement of the edge method for on-orbit MTF measurement. Opt. Express,2010,18 (4):3531-3545.
    [61]T. Choi. IKONOS satellite on orbit modulation transfer function (MTF) measurement using edge and pulse method, a thesis of the requirements for the Master of Science Major in Engineering South Dakota State University,2002,.
    [62]I. O. F. Standardization.12233:2000, Photography-Electronic still-picture cameras--Resolution measurements..
    [63]M. Estribeau, P. Magnan. Fast MTF measurement of CMOS imagers at the chip level using ISO 12233 slanted-edge methodology. Maspalomas, Spain,2004,557-567.
    [64]H. Hwang, Y. W. Choi, S. Kwak, et al.. MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method. Cardiff, Wales, United kingdom,2008, SPIEEurope.
    [65]P. B. Greer, T. van Doom. Evaluation of an algorithm for the assessment of the MTF using an edge method. Med. Phys.,2000,27 (9):2048-2059.
    [66]E. Buhr, S. Gunther-Kohfahl, U. Neitzel. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. Med. Phys.,2003,30 (9): 2323-2331.
    [67]T. Villafana. Effect of microdensitometer scan slit misalignment in MTF determinations. Med. Phys., 1975,2:255.
    [68]M. E. Rabedeau. Effect of Truncation of Line-Spread and Edge-Response Functions on the Computed Optical Transfer Function. Journal of the Optical Society of America,1969,59 (10):1309.
    [69]H. Wong. Effect of knife-edge skew on modulation transfer function measurements of charge-coupled device imagers employing a scanning knife edge. Opt. Eng.,1991,30 (9):1394-1398.
    [70]M. N. Wernick, G. M. Morris. Effect of spatial coherence on knife-edge measurements of detector modulation transfer function. Appl. Optics,1994,33 (25):5906-5913.
    [71]C. M. Xu, W. Zhang, G. Li, et al.. Influence of edge error on MTF. Beijing, United states,2005, 916-921.
    [72]M. Takeda, T. Ose. Influence of noise on the measurement of optical transfer functions by the digital Fourier-transform method. Journal of the Optical Society of America,1975,65 (5):502-508.
    [73]P. W. Melnychuck, M. J. Barry, M. S. Mathieu. Effect of noise and MTF on the compressibility of high resolution color images. Santa Clara, CA, USA,1990,255-262.
    [74]S. M. Bentzen. Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function. Med. Phys.,1983,10 (5):579-581.
    [75]F. F. Yin, M. L. Giger, K. Doi. Measurement of the presampling modulation transfer function of film digitizers using a curve fitting technique. Med. Phys.,1990,17 (6):962-966.
    [76]J. M. Boone, J. A. Seibert. An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Med. Phys.,1994,21 (10):1541-1545.
    [77]A. P. Tzannes, J. M. Mooney. Measurement of the modulation transfer function of infrared cameras. Opt. Eng.,1995,34 (6):1808-1817.
    [78]王鸿南.卫星在轨MTF测评研究及应用.硕士,南京理工大学,2004
    [79]马文坡.卫星光学遥感系统优化设计与像质评价探讨.航天返回与遥感,2007,(4):23-27
    [80]满益云,陈世平,刘兆军,等.MTFC在光学遥感成像系统优化设计中的应用研究.航天返回与遥感,2007,(4):39-47
    [81]李盛阳,朱重光.DMC卫星图像MTF分析及其复原方法研究.遥感学报,2005,(4):475-479
    [82]陈世平,姜伟.航天光学采样成像系统MTF的优化设计与MTFC.航天返回与遥感,2007,(4):17-22
    [83]曾湧,于晋,陈世平.基于调制传递函数的航天遥感图像恢复研究.航天返回与遥感,2008,(2):11-17
    [84]孙吉娟,闵祥军,顾英圻,等.基于线性特征的中分辨率航天遥感器MTF在轨评价及其在图像恢复中的应用.航天返回与遥感,2006,(2):28-33
    [85]姜伟,陈世平,黄巧林,等.光学采样成像系统传递函数补偿的试验研究.航天返回与遥感,2007,(4):34-38
    [86]李铁成,陶小平,冯华君,等.基于倾斜刃边法的调制传递函数计算及图像复原.光学学报,2010,(10):2891-2897
    [87]邱晓君.基于MTF的遥感图像恢复技术研究.硕士,南京理工大学,2006
    [88]姜伟,陈世平,黄巧林,等.光学采样成像系统传递函数补偿的仿真研究.航天返回与遥感,2007,(4):28-33
    [89]曾湧,陈世平,于晋.光学遥感成像系统调制传递函数补偿技术.中国空间科学技术,2010,(4):38-43
    [90]J. W. Goodmam. Introduction to fourier optics.1996,
    [91]R. N. Bracewell. The fourier transform & its applications 3rd Ed.2000,.
    [92]J. D. Gaskill. Linear Systems, Fourier Transforms and Optics.:John Wiley & Sons,1978,.
    [93]S. E. Reichenbach, S. K. Park, R. Narayanswamy. Characterizing digital image acquisition devices. Opt. Eng.,1991,30(2):170-177.
    [94]A. P. Tzannes, J. M. Mooney. Measurement of the modulation transfer function of infrared cameras. Opt. Eng.,1995,34 (6):1808-1817.
    [95]H. Fujita, K. Doi, M. L. Giger. Investigation of basic imaging properties in digital radiography.6. MTFs of ll-TV digital imaging systemsa) b). Med. Phys.,1985,12 (6).
    [96]李铁成,冯华君,徐之海,等.一种可用于调制传递函数计算的新型线扩展函数拟合模型.光学学报,2010,(12):3454-3459
    [97]Bovik Alan图像与视频处理手册.北京:电子工业出版社,2006,
    [98]N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series.1964,.
    [99]S. Haykin. Adaptive filter theory (ISE).2003,
    [100]W. H. Richards. Bayesian-Based Iterative Method of Image Restoration. Journal of the Optical Society of America,1972,62 (1):55.
    [101]L. B. Lucy. An iterative technique for the rectification of observed distributions. Astron. J.,1974,79 (6):745-754.
    [102]L. I. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena,1992,60 (1-4):259-268.
    [103]A. Levin. Blind motion deblurring using image statistics. Advances in Neural Information Processing Systems,2007,19:841.
    [104]A. Levin, R. Fergus, F. Durand, et al.. Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics (TOG),2007,26 (3):70.
    [105]Z. Wang, A. C. Bovik. A universal image quality index. Signal Processing Letters, IEEE,2002,9 (3): 81-84.
    [106]Z. Wang, A. C. Bovik, H. R. Sheikh, et al.. Image quality assessment:From error visibility to structural similarity. Image Processing, IEEE Transactions on,2004,13 (4):600-612.
    [107]赵巨峰,陶小平,冯华君,等.基于梯度的波纹图像质量评价.浙江大学学报(工学版),2010,(5):870-874
    [108]曹茂永,孙农亮,郁道银.基于灰度梯度的数字图像评价函数.光电工程,2003,(4):69-72
    [109]马卫红.基于图像分析的光学传递函数测试技术研究.博士,中国科学院研究生院(西安光学精密机械研究所),2005
    [110]S. M. Mohapatra, J. D. Turley, J. R. Prince, et al.. TRANSFER-FUNCTION MEASUREMENT AND ANALYSIS FOR A MAGNETIC-RESONANCE IMAGER-REPLY. Med. Phys.,1992,19 (2): 513.
    [111]J. Nakamura. Image Sensors and Signal Processing for Digital Still Cameras. Boca Raton:CRC Press,2006,.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700