用户名: 密码: 验证码:
低渗透油藏空气泡沫驱提高采收率实验及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对西峰油田开发过程中所出现的储层堵塞严重、注水压力上升快、注不进、油井产量低、酸化降压增注和压裂增产效果不明显、有效期短等实际问题,在利用铸体薄片、扫描电镜、常规压汞、恒速压汞以及核磁共振等技术对西峰低渗透油藏储层特征详细研究的基础上,深入研究了引起储层堵塞的外界因素、详细分析了造成西峰油田现有的酸化降压增注和压裂增产技术效果不明显、有效期短的深层原因。在此基础上,大胆的提出了有机酸酸化深部解堵、前置酸压裂、空气泡沫驱等增产改造和增能措施,并进行了细致的实验评价研究,取得了良好的效果,为该技术的现场实施提供了有力的理论基础和技术支持。主要取得了以下几方面成果:
     (1)受沉积环境和后期成岩作用影响,西峰油田低渗透储层微裂缝发育;储层岩石以长石岩屑砂岩为主,酸敏性矿物含量较高;孔隙结构复杂,喉道细小、狭窄,连通性差,对外来固相和液相伤害敏感;油层非均质性强,注入水波及效率低;可动流体饱和度不高。
     (2)西峰油田地层水和注入水配伍性差,当地层水与注入水比例为9:1时结垢最为严重,成分以碳酸钙为主,占85%以上。
     (3)在现行的注水制度下,注水开发10年后不会使储层温度降低到析蜡点以下,地层不会形成蜡堵塞;井筒温度场计算结果表明,井筒的析蜡位置一般在900m左右。
     (4)西峰油田储层孔隙结构复杂、孔喉细小、酸敏性矿物含量高等是导致土酸酸化解堵和水力压裂增产措施效果不明显,有效期短的内在原因;应用有机酸对储层进行大规模酸化不仅能够解除储层深层堵塞起到降压增注的作用,而且能有效的防止二次伤害的发生;前置酸压裂技术综合了酸化和压裂二者的优点,两种技术组合使用能够有效的降低压裂液滤液对储层的伤害,延长压裂增产的有效期。
     (5)空气泡沫驱在西峰低渗透油田的应用,不仅能够实现原油在地层发生低温氧化,起到降粘、烟道气驱的作用;而且能够有效的防止气窜、提高注入流体的波及效率、控制水锥提高原油产能;更有利于节约水资源,保护产油区的生态环境。
In this article the practical problems which appeared during the development of Xifeng Oilfield, such as serious oil formation plugging, water injection pressure increased fast, no injection, low oil well production, the effect of acidified-decreased pressure-increasing injected and fractured stimulation unconspicuous, the short effective period. Testing methods of casting thin sections, SEM, high pressure Hg injection, contant-speed mercury injection and nuclear magnetic resonance and so on were used to make a detailed research about reservior characteristics of Xifeng oilfield. The external factors which plugged the reservior were studyed deeply. Deep causes were detailed analyzed of the effect of acidified-decreased pressure-increasing injected and fractured stimulation were not obvious of Xifeng oilfield. On this basis, put forward some simullation and flooding measures, such as the organic sour dissolve blocking technology, lead acid fracturing technology and air foam flooding technoloy and so on. The experiments were evaluated and studyed detailed, obtained good effect. At last, provide a strong theoretical basis and technical support for the field implementation.
     (1) Inluenced by the sediment environment and later diagenesis, micro fissure was well developed in Xifeng Oilfield. The rock of reservior was mainly feldspar lithic sandstone, the content of acid sensitivity clay was high; the micro-pore structure was complicated, the throat radiu was small, connection was poor, sensitived about the foreign solid and liquid material. Oil reservoir was strong heterogeneity. The affected efficiency of injection water was low, moving fluid saturation was not high.
     (2) The Compatibility of the formation water and the injection water was poor in Xifeng oilfield. When the ratio of the formation water and the injection water was9:1, the scaling was the most serious. The ingredients were mainly calcium carbonate and the content accounted for more than85%.
     (3) In the current injection, the water injection development will not make the reservoir temperature down to below wax chromatography for10years, and the strata won't form a wax blocked. Wellbore temperature field simulation results show that position of the post-mortem wax of the well bore was in commonly about900m.
     (4) The reasons of the micro-pore structure was complicated, the throat was narrow, the content of acid sensitived clay was high were the internal causes that why the stimulation measures of soil sour dissovle blocking and hydraulic fracturing were not obvious, and the effective period was short in Xifeng oilfield. Application of organic acid reservoir acidification can not only remove reservoir jams so as to step-down pressure and increase injection, and also can effectively prevent the damage occurred; Lead acid fracturing technology combined the advantages of the acidification and fracturing. The combination of the two techniques could effectively reduce the filtrate on reservoir of injury, in the same time, extended the valid period of the well stimulation.
     (5) The application of air foam flooding of the low-permeability reservoir in Xifeng oilfield, could not only realize crude oil in a low temperature oxidation, rise to fall stick, the role of black flooding, but also could to effectively prevent steaming breakthrough, improving the affected efficiency of injection water, controlling the water cone to enhance oil capacity. More beneficial to to save the water resources, and protected the ecological environment of the oil-producing areas.
引文
[1]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:21-22.
    [2]王道富,朱一吾,李忠兴.鄂尔多斯盆地低渗透油气田开发技术[M].北京:石油工业出版社,2003:8-9.
    [3]袁旭军,叶晓端,鲍为等.低渗透油田开发的难点和主要对策[J].钻采工艺,2006,29(4):31-32.
    [4]黄海,刘易非,蒲春生.利用气体性质提高低渗透油田的原油采收率[J].西安石油大学学报.2007,22(S1):100-101.
    [5]延吉生,孟英峰.我国低渗透油气资源开发中的问题和技术需求[J].西南石油学报,2004,26(5):46-50.
    [6]黄昌武.长庆油田成为中国重要油气产区[J].石油勘探与开发,2006,33(2):188.
    [7]王小琳,武平仓,韩亚萍,等.西峰油田长8层注水现状及投注措施效果[J].石油勘探与开发,2008,35(3):344-348.
    [8]"2006 Worldwide EOR Survey," Oil&Gas Journal,17 April,2006:45-57.
    [9]张旭,刘建仪等.注空气低温氧化提高轻质油气藏采收率研究[J].天然气工业,2004:78-80.
    [10]闫凤平,杨兴利等.空气泡沫驱提高特低渗透油田采收率效果分析[J].延安大学学报(自然科学版),2008;27(4):58-60
    [11]张旭,刘建议,易洋,等.注气提高采收率技术的挑战与发展一注空气低温氧化技术[J].特种油气藏,2006,13(1):6-9.
    [12]郭万奎,廖广志,邵振波,等.注气提高采收率技术[M].北京:石油工业出版社,2003,68-74
    [131娄兆彬,杨朝光,王志鹏.中原油田高压低渗油藏注氮气效果及其分析[J].西部矿探工程,2005,105:64-65.
    [14]杨斌,张茂林,梅海燕,等.马36油藏(氮)气水交替非混相驱数值模拟研究[J].特种油气藏,2002,9(5):3-36.
    [15]赫恩杰,蒋明,徐爱云,等.任11井山头注氮气可行性研究[J].新疆石油地质,2003,24(4):325-328.
    [16]蒋有伟,张义堂,刘尚奇,等.低渗透油藏注空气开发驱油机理[J].石油勘探与开发,2010,37(4):471-476.
    [17]于洪敏,任韶然,杨宝泉,等.低渗透油藏注空气低温氧化数值模拟研究[J].西南石油大学 学报(自然科学版),2008,30(6):117-120.
    [18]陈辉.非均质油藏特高含水开发期空气泡沫驱实验研究[J].山东大学学报(工学版),2011,41(1):120-125.
    [19]李松林,王东辉,陈亚军.利用高压注空气技术开发低渗透轻质油油藏[J].特种油气藏,2003,10(5):35-37.
    [20]王杰祥,徐国瑞,付志军,等.注空气低温氧化驱油室内实验与油藏筛选标准[J].油气地质与采收率,2008,,15(1):69-71.
    [21]Moore R G, Mehta S A. A guide to high pressure air injection (HPAI) based oil recovery[C]. SPE75207,2002.
    [22]冯宝峻,芦文生.正韵律厚油层注气效果的数值模拟研究[J].大庆石油地质与开发,1986;5(1):44-47.
    [23]秦佳,周亚玲,王清华,等.注空气轻质原油低温氧化油气组分变化研究[J].大庆石油地质与开发,2008;27(5):111-113.
    [24]Gillham T H, Cerveny B W, Turek E A. Keys to increasing production via air injection in Gulf Coast light oil reservoirs[C].SPE 38848,1997.
    [25]Fassihi M R, Gillham T H. The use of air injection to improve the double displacement processes[C].SPE 26374,1993.
    [26]Greaves M, Ren S R, Xia T X, etal. New air injection technology for IOR operations in light and heavy oil reservoirs[C]. SPE 57295,1999.
    [27]Fassmi M R, Ynnnimaras D V, Kumer V K. Estimation of recovery factor in light-oil air injection projects[J], SPE, August 1997:173-178.
    [28]M. R.Fassihi, Meyers. Low-temperature oxidation of viscous crude oils[C].SPE Reservoir Engineering,1990:609.
    [29]V.k.Kumar, D.Gutierrez. Case History and Appraisal of the West Buffalo Red River Unit High-Pressure Air Injection Project[C].SPE107715,2007.
    [30]Moore, Mehta. A Guide to High Pressure Air Injection (HPAI) Based Oil Recovery[C].SPE75207,2002.
    [31]Mrldul.A Cross-Sectional Simunlation of West Heidelberg In-siut Combustion Project [C].SPE27792,1995.
    [32]M. R.Fassihi, D.V.Yannimaras. Estimation of Recovery Factor in Light-Oil Air-Injection Projects[C].SPE16742,1991.
    [33]M. R.Fassihi. Improved Phase Behavior Representation for Simulation of Thermal Recovery of Light Oils[C].SPE24034,1992.
    [34]B.C.Watts, T.F.Hall. The Horse Creek Air Injection Project:An Overview [C]. SPE38359, 1997.
    [35]C.Clara, V.Zelenko.Appraisal of the HORSE CREEK Air Injection Project Performance [C].SPE49519,1998.
    [36]C. A. Glandt, R. Pieterson. Coral Creek Field Study:A Comprehensive of the Potentialof High-Pressure Air Injection in a Mature Waterflood project[C].SPE52198,1998.
    [37]Greaves, M.,and Mahgoub.3D Physical Model Studies of Air Injection in a Light Oil Reservoir Using Horizontal Wells[C].SPE37154,1996.
    [38]V.k.Kumar, D.Gutierrez. Case History and Appraisal of the West Buffalo Red River Unit High-Pressure Air Injection Project[C].SPE107715,2007.
    [39]V.k.Kumar, D.Gutierrez. Air Injection and Waterflood Performance Comparison of Two adJacent Units in Buffalo Field:Technical nalysis[C].SPE99454,2006.
    [40]A.T.Turta, A.K Singhal. Reservoir Engineering Aspects of Oil Recovery from Low Permeability Reservoirs by Air Injection[C].SPE18841,1998.
    [41]T.H.Gillham, B.W.Cerveny. Key to Increasing Production Via Air Injection in Gulf Coast light Oil Reservoirs[C].SPE38848,1997.
    [42]T.H.Gillham, B.W.Cerveny.Low Cost IOR:An Update on the W.Hackberry Air Injection Project[C].SPE39642,1998.
    [43]M.L.Fraim. Laboratory testing and simulation results for high pressure air injection in a waterflooded North Sea oil reservoir[C].SPE38905,1997.
    [44]L.A.Asetunji. Light-Oil Air-Injection Performance:Sensitivity to Critical Parameters[C]. SPE96844,2005.
    [45]C.Clara. Laboratory Studies for Light Oil Air Injection Project[C].SPE54377, 1999.
    [46]M.W.Duiveman. Integrated Management of Water, Lean, Gas, and Air Injection:The Successful Ingredients to EOR Projects on the Mature Handil Field[C].SPE93858,2005.
    [47]M.Pascual. Air Injection Into a Mature Waterflooded Light Oil reservoir:Laboratory and Simulation Results for Barrancas Field, Argentina[C]. SPE94092,2005.
    [48]T.Termoto. Air Injection EOR in highly water saturated Light-Oil reservoir[C]. SPE100215.2005.
    [49]黄建东,孙守港等.低渗透油田注空气提高采收率技术[J].油气地质与采收率,2001;8(3):79-81.
    [50]张景存,张富学等.正韵律油层注水开发后期注空气矿场试验[J].石油勘探与开发,1985;4:43-46.
    [51]李松林,陈亚平等.轻质油油藏注空气实验研究[J].西安石油大学学报(自然科学版),2004;19(2):27-30
    [52]翁高富.百色油田上法灰岩油藏空气泡沫驱油先导试验研究[J].油气采收率技术,1998;5(2):6-10.
    [53]齐笑生,汪斌等.中原油田高含水轻质油藏注空气提高采收率技术探讨[J].断块油气田,2005;12(2):83-86.
    [54]杨占红,刘滨等.吐哈盆地轻质油藏注空气开发机理研究[J].吐哈油气,2005;10(4)338-340.
    [55]杨占红,徐冰涛等.吐哈盆地鄯善油田轻质油藏注空气开发机理研究[J].油气地质与采收率,2005;12(1):68-72.
    [56]徐冰涛,杨占红等.吐哈盆地鄯善油田注空气实验研究[J].油气地质与采收率2004;11(6):56-70.
    [57]王杰祥,张琪等.注空气驱油室内实验研究[J].石油大学学报(自然科学版),2003;27(4):23-74
    [58]于洪敏,任韶然等.中原油田空气泡沫调驱提高采收率技术[J].石油学报,2009;30(3)414-416.
    [59]王杰祥,来轩昂等.中原油田注空气气驱试验研究[J].石油钻探技术,2007;35(2):6-8.
    [60]赵斌,高海涛等.中原油田注空气提高采收率潜力分析[J].油气田地面工程,2005;24(5)22-23.
    [61]Fried, A. N. The Foam-Drive Process for Increasing the Recovery of Oil. USBM,1961.
    [62]马宝岐,詹少淮.泡沫特性的研究[J].油田化学.1990;(4):334-338
    [63]廖广志,李立众等.常规泡沫驱油技术[M].北京:石油工业出社,1999.
    [64]李娜.孤东油田空气泡沫驱提高采收率技术研究[D].东营:中国石油大学(华东),毕业论文,2009.4:5-6.
    [65]JohnH. Platform Re-Design for CO2 Re-injection:Process and Safety Engineering Challenges[C].SPE125054.2009.
    [66]E.J. Manrique. EOR Field Experiences in Carbonate Reservoirs in the United States[C].SPE 100063.2006.
    [67]A.R.Awan. A Survey of North Sea Enhanced-Oil-Recovery Projects Initiated During the Years 1975 to 2005[C].SPE 99546.2008.
    [68]Krause, R.E. Foam Treatment of Producing Wells To Increase Oil Production at Prudhoe Bay [C].SPE 24191.1992.
    [69]刘易非,范耀,黄海.西峰油田注水压力回升及对策分析[Z].西安:西安石油大学,2005,20-25.
    [70]SY/T 6285-1997.中华人民共和国石油天然气行业标准:油气储层评价方法[S].
    [71]陈杰,周改英,赵喜亮,等.储层岩石孔隙结构特征研究方法综述[J].特种油气藏,2005,12(4):11-14.
    [72]中华人民共和国石油天然气行业标准:SY/T0600—2009油田水结垢趋势预测[S].
    [73]万仁溥.采油工程手册(精要本)[M].北京:石油工业出版社.2003:245-249.
    [74]王世强,王笑菡,王勇.油田结垢及防垢动态评价方法的应用研究[J].中国海上油气(工程).1997,9(1):39-48.
    [75]中华人民共和国技术标准:GB/2538—1988原油实验法[S].
    [76]中华人民共和国石油天然气行业标准:SY/T 0541—1994原油凝点测定法[S].
    [77]中华人民共和国石油天然气行业标准:SY/T 7549—2000原油粘温曲线的确定旋转粘度计法[S].
    [78]中华人民共和国石油天然气行业标准:SY/T 0522—1993原油析蜡点测定旋转粘度计法[S].
    [79]Gates C.F. & B..G. Holmes, Thermal Well Completions and Operation. Proceedings of Seventh World Petroleum Congress, Mexico City,1967, P419
    [80]中华人民共和国石油天然气行业标准:SY/T 0522—1993原油析蜡点测定旋转粘度计法[S].
    [81]中华人民共和国石油天然气行业标准:SY/T 5107—2005水基压裂液性能评价方法[S].
    [82]中华人民共和国石油天然气行业标准:SY/T 5345—2007岩石中两相流体相对渗透率测定方法[S].
    [83]何更生.油层物理[M].北京:石油工业出版社,1994,192-245.
    [84]陈馥,李钦.压裂液伤害性研究[J].天然气工业,2006,26(1):109-111.
    [85]SY/T7502-99.中华人民共和国石油天然气行业标准:油田气组成分析低温冷凝取样色谱分析法[s].
    [86]SY/T5119-2008.中华人民共和国石油天然气行业标准:岩石中可溶有机物及原油族 组分分析标准[s].
    [87]Lukyaa, A.B.Hughes:Millington, A.andPriee, D.Evaluation of a North Sea Oil for recovery by in situ combustion using high Pressure differential Scannig calorimetry[J].Chem Eng ResDes, Trans IehemE.1994,72(A):163-168
    [88]秦佳,周亚玲,王清华等.注空气轻质原油低温氧化油气组分变化研究[J].大庆石油地质与开发,2008,27(5):111-113
    [89]SY/T5779-2008石油和沉积有机质烃类色谱分析方法[s]
    [90]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986,105-107
    [91]SY5336-1996.中华人民共和国石油天然气行业标准:岩心常规分析方法.
    [92]吕鑫,岳湘安.空气-泡沫驱提高采收率技术的安全性分析[J].油气地质与采收率,2005,12(5):44-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700