用户名: 密码: 验证码:
蒸汽辅助重力驱注蒸汽热损失及产量预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油资源丰富,蒸汽辅助重力驱(SAGD)是开采稠油、特稠油的有效方法,但是其技术难度大,经济风险高。如何确定注入蒸汽的井底状态,从而准确地预测其产量的变化是成功与否的关键。本文在国内外大量文献资料调研和现场调研的基础上,利用前人的研究成果,运用流体力学、传热学、数值方法、采油工程、现代完井方法等,首先针对稠油注蒸汽开发地面管线和井筒热损失的问题进行了深入地研究,建立了地面管网及注汽井筒的注蒸汽热损失预测模型;在此基础上进一步改进了蒸汽辅助重力驱产油率和产水率的计算公式,并建立了动态预测模型,为蒸汽辅助重力驱油技术提供了一套有效的评价方法。
     本文所建立的热损失模型能够考虑地面管线在架空和埋地两种情况下的热损失计算,能计算四种不同井筒条件下蒸汽通过井筒的热损失,即光油管、光油管+封隔器、隔热管、隔热管+封隔器。模型考虑了注汽管线上各种阀门、弯头、补偿器、异径管的影响,考虑了变注入工况和注汽管偏心结构对热损失的影响。通过现场校验,证明了此模型与现场实际符合性较好,并通过此模型研究了各种因素对热损失的影响,进行了经济对比。
     在热损失模型计算的基础上,结合SAGD的驱油机理,综合运用热传导和能量平衡的方法,改进了SAGD产油量和产水量的计算公式,建立了产量的动态预测模型,通过对比已有的数模结果,证明了模型的可靠性,并利用此模型分析了影响SAGD驱油效果的敏感性参数,获得了既有理论价值又对实际生产有重要指导意义的结论和认识。
     通过本文的研究,建立了一套系统的蒸汽辅助重力驱评价方法和计算模型,对于SAGD技术的进一步研究以及稠油油藏的高效经济开采,不仅具有重要的理论价值,而且具有重要的实践意义。
Heavy oil has abundant reserves. Steam assisted gravity drainage (SAGD) is an efficient way of developing heavy and ultra-heavy oil, but it has problems of technical difficulties and high economy risk. How to make sure of the injected steam's situation at bottom of well is the key for accurately predicting output variety. Based on the investigation of production practice and various petroleum literatures in and out of nation and by using hydrodynamics, heat transfer, numerical method, production engineering and modern completion method, I made a deep research on heat loss of surface pipeline and production string of steam injection heavy oil fields and built a steam heat loss forecast model firstly, then improved on oil and water production rate formula of SAGD based on the heat loss model, and built a dynamic forecast model. These work provide an effective evaluate method for steam assisted gravity drainage.The heat loss model could calculate the surface pipeline's heat loss ether it lays in air or buries underground. Four kinds of production string heat loss can be calculated by the model, namely tubing, tubing and packer, heat insulated string, heat insulated string and packer. The following factors were considered in heat loss calculating model, namely various valves, elbows, compensator, tube diameter, various injection conditions and injecting pipe's eccentric structure. Through checkout in site, the model is in good agreement with the data of site test. By utilizing the heat loss model, sensitive factors to heat loss were researched and made an economy analyses for choosing fit production string in BZ7 oil field.Associated the heat loss calculated results with production mechanism of SAGD, through using heat transfer and conversation of energy methods, it improved the calculation formula of oil and water production rate and built a forecast model in this article. Through comparing the results of analytical calculation with numerical simulation, the results proved the model's availability. Then it used the analytical model for analyzing sensitive factors that influence the effect of SAGD and obtained valuable theoretical conclusion, which could also direct real production.Through the research of this thesis, the mathematical model of injected steam heat loss and SAGD output were proposed, the corresponding sensitive factors to heat loss and SAGD production were analyzed. It's very significant for further study of SAGD technique and efficient development of heavy oil.
引文
[1] Butler, R.M., Thermal Recovery of Oil and Bitumen, Englewood Cliffs, N.J.: Prentice Hall, 1991, pp. 285-359
    [2] Oballa, V., and Buchanan, W.L., "Single Horizontal Well in Thermal Recovery Processes," paper SPE 37115 presented at the 1996 International Conference on Horizontal Well Technology, Calgary, Canada, Nov. 18-20
    [3] Ashok K, Singhal, Swapan Das, Jon Goldman and Alexandru T. TurtaA, "Mechanistic Study of Single-Well Steam Assisted Gravity Drainage," SPE 59333
    [4] Falk, K., Nzekwu, B., Karpuk, B, and Pelensky, P., "Concentric CT for single-well steam-assisted gravity drainage," World Oil (July 1996), 85-95
    [5] McCormack, M., Fitzgibbon, J., Horbachewski, N., "Review of Single Well SAGD Field Operating Experience," Canadian Petroleum Society Publication No. 97-191, 1997
    [6] K.T. Elliott and A.R. Kovscek, "Simulation of Early-Time Response of Single-Well Steam Assisted Gravity Drainage," SPE 54618
    [7] Ramey, H. J., "Wellbore Heat Transmission," JPT, P.427, April 1962. Willhite, G.P., "Overall Heat Transfer Coefficients in Steam and Hot Water Injection Well," JPT, P.607, May 1967
    [8] Huygen, H.A., and Huitt, J.L., "Wellbore Heat Losses and Casing Temperatures During Steam Injection," Producers Monthly, p.2, August 1966
    [9] Satter, A., "Heat Losses During Flow of Steam Down a Wellbore," JPT, July 1965
    [10] Earloughter, R.C., Jr., "Some Practical Consideration in the Design of Steam Injection Well," JPT, P.79, January 1969
    [11] Smith, D.D., and Weinbrandt, R.M., : "Calculation of Unsteady State Heat Loss for Steam Injection Well using a TI-59 Programmable Calculator," Paper SPE 8914 Presented at SPE 50th California Regional Meeting, Pasadena, April 9-11, 1980
    [12] Hasan, A.R.U.,: "Heat transfer during two-phase flow in wellbores: part Ⅱ-wellbore fluid temperature" SPE 22948
    [13] Chiu, K, and Thakur, S.C., "Modeling of Wellbore Heat Losses in Directional Wells Under Changing Injection Conditions," SPE 22870, 1991
    [14] 王弥康:注蒸汽井井筒热传递的定量计算:油大学学报(自然科学版),1994,18(4)
    [15] 王照亮,王杏花,梁金国:注汽井井筒温度分布的模拟计算:油大学学报(自然科学版),2003,27(1)
    [16] 马远乐等:水平井热力采油的数学模型:清华大学学报,1997,37(5)
    [17] 赵刚,杨洪,俞晓林:水平井热力采油过程中的传热传质分析:石油勘探与开发,1998,25(4)
    [18] 曾烨,周光辉:水平并蒸汽辅助重力驱双模研究初探:石油勘探与开发,1994,21 (5)
    [19] 任瑛,梁金国等编著:《稠油与高凝油热力开采问题的理论与实践》,石油工业出版社,2001年
    [20] 张锐等编著:《稠油热采技术》,石油工业出版社,1999年
    [21] 吴向红,叶继根,马远乐:水平井蒸汽辅助重力驱油藏模拟方法:计算物理,2002,19(6)
    [22] 刘慧卿,范玉平,赵东伟,张瑛:《热力采油技术》:石油大学出版社,2000年
    [23] 刘俊燕:《提高注蒸汽热效率研究》,西南石油学院硕士学位论文,2003年
    [24] 胡晓:《稠油油藏,水平井三种生产方式下分析解模型的建立》,石油勘探开发科学研究院硕士学位论文,1995年
    [25] C, Shen, "Numerical Investigation of SAGD Process Using a Single Horizontal Well," SPE 50412, 1998
    [26] 凌建军,王钰,王书林:注汽速度对蒸汽驱全系统热损失的影响:江汉石油学院学报,1995,17(2)
    [27] Kelly Falk(著),孙洪林(译):同心挠性管单井蒸汽辅助重力驱
    [28] R.M.Butler(著),郭仕洋(译):蒸汽辅助重力驱:概念、发展应用与前景
    [29] 徐金武,修华:注汽井井筒热损失分析:测井科技,1996,3
    [30] 侯健,陈月明:蒸汽注入过程中节点分析方法研究:石油钻采工艺,1997,19(2)
    [31] 石在虹,杨乃群,刘德铸,徐东:蒸汽辅助重力驱生产井井筒举升工况分析:石油学报,1999,20(6)
    [32] 吴国振:影响保温工程热损失的因素分析:节能技术,1999,17(5)
    [33] Roger.Butler(著),生如岩(译):蒸汽辅助重力驱油技术及其应用前景:新疆石油科技信息,1999,20(3)
    [34] 李玉星,喻西崇,冯叔初,郭书平:Beggs-Brill截面含液率计算模型的剖析与修正:油气储运,2000,19(8)
    [35] 李庆扬,王能超,易大义:《数值分析》,华中科技大学出版社,1986年
    [36] 李仕伦等编著:《天然气工程》,石油工业出版社,2000,8
    [37] 李颖川:《采油工程》,石油工业出版社,2002,2
    [38] 林宗虎,王树众,王栋编著:《气液两相流和沸腾传热》,西安交通大学出版社,2003,4
    [39] 姚仲鹏,王瑞君:《传热学》,北京理工大学出版社,2003,9
    [40] (美)D.皮茨,(美)L.西索姆编著,葛新石等译:《传热学》,北京科学出版社,麦格劳—希尔教育出版社,2002年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700