用户名: 密码: 验证码:
视频影像增强虚拟三维场景的注册与渲染方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视频监控系统是当今安全防范系统的重要组成部分,广泛地应用于人们的日常生活,而虚拟三维系统是计算机科学及其相关学科领域发展的重要成果,它的应用也非常广泛。将视频影像融入到虚拟三维系统中以增强虚拟三维场景的真实感,一方面既能够发挥视频影像来源广泛、信息获取方式灵活和实时传输方便的优点,另一方面又能够给虚拟三维系统增加时间维度,将实时、动态的客观世界信息展现在静态的虚拟三维场景中。同时,视频信息融入到虚拟三维场景中还能够克服视频影像分散、无组织的缺点以及虚拟三维场景无动态信息的局限性,从而形成优势互补,从整体上提高二者的应用价值。本文主要是针对当前视频影像增强虚拟三维场景过程中的注册与渲染这两个核心问题展开了相关的研究工作,主要研究内容、研究方法和成果如下:
     (1)分别分析了视频影像增强虚拟三维场景过程中的注册和渲染这两个核心问题的方法原理:基于视频影像成像模型与虚拟三维场景成像模型的一致性,构建了视频相机内外方位元素与三维渲染引擎相关函数之间的对应关系,可以将后续计算获得的内外方位元素转换为三维渲染函数的相关参数,从而将视频影像准确地注册到虚拟三维场景中;研究分析了视频影像三维渲染的一般性和特殊性,并基于DirectShow流媒体技术设计了视频影像过滤器,能够从不同来源的视频数据中获取实时的纹理图片,并可以利用GPU加速渲染的方法来提高系统的整体效率。
     (2)在研究分析视频监控场景的控制条件和先验知识的基础上,探索了视频影像对虚拟三维场景进行注册的方法路线,确定了视频影像内外方位元素分步求解的方法途径,主要包括利用成本较低、操作方便的一维标定法和综合多种特征的后方交会法分别求解视频影像的内外方位元素。
     (3)深入地分析了相机一维标定法的误差来源,并在此基础上提出了一种改进的单像一维标定法和一种基于像对基础矩阵的多像一维标定法,这两种方法均能够获得较高精度的标定结果,能够在一定程度上克服一维标定物构造简易、几何约束较差的局限性,适用于视频监控场景中的相机内标定。
     (4)基于广义点摄影测量理论提出了一种综合多种特征的后方交会法,该方法能够将水平线、垂直线、线段和水平圆做为控制条件联合常规的控制点构建统一的平差模型从而求解相机的外方位元素,能够在一定程度上摆脱传统后方交会法对控制点的强烈依赖,使基于共线方程的后方交会法具有更广的适用范围,适用于先验知识缺乏、控制点难以布设的视频监控场景。
     (5)针对视频影像在虚拟三维场景中渲染所涉及到的数据量与实时性这两个瓶颈问题,着重研究视频影像合理的组织、访问与调度方法来提高视频影像的渲染效率,主要包括:基于多线程技术提出了一种视频数据读取的任务分配和消息通信方法,能够解决虚拟三维系统用户操作与视频数据读取之间的响应冲突;根据近大远小的原则,提出了一种视频影像实时分辨率的计算方法;基于四叉树原理设计了一种视频影像的空间索引;最后,综合上述方法和技术,设计了一种视频数据的缓冲与调度机制,以实现视频影像在虚拟三维场景中的高效渲染。另外,还针对视频相机视角与虚拟三维场景视角不一致的问题,变相地使用了ShadowMap算法来检测其可见性。
     通过上述工作,本文在很大程度上解决了视频影像在虚拟三维场景中的注册和渲染这两个核心问题,对视频影像融入虚拟三维系统的实际应用有较大的帮助,对增强虚拟技术和视频GIS的发展有一定的贡献价值,对相机标定和视频纹理的相关研究有一定的借鉴意义。
Video surveillance system is an important part of today's security system, widely used in people's daily lives, and the virtual three-dimensional system is an important achievement in computer science and related disciplines, it is also widely used. Put the video images into a virtual three-dimensional system in order to enhance the realistic of the virtual three-dimensional scene, on the one hand can play the advantages of video image that is flexible, convenient way to obtain, real-time transport, on the other hand can increase the time dimension of the virtual three-dimensional system, put the real-time, dynamic information of the objective world into the static virtual three-dimensional scene. Meanwhile, put the video information into a virtual three-dimensional scene are also able to overcome the shortcomings of fragmented and unorganized about the video and the static information about the virtual three-dimensional scene. So as to form complementary advantages, enhance the application value of the two overall. This article is in the light of the bottleneck problem of registration and rendering during video image enhancement virtual three-dimensional scene. The main research contents, methods and results are as follows:
     (1) The two core issues of registration and rendering method are analysised: Based on the consistency of imaging model of video images and virtual three-dimensional scene, the transformation equation between the internal and external orientation elements of video camera and the function of three-dimensional rendering engine is built. Internal and external orientation elements obtained in subsequent calculations could convert to three-dimensional rendering function parameters, which can accurately registere video images into the virtual three-dimensional scene; Generality and particularity about the three-dimensional rendering of video images are researched and analysised, video image filters is designed based on DirectShow streaming media technology, from which textures can obtain real-time images from the video data of different sources, and take advantage of GPU-accelerated rendering method to improve the overall efficiency of the system.
     (2) On the basis of analysis about the control conditions and priori knowledge of the video surveillance scenes, register methods of video images into the virtual three-dimensional scene is explored, in which the internal and external orientation elements are calculated separately step by step, including the use of one-dimensional calibration method that is cost low, easy to operate and space resection that can synthetic the multiple features.
     (3) An improved method of one-dimensional one-camera calibration method and a new one-dimensional multi-camera calibration are presented based on the analysis of error source. These two methods can obtain high precision calibration results. It is possible to overcome the poor geometry constraint of the one-dimensional calibration object to some extent.
     (4) A new method of space resection based on the generalized point photogrammetry theory is proposed, put forward by using horizontal and vertical line, line segment and circle, a unified adjustment model is built to calculate the external orientation elements and can greatly reduce the dependence of traditional resection method on feature points, and the introduction of the redundant observation value can also improve the accuracy and stability of the calculation results to a certain extent, which is suitable for the video surveillance scenario where there is lack of prior knowledge, and difficult to deploy locus of control points.
     (5) Video images organization, access and scheduling method to improve rendering efficiency is studied, which is in order to solve the bottleneck problem of the data size and real-time. These works include:Based on the multithreading technology, a data read and work allocation in order to resolve conflict response between the user actions and data read is presented; Spatial index information of video data is built based quadtree structure; A calculation method about real-time resolution of the video image is proposed. Comprehensiving the above methods, the buffering and scheduling of video data is built for the video efficient rendered in the virtual three-dimensional scenes. In addition, a visibility detection method based on the Shadow map algorithm to slove the inconsistent between the video camera view and the virtual view is proposed.
     Through these works, the paper largely resolved these two core issues of registration and rendering when the video image enhance the virtual three-dimensional scene, which is helpful to the application of virtual reality technology, useful to the Video GIS, has a certain significance of the the camera calibration and video texture.
引文
[1]邓宝松,于荣欢,秦方钰,等.2012.大规模地形无缝漫游技术研究[J].计算机应用研究,29(1):369-372.
    [2]丰江帆,张宏,沙月进.2007.GPS车载移动视频监控系统的设计[J].测绘通报,(2):52-54.
    [3]丰江帆,张宏,沙月进.2007.基于GPS与GIS的视频直播系统[J].计算机工程,33(14):230-232.
    [4]冯文灏.2002.近景摄影测量[M].武汉:武汉大学出版社.
    [5]官云兰,周世健,周铭,等.2006.基于角锥体原理的空间后方交会改进算法[J].测绘科学,31(2):27-8
    [6]官云兰,程效军,周世健,等.2008.基于单位四元数的空间后方交会解算[J].测绘学报,37(1):30-5.
    [7]郭江.2003.电厂维护中基于虚拟现实及智能代理的人机融合技术[D]:[博士].武汉:华中科技大学.
    [8]韩志刚,孔云峰,秦耀辰.2011.地理表达研究进展[J].地理科学进展,30(2):141-148.
    [9]胡晓峰,李国辉.1997.多媒体系统[M].北京:人民邮电出版社,26-30.
    [10]黄丙湖,韩李涛,孙根云,等.2011.三维GIS与视频监控系统的集成与应用研究[J].测绘通报,(1):49-51.
    [11]江刚武,姜挺,王勇,等.基于单位四元数的无初值依赖空间后方交会[J].测绘学报,2007,36(2)
    [12]金为铣,杨先宏,邵鸿潮,等.1996.摄影测量学[M].武汉:武汉大学出版社.
    [13]孔云峰.2007.一个公路视频GIS的设计与实现[J].公路,(1):119-121.
    [14]孔云峰.2009.地理视频数据模型及其应用开发研究[J].地理与地理信息科学,25(5):12-16.
    [15]孔云峰.2010.地理视频数据模型设计及网络视频GIS实现[J].武汉大学学报(信息科学版),35(2):133-137.
    [16]孔云峰.2010.基于Web服务的地理超媒体系统设计开发与应用[J].地球信息科学,(1):76-82.
    [17]李骋,钱文华,徐丹.2010.基于视频纹理的自然场景建模方法[J].计算机工程与应用,46(012):157-160.
    [18]李德仁,袁修孝.2002.误差处理与可靠性理论[M].武汉:武汉大学出版社.
    [19]李芳.2003.基于多线程技术动态显示的设计与实现[J].交通与计算机,21(3):63-64.
    [20]李郁峰,朱金陵.2005.铁路线路视频数据采集系统设计与开发[J].铁路计算机应用,13(12):4-6.
    [21]林珲,黄凤茹,鲁学军,等.2010.虚拟地理环境认知与表达研究初步[J].遥感学报,(4):822-838.
    [22]刘富强,卢赤班.2003.数字视频监控系统及其应用[J].工矿自动化,(3):31-33.
    [23]宁云智.2013.油田视频GIS数据采集系统的设计与实现[J].油气田地面工程,32(7):48-49.
    [24]马颂德,张正友.1998.计算机视觉:计算理论与算法基础[M].北京:科学出版社.
    [25]马伟.2011.应急现场立体全景视频快速构建方法研究[D]:[博士].清华大学.
    [26]孟庆祝.2013.高速公路外场视频监控系统方案设计[J].智能建筑电气技术,7(6):72-77.
    [27]苗立刚.2009.视频监控中的图像拼接与合成算法研究[J].仪器仪表学报,30(4):857-861.
    [28]钱谦,裴以建.2007. DirectShow在三维视频纹理中的应用[J].计算机仿真,24(10):183-188.
    [29]秦凯,许慧鹏.2008.基于GIS的远程移动视频监控系统[J].地理空间信息,6(1):87-89.
    [30]施蔚.2009.大脑成像的未来-虚拟现实光学显示系统和医学影像的结合.中外医疗,36:180-180
    [31]宋宏权,孔云峰.2010. Adobe Flex框架中的视频GIS系统设计与开发[J].武汉大学学报(信息科学版),35(6):743-746.
    [32]宋宏权,孔云峰.2010.Flex框架下网络视频GIS设计与实现[J].测绘科学,35(5):208-210.
    [33]宋磊,黄祥林,沈兰荪.2003.视频监控系统概述[J].测控技术,22(5):33-35.
    [34]石刚.2013.浅析基于GIS的视频监控指挥平台[J].中国公共安全.
    [35]隋立芬,宋力杰,柴洪洲.2010.误差理论与测量平差基础[M].北京:测绘出版社.
    [36]唐冰,周美玉.2001.基于视频图像的既有线路地理信息系统[J].铁路计算机应用,10(11):31-33
    [37]唐宏,江勇,刘昌云,等.2004.基于多线程技术的双缓冲信息存取[J].计算机应用研究,20(12):104-106
    [38]唐敏,张祖勋,张剑清.2008.基于广义点理论的多基线影像钣金件3D重建与尺寸检测[J].武汉大学学报(信息科学版),32(12):1095-1098.
    [39]万定生,余宇峰,陈静.2008.基于多线程并行的大规模场景交互漫游研究[J].计算机工程与设计,29(91):2275-2278.
    [40]王亮,吴福朝.2007.基于一维标定物的多摄像机标定[J].自动化学报,33(3):225-231.
    [41]王军华,陆亨立.2003.基于局域网视频信号传输中多线程技术的应用[J].计算机与现代化,(2):45-46.
    [42]王涛,吕乃光,杨剑.2010.基于一维标定物的高精度标定[J].北京信息科技大学学报(自然科学版),25(001):21-25.
    [43]王晓燕,裴以建.2007.虚拟现实和三维可视化仿真在城市交通中的应用.科技信息(学术版),(31),344345.
    [44]王之卓.1979.摄影测量原理[M].北京:测绘出版社.
    [45]王志宝,赵飞飞,赵仁辉,等.2013.基于2D/3DGIS的林业病虫灾害远程视频监控系统[J].东北林业大学学报,(4):66-70.
    [46]吴勇,刘学军,赵华,等.2010.可定位视频采集方法研究[J].测绘通报,(1):24-27.
    [47]谢文寒,张祖勋,张剑清.2004.一种新的基于灭点的相机标定方法[J].哈尔滨工业大学学报,35(11):1384-1387
    [48]熊超,陆起涌,田小芳.2006.基于DirectShow的多线程视频采集系统[J].计算机工程,32(20):221-223.
    [49]徐巧玉,叶东,车仁生.2008.基于光学参考棒的立体视觉测量系统现场标定技术[J].光学学报,28(1):81-86.
    [50]徐巧玉,姚怀,车仁生.2009.立体视觉测量系统现场校准技术[J].光学学报,29(6):1546-1551.
    [51]薛俊鹏,苏显渝.2011.基于两个正交一维物体的单幅图像相机标定[J].光学学报,32(1):115001
    [52]姚登举,刘胜辉.2007.基于多线程的视频会议控制系统的设计与实现[J].哈尔滨理工大学学报,12(2):14-18
    [53]余忠德,吴红艳,林峰2006. DirectX实时渲染技术详解[M].重庆:重庆大学出版社.
    [54]郑顺义,郭宝云,李彩林.2011.基于模型和广义点摄影测量的圆柱体自动三维重建与检测[J].测绘学报,40(4):477482.
    [55]郑援,李思昆.1997.分布式虚拟现实系统中基本结构对象的分析[J].国防科技大学学报,19(1):36-40.
    [56]曾虹云.2013.编织GIS立体防护网导航智慧城市[J].中国公共安全.
    [57]张剑清,张勇,方芳.2007.铅垂线辅助城区航空影像的绝对定向[J].武汉大学学报(信息科学版),32(3):197-200.
    [58]张灵飞,陈刚,叶东,等.2009.基于一维标定物和改进进化策略的相机标定[J].光学学报,(011):3136-3142.
    [59]张兴国,刘学军,宋宏权.2013.面向对象的影视GIS数据模型[J].测绘科学,38(6).
    [60]张永军.2008.基于广义点摄影测量的圆和圆角矩形三维重建[J].哈尔滨工业大学学报,40(1):36-39.
    [61]张永军,胡丙华,张剑清.2011.基于多种同名特征的相对定向方法研究[J].测绘学报,40(2):194-199.
    [62]张祖勋,吴军,张剑清.2003.建筑场景三维重建中影像方位元素的获取方法[J].武汉大学学报(信息科学版),28(3):265-271.
    [63]张祖勋,张剑清.2005.广义点摄影测量及其应用[J].武汉大学学报(信息科学版),30(001):1-5.
    [64]张祖勋,张勇.2007.城区铅垂线辅助空中三角测量研究[J].武汉大学学报(信息科学版),32(8):659-662.
    [65]Armangue X, Salvi J.2003. Overall view regarding fundamental matrix estimation[J]. Image and vision computing,21(2):205-220.
    [66]Bas E K, Crisman J D.1997. An easy to install camera calibration for traffic monitoring[C]//Intelligent Transportation System, ITSC'97, IEEE Conference on. IEEE, 362-366.
    [67]Berry J K.2000. Capture" Where" and" When" on video-based GIS[J]. GEO WORLD,13: 26-27.
    [68]Bergeron P.1986. A general version of Crow's shadow volumes[J]. Computer Graphics and Applications, IEEE,6(9):17-28.
    [69]Bhat K S, Seitz S M, Hodgins J K, et al.2004. Flow-based video synthesis and editing[C]//ACM Transactions on Graphics (TOG). ACM,23(3):360-363.
    [70]Carolina Cruz-Neira.1993. Virtual reality overview, overview of virtual reality. In:Course Notes 23 of SIGGRAPH'93[C].//the 20th International Conference on Computer Graphics and Interactive Techniques. Los Angeles, California:ACM SIGGRAPH,1-18.
    [71]Caudell T.1990. ARatBoeing[EB/OL]. [2011-05-30]. http://www.ipo.tur.nl/homepages/ tsld096.htm.
    [72]Chuang Y Y, Goldman D B, Zheng K C, et al.2005. Animating pictures with stochastic motion textures[C]//ACM Transactions on Graphics (TOG). ACM,24(3):853-860.
    [73]Cote J, Lavallee J.1995. Augmented reality graphic interface for upstream dam inspection[C]//Photonics East'95. International Society for Optics and Photonics,33-39.
    [74]DeCamp P, Shaw G, Kubat R, et al.2010. An immersive system for browsing and visualizing surveillance video[C]//Proceedings of the international conference on Multimedia. ACM, 371-380.
    [75]Feng Y, Du W, Guan X, et al.2006. Realization of multilayer occlusion between real and virtual scenes in augmented reality[C]//Computer Supported Cooperative Work in Design, CSCWD'06.10th International Conference on. IEEE,1-5.
    [76]Fung G S K, Yung N H C, Pang G K H.2003. Camera calibration from road lane markings[J]. Optical Engineering,42(10):2967-2977.
    [77]Girgensohn A, Shipman F, Dunnigan A, et al.2006. Support for effective use of multiple video streams in security[C]//Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks. ACM,19-26.
    [78]Girgensohn A, Shipman F, Turner T, et al.2007. Effects of presenting geographic context on tracking activity between cameras[C]//Proceedings of the SIGCHI conference on Human factors in computing systems. ACM,1167-1176.
    [79]Guillou E, Meneveaux D, Maisel E, et al.2000. Using vanishing points for camera calibration and coarse 3D reconstruction from a single image[J]. The Visual Computer,16(7): 396-410.
    [80]Hartley R, Zisserman A.2003. Multiple view geometry in computer vision[M]. Cambridge university press.
    [81]He X C, Yung N H C.2007. New method for overcoming ill-conditioning in vanishing-point-based camera calibration[J]. Optical Engineering,46(3):037202-037212.
    [82]Hwang T H, Choi K H, Joo I H, et al.2003. MPEG-7 metadata for video-based GIS applications[C]//Geoscience and Remote Sensing Symposium,2003. IGARSS'03. Proceedings.2003 IEEE International. IEEE,6:3641-3643.
    [83]Ivanov Y A, Wren C R.2006. Toward spatial queries for spatial surveillance tasks[C]//Pervasive:Workshop Pervasive Technology Applied Real-World Experiences with RFID and Sensor Networks (PTA).
    [84]Joo I H, Hwang T H, Choi K H. Generation of video metadata supporting video-GIS integration[C]//Image Processing,2004. ICIP'04.2004 International Conference on. IEEE, 2004,3:1695-1698.
    [85]Jose A, Marcelo R, Maria F. A new robust algorithmic for multi-camera calibration with a ID object under general motions without prior knowledge of any camera intrinsic parameter[J]. Pattern Recognition, October 2012,45(10):3636-3647.
    [86]Kanbara M, Okuma T, Takemura H, et al.2000. A stereoscopic video see-through augmented reality system based on real-time vision-based registration[C]//Virtual Reality,2000. Proceedings. IEEE. IEEE,255-262.
    [87]Kiyokawa K, Billinghurst M, Campbell B, et al.2003. An occlusion-capable optical see-through head mount display for supporting co-located collaboration[C]//Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society,133.
    [88]Kojima Y, Fujii T, Tanimoto M.2005. New multiple-camera calibration method for a large number of cameras[C]//Electronic Imaging 2005. International Society for Optics and Photonics,156-163.
    [89]Krisp J M, Ahonen-Rainio P.2003. Combining real and virtual components for visualizing ecological barriers[C]//Proceedings 21st International Cartographic Conference (ICC).10: 16.
    [90]Kwatra V, Essa I, Bobick A, et al.2005. Texture optimization for example-based synthesis [C]//ACM Transactions on Graphics (TOG). ACM,24(3):795-802.
    [91]Kwatra V, Schodl A, Essa I, et al.2003. Graphcut textures:image and video synthesis using graph cuts[C]//ACM Transactions on Graphics (TOG). ACM,22(3):277-286.
    [92]Lai A H S, Yung N H C.2000. Lane detection by orientation and length discrimination[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,30(4):539-548.
    [93]Lapeer R J, Rowland R S, Chen M S.2004. PC-based volume rendering for medical visualisation and augmented reality based surgical navigation[C]//Information Visualisation, 2004. IV 2004. Proceedings. Eighth International Conference on. IEEE,67-72.
    [94]Lee S Y, Choi K H, Joo I H, et al.2006. Design and implementation of 4S-Van:A mobile mapping system[J]. ETRI journal,28(3):265-275.
    [95]Lenz R K, Tsai R Y.1988. Techniques for calibration of the scale factor and image center for high accuracy 3-D machine vision metrology[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,10(5):713-720.
    [96]Liang L, Liu C, Xu Y Q, et al. Real-time texture synthesis by patch-based sampling[J]. ACM Transactions on Graphics (ToG),2001,20(3):127-150.
    [97]Lippman A.1980. Movie-maps:An application of the optical videodisc to computer graphics[C]//ACM SIGGRAPH Computer Graphics. ACM,1980,14(3):32-42.
    [98]Lu M, Jin Y, Hou W, et al.2008. Research on three-dimensional playing video technology in virtual education environment[C]//Pervasive Computing and Applications,2008. ICPCA 2008. Third International Conference on. IEEE,2:826-829.
    [99]Luong Q T, Faugeras O D.1997. Self-calibration of a moving camera from point correspondences and fundamental matrices[J]. International Journal of computer vision, 22(3):261-289.
    [100]Mair S G.1994. Preliminary report on siggraph in the 21st century:rediscovering our fire[J]. Comput Graph,28(4):288-296.
    [101]Ma J Y, Choi J S.2006. Augmented reality as perceptual reality[C]//Interactive Technologies and Sociotechnical Systems. Springer Berlin Heidelberg,7-10.
    [102]Milgram P, Kishino F.1994. A taxonomy of mixed reality visual displays[J]. IEICE TRANSACTIONS on Information and Systems,77(12):1321-1329.
    [103]More J J.1978. The Levenberg-Marquardt algorithm:implementation and theory[M] //Numerical analysis. Springer Berlin Heidelberg,105-116
    [104]Mulder J D, Boscker B R.2004. A modular system for collaborative desktop vr/ar with a shared workspace[C]//Virtual Reality,2004. Proceedings. IEEE. IEEE,75-280.
    [105]Navarrete T, Blat J.2002. VideoGIS:Segmenting and indexing video based on geographic information[C]//5th AGILE conference on geographic information science. Palma de Mallorca, Spain,9.
    [106]Okabe M, Anjyo K, Igarashi T, et al.2009. Animating pictures of fluid using video examples[C]//Computer Graphics Forum. Blackwell Publishing Ltd,28(2):677-686.
    [107]Park H, Lee M H, Kim S J, et al.2006. Surface-independent direct-projected augmented reality[M]//Computer Vision-ACCV 2006. Springer Berlin Heidelberg,892-901.
    [108]Piekarski W, Thomas B H.2001. Tinmith-metro:New outdoor techniques for creating city models with an augmented reality wearable computer[C]//Wearable Computers,2001. Proceedings. Fifth International Symposium on. IEEE,31-38.
    [109]Pissinou N, Radev I, Makki K.2001. Spatio-temporal modeling in video and multimedia geographic information systems[J]. GeoInformatica,5(4):375-409
    [110]Packer, Randall, Ken Jordan, et al. Multimedia:from Wagner to virtual reality[M]. WW Norton & Company,2002.
    [111]Reitmayr G, Schmalstieg D.2001. A wearable 3D augmented reality workspace[C] //Wearable Computers,2001. Proceedings. Fifth International Symposium on. IEEE, 165-166.
    [112]Rousseeuw P J.1984. Least median of squares regression[J]. Journal of the American statistical association,79(388):871-880.
    [113]Russo F, Ramponi G.1994. Fuzzy methods for multisensor data fusion[J]. Instrumentation and Measurement, IEEE Transactions on,43(2):288-294
    [114]Sawhney H S, Arpa A, Kumar R, et al.2002. Video flashlights:real time rendering of multiple videos for immersive model visualization[C]//ACM International Conference Proceeding Series.28:157-168.
    [115]Schnabel R B, Eskow E.1990. A new modified Cholesky factorization[J]. SIAM Journal on Scientific and Statistical Computing,11(6):1136-1158.
    [116]Schoepflin T N, Dailey D J.2003. Dynamic camera calibration of roadside traffic management cameras for vehicle speed estimation[J]. Intelligent Transportation Systems, IEEE Transactions on,4(2):90-98.
    [117]Sebe I O, Hu J, You S, et al.2003.3d video surveillance with augmented virtual environments[C]//First ACM SIGMM international workshop on Video surveillance. ACM, 107-112.
    [118]Sutherland I E.1965. The ultimate display[J]. Multimedia:From Wagner to virtual reality.
    [119]Shoemake K.1985. Animating rotation with quaternion curves[J]. ACM SIGGRAPH computer graphics,19(3):245-254.
    [120]Song K T, Tai J C.2006. Dynamic Calibration of Pan&# 8211; Tilt&# 8211; Zoom Cameras for Traffic Monitoring [J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,36(5):1091-1103.
    [121]Schodl A, Szeliski R, Salesin D H, et al.2000. Video textures[C]//Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co,489-498.
    [122]Trajkovic M.2002. Interactive calibration of a PTZ camera for surveillance applications [J]. The 5th Asian Conference on Computer Vision,23--25 January 2002, Melbourne, Australia.
    [123]Triggs B.1998. Autocalibration from planar scenes[M]//Computer Vision--ECCV'98. Springer Berlin Heidelberg,89-105.
    [124]Triggs B. Autocalibration from planar scenes[M]//Computer Vision--ECCV'98. Springer Berlin Heidelberg,1998:89-105.
    [125]Trivedi M M, Gandhi T L, Huang K S.2005. Distributed interactive video arrays for event capture and enhanced situational awareness[J]. Intelligent Systems, IEEE,20(5):58-66.
    [126]Tsai R.1987. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. Robotics and Automation, IEEE Journal of,3(4):323-344.
    [127]Tsai R Y, Lenz R K.1989. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. Robotics and Automation, IEEE Transactions on,5(3):345-358.
    [128]Wilczkowiak M, Boyer E, Sturm P.2001. Camera calibration and 3D reconstruction from single images using parallelepipeds[C]//Computer Vision,2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. IEEE,142-148.
    [129]Wu F C, Hu Z Y, Zhu H J. 2005. Camera calibration with moving one-dimensional objects[J]. Pattern Recognition,38(5):755-765.
    [130]Zhang Z.2004. Camera calibration with one-dimensional objects[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,26(7):892-899.
    [131]Zhang Z. 1999. Flexible camera calibration by viewing a plane from unknown orientations[C]//Computer Vision,1999. The Proceedings of the Seventh IEEE International Conference on. IEEE,1:666-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700