用户名: 密码: 验证码:
基于实时以太网的数字化变电站体系结构和新型应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着以太网技术的快速发展,以及IEC 61850标准的颁布与实施,以过程层数字化为主要特征的新一代数字化变电站成为目前研究的热点问题。如能将变电站的各种设备连接在同一网络中,实现信息的综合传输,不仅可以简化变电站的体系结构,进一步提高信息共享程度和系统的灵活性、可扩展性,也为各种新功能和新应用的开发提供了更为广阔的空间。鉴于此,本文以基于实时以太网的数字化变电站体系结构和新型应用为研究对象,涉及变电站体系结构设计、IED(Intelligent Electronic Device,智能电子设备)软件设计、继电保护测试、继电保护容错和继电保护动态冗余等内容。
     以实际的220kV和500kV变电站为例,遵循“星型级联”的思想,对基于过程总线的数字化变电站过程层体系结构进行了设计,应用目的地址标识和虚拟局域网标识的方法实现了SAV(Sampled Analog Value)、GOOSE(Generic Object Oriented Substation Event)报文的多播通信。OPNET仿真结果表明,合理地选择网络带宽和交换机性能参数,并按照优先级标签对信息传输顺序进行调度,过程总线通信方式可满足SAV、GOOSE报文的实时性要求。此外,基于目的地址标识和虚拟局域网标识的多播通信方式可有效地降低网络负载。
     建立了数字化变电站信息流量模型,在分析流量特性的基础上,提出了基于漏桶模型的流量控制方法,并按信息类别设计了IED和交换机内的漏桶模型参数。仿真分析表明,该方法可以将突发性流量整形成稳定、低速的网络流量,从而有效地抑制网络突发流量和以太网广播风暴,避免交换机缓冲区溢出引起的报文丢失。
     基于组件技术的IED软件设计方法具有模块化、易维护和可重构等优点,但应用组件技术的关键是定义各种标准组件的模型。分析了单独利用IEC 61850模型或IEC 61499模型定义标准组件的不足,利用IEC 61499模型中的功能块思想对IEC 61850信息模型进行了扩展,建立了综合IEC 61850和IEC 61499的IED组件模型。该模型在保留IEC 61850信息模型的基础上,可对与功能相关的数据、核心算法和执行控制逻辑等进行充分的描述。随后,阐述了利用组件技术设计和开发IED的主要流程,并以简化的线路保护IED为例,在Matlab中验证了所建组件模型的正确性和应用组件技术的主要优势。
     信息综合传输在简化设备接口的同时,也将简化继电保护测试系统。提出了一种基于PC机的数字化变电站继电保护测试方法。测试所需的暂态数据来自ATP/EMTP的离线仿真,利用数据链路层访问工具WinPcap,经PC机网口向保护装置发送测试所需的SAV和GOOSE报文。采用离线批量仿真和数据在线匹配的方法,实现断路器开断的实时模拟和继电保护的暂态闭环测试。实验结果表明,该方法能满足信息综合传输的数字化变电站继电保护的测试要求,可用普通PC机取代专用的继电保护测试仪器。
     针对虚假故障数据引起的继电保护误动问题,提出了基于采样值信息融合和保护启动信息融合的两种数字化变电站继电保护容错方法。方法一利用证据理论对冗余采样值数据进行信息融合,判断系统是否存在真实故障,并为继电保护动作提供辅助信息。仿真分析表明,该方法可有效地防止虚假故障数据引起的继电保护误动,通过比较证据的可信度可对虚假故障数据进行辨识。针对方法一的不足,方法二采用表决机制对多个保护装置的启动信息进行融合,可加快判断电力系统状态的速度。
     从通信系统和软件结构等方面分析了数字化变电站IED的可重构性,提出了利用IED在线重构实现继电保护动态冗余的方法和具体流程,并对其应用前景和不足进行了探讨。该方法能以较低的成本提高数字化变电站内各类保护的可靠性,在中低压系统中具有一定的实用价值。220kV及以上电压等级系统仍应遵循目前的双重化配置原则,但可应用该方法保证一次设备始终配置双重化保护,进一步提高继电保护可靠性。
With the rapid development of Ethernet and the advent of the IEC 61850 standard, the new generation of digital substations characterized by digital process level has drawn high attention in recent years. If all the substation devices are connected with one unified communication network and the information is exchanged in the same network, the substation architecture can be greatly simplified to enhance the flexibility and scalability. Moreover, on the basis of open architecture and information sharing, a lot of new functions and applications will be developed to improve the performance of substation automation system. Therefore, the architecture and several new applications in digital substation based on real-time Ethernet are chosen to be the research topics of the thesis, including substation architecture design, Intelligent Electronic Device (IED) software system design, protective relay testing, protective relay fault-tolerance, and dynamic redundancy of protective relay. The outputs of the thesis are listed as follows.
     Taking practical 220kV and 500kV substation as examples, the process level architectures are designed using cascade star topology. Destination address identification and Virtual Local Area Network (VLAN) identification are used to multicast Sampled Analog Value (SAV) messages and Generic Object Oriented Substation Event (GOOSE) messages. Simulation results in OPNET show that the process bus is suitable to transmit SAV and GOOSE messages in the shared network if the network bandwidth and switch capability are sufficient and the different messages are scheduled according to priority tap. Furthermore, the multicast communication is capable to reduce the network load.
     On the basis of modeling the information traffic and analysis of traffic characteristic, a traffic control approach based on Leaky Bucket is proposed. The parameters of the Leaky Bucket in IEDs and switches are discussed. Simulations show that the burst traffic can be smoothed to low-speed traffic using the proposed method. Therefore, the burst traffic and broadcast storm can be restrained and the message loss due to buffer overflow of switch can be prevented.
     The application of generic hardware platforms and component based software technology has the potential to enhance the flexibility of substation IEDs. The component model is proposed to specify various software components with appropriate granularity and provide a framework to integrate them efficiently. The component model is established by extension of IEC 61850 information model using the concept of IEC 61499. The function-related data, detailed function algorithms, and execution logic of the algorithms are contained in the proposed component model, which inherits the IEC 61850 information model. Considerable merits of the proposed IED design approach are also discussed. The prototype system in MATLAB/Simulink demonstrates the feasibility of the proposed component model.
     The protective relay testing system can be simplified due to the integrative information transmission in the shared network. A transient testing method using a standalone Personal Computer (PC) without commercial test device is proposed. All the test tasks including transient data generation, SAV/GOOSE messages transmission/capture, and performance analysis, are implemented on a standalone PC. Moreover, a WinPcap based communication module residing in the PC is developed to transmit and capture numerous SAV/GOOSE messages instead of multiple Ethernet ports of a commercial test device. Precalculated post-fault current and voltage is utilized to perform a close-loop test to evaluate the reclosure capability. Experiment results demonstrate the effectiveness of the proposed solution for functional test of protective relays.
     Two fault-tolerant methods are proposed to prevent protective relays from mis-operating in digital substation due to fake measurement: information fusion of sampled value from various Instrument Transformers (IT) and information fusion of start-up signals from various protection IEDs. The former method takes advantage of redundant sampled valve from various ITs to deduce the status of power system and provide supplementary information to protective relay to make a correct decision. Simulations demonstrate the effectiveness of the proposed method. Moreover, the ITs providing fake measurement can also be identified. The later method is an improved one, which utilizes the start-up signals from various protection IEDs to indicate the power system status by means of voting.
     Finally, after the analysis of reconfigurability of digital substation IED communication and software architecture, the approach of dynamic redundancy of protective relay based on on-line IED reconfiguration is proposed, as well as its procedure. The application prospect and disadvantages of the method are also discussed. The proposed approach is feasible to enhance the reliability of protection system in a cost-efficiency way in low and medium voltage power systems. For high voltage power system, dual configuration of protection system is still recommended. However, the proposed approach can be adopted to ensure the primary equipment is always under protection of dual protective relays to guarantee the reliability.
引文
[1] K. P. Brand, V. Lohmann, W. Wimmer. Substation Automation Handbook. Bremgaten: Utility Automation Consulting Lohmann, 2003.
    [2] Bricker S., Gonen T., Rubin L. Substation automation technologies and advantages. IEEE Computer Applications in Power, 2001, 14(3): 31-37.
    [3]杨奇逊.变电站综合自动化技术发展趋势.中国电机工程学报, 1996, 16(3): 145-146.
    [4]陈玉兰,尹项根,陈德树.面向对象的变电站综合自动化系统.电力系统自动化, 1997, 21(7): 45-47.
    [5] Mike Ingrm Randy Ehlers. Toward effective substation automation. IEEE Power & Energy Magazine, 2007, 5(3): 67-73.
    [6] A. P. S. Meliopoulos. Substation automation:Are we there yet? IEEE Power & Energy Magazine, 2007, 5(3): 28-30.
    [7]高翔.数字化变电站应用技术.北京:中国电力出版社, 2008.
    [8]段献忠,何飞跃,辛建波,等.基于信息网络综合传输的电力系统运行与控制.电网技术, 2004, 28(9): 38-41.
    [9] J. Curk, I. Bobal, G. Parkelj. Standard IEC 61850 opens possibility to develop new more efficient architectures of substation automation and protection systems. 2006 CIGRE Session, Paris, France, 2006.
    [10]国家电网公司.智能变电站继电保护技术规范. 2010.
    [11]彭瑜.工业以太网及以太网向现场层延伸的若干问题的思考.自动化博览, 2003, 20(6): 10-20.
    [12] J. D. Decotignie. Ethernet-based real-time and industrial communications. Proceedings of the IEEE, 2005, 93(6): 1102-1117.
    [13] Linda G. Bushnell. Networks and control. IEEE Control System Magazine, 2001, 21(1): 2-3.
    [14] Panos Antsaklis, John Baillieul. Special issue on networked control systems. IEEE Transactions on Automatic Control, 2004, 49(9): 1421-1423.
    [15] Mo-Yuen Chow. Special section on distributed network-based control systems and applications. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1126.
    [16] J. Baillieul, P. J. Antsaklis. Special issue on technology of networked control systems. Proceedings of the IEEE, 2007, 95(1): 5-8.
    [17] M. Felser. Real-time Ethernet - industry prospective. Proceedings of the IEEE, 2005, 93(6): 1118-1129.
    [18] Jean-Dominique Decotignie. The many faces of industrial Ethernet. IEEE Industrial Electronics Magazine, 2009, 3(1): 8-19.
    [19] Samad T., P. McLaughlin, Lu J. System architecture for process automation: Review and trends. Journal of Process Control, 2007, 17(3): 191-201.
    [20] Neumann P. Communication in industrial automation - What is going on. Control Engineering Practice, 2007, 15(11): 1332-1347.
    [21]张沛超,高翔.数字化变电站系统结构.电网技术, 2006, 30(24): 73-77.
    [22] J. P. Thomesse. Fieldbus technology in industrial automation. Proceedings of the IEEE, 2005, 93(6): 1073-1101.
    [23] IEC 61850-1. Communication networks and systems in substations - Part 1 Introduction and overview, 2004.
    [24]操丰梅,任雁铭,王照,等.变电站自动化系统互操作实验建议.电力系统自动化, 2005, 29(3): 86-89.
    [25]国家电网公司. IEC 61850国际标准工程化实施技术规范. 2008.
    [26]国家电网公司. IEC 61850工程应用模型. 2009.
    [27] IEEE-SA Technical Report on utility communications architecture (UCA) Version 2.0. 1999.
    [28] J. T. Tengdin, M. S. Simon, C. R. Sufana. LAN congestion scenario and performance evaluation. Power Engineering Society 1999 Winter Meeting, IEEE, New York, NY, USA, 1999.
    [29] J. Holbach, J. Rodriguez, C. Wester,等. Status on the First IEC61850 Based Protection and Control, Multi-Vendor Project in the United State. 2007 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, Clemson, SC, USA, 2007.
    [30]梁晓兵,周捷,杨永标,等.基于IEC 61850的新型合并单元的研制.电力系统自动化, 2007, 31(7): 85-89.
    [31]陈晓宁,马志瀛,苏方春,等.超高压智能操作断路器智能控制单元的研究.电网技术, 2000, 24(5): 45-47.
    [32]孙一民,李延新,黎强.分阶段实现数字化变电站系统的工程方案.电力系统自动化, 2007, 31(5): 90-93.
    [33]李延冰,李红斌,余春雨,等.电子式互感器原理、技术及应用.北京:科学出版社, 2009.
    [34]王宁,张可畏,段雄英,等.智能GIS及其发展现状.高压电器, 2004, 40(2): 139-141.
    [35]包红旗. HGIS与数字化变电站.北京:中国电力出版社, 2009.
    [36] IEC 61850-9-1. Communication networks and systems in substations - Part 9-1: Specific Communication Service Mapping (SCSM) - Sampled values over serial unidirectional multidrop point to point link. 2004.
    [37] IEC 61850-9-2. Communication networks and systems in substations - Part 9-2: Specific Communication Service Mapping (SCSM) - Sampled values over ISO/IEC 8802-3. 2004.
    [38] IEC 60044-8. Instrument transformer: Part 8: Eclectronic Current Transformer. 2002.
    [39] IEC 61850-90-3. Using IEC 61850 for condition monitoring diagnosis and analysis (draft), 2008.
    [40]殷志良,刘万顺,杨奇逊,等.基于IEEE 1588实现变电站过程总线采样值同步新技术.电力系统自动化, 2005, 29(13): 60-63.
    [41]曹团结,尹项根,张哲,等.通过插值实现光纤差动保护数据同步的研究.继电器, 2006, 36(18): 4-8/26.
    [42]徐广辉,李友军,王文龙,等.数字化变电站IED采样数据同步插值的设计.电力系统自动化, 2009, 33(4): 49-52.
    [43]蒋雷海,陈建玉,俞拙非,等.数字化保护采样数据处理方案.电力系统自动化, 2010, 34(17): 42-44.
    [44]范建忠,马千里. GOOSE通信与应用.电力系统自动化, 2007, 31(19): 85-90.
    [45]朱炳铨,王松,李慧,等.基于IEC61850 GOOSE技术的继电保护工程应用.电力系统自动化, 2009, 33(8): 104-107.
    [46]徐成斌,孙一民.数字化变电站过程层GOOSE通信方案.电力系统自动化, 2007, 31(19): 91-94.
    [47]于跃海,张道农,胡永辉,等.电力系统时间同步方案.电力系统自动化, 2008, 32(7): 82-86.
    [48] Martin Schumacher, Clemens Hoga, Joachim Schmid. Get on the digital bus to substation automation. IEEE Power & Energy Magazine, 2007, 5(3): 51-56.
    [49] IEC Document 57/990/INF. Proposal to withdraw IEC 61850-9-1 (2003). http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=doc-det.p&&progdb=db1&wcom=57&wclass=&wdoc=979&wsup=
    [50] IEC 61869-9. Instrument transformers - Part 9: Digital Interface for Instrument Transformers. http://www.iecstandards.org/dyn/www/f?p =102:14:0::::FSP_ORG_ ID:2095
    [51] T. Skeie, S. Johannessen, C. Brunner. Ethernet in substation automation. IEEE Control Systems Magazine, 2002, 22(3): 43-51.
    [52]辛建波,段献忠.基于优先级标签的变电站过程层交换式以太网的信息传输方案.电网技术, 2004, 28(22): 26~30/47.
    [53] Sidhu T. S., Yujie Yin. Modelling and simulation for Performance evaluation of IEC61850-based substation communication systems. IEEE Transactions on Power Delivery, 2007, 22(3): 1482-1489.
    [54]殷志良,刘万顺,杨奇逊,等.基于IEC 61850标准的过程总线通信研究与实现.中国电机工程学报, 2005, 25(8): 84-89.
    [55]胡道徐,李广华. IEC 61850通信冗余实施方案.电力系统自动化, 2007, 31(8): 100-103.
    [56] Andersson L., Brand K. P., Brunner C.,等. Reliability investigations for SA communication architectures based on IEC 61850. 2005 IEEE Russia Power Tech, St. Petersburg, Russia, 2005.
    [57]张沛超,高翔.全数字化保护系统的可靠性及元件重要度分析.中国电机工程学报, 2008, 28(1): 77-82.
    [58] K-P. Brand, P. Rietmann, T. Maeda,等. Requirements of interoperable distributed functions and architectures in 61850 SA. CIGRE 2006, Paris, France, 2006.
    [59] IEC 62439. High availability automation networks. 2008.
    [60] Hubert Kirrmann, Peter Rietmann, Steven Kunsman. Standard IEC 61850 - Network Redundancy using IEC 62439. Protection, Automation and Control (PAC), 2008, 1(3): 39-44.
    [61] Mills D. L. Simple network time protocol (SNTP). RFC1769, 1995.
    [62] IEEE Std. 1588. IEEE standard for a precision clock synchronization protocol for networked measurement and control systems. 2008.
    [63] T. Skeie, S. Johannessen, Holmeide O. Highly accurate time synchronization over switched Ethernet. 8th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Antibes-Juan les Pins , France, 2001
    [64]林涛,张浩,孙鹤旭.基于精密时间协议的时钟同步技术.计算机应用, 2007, 27(8): 9280-9282.
    [65] Roger Moore. Time Synchronization with IEEE 1588. Protection, Automation and Control (PAC), 2009, 2(3): 44-49.
    [66] Jiho Han, Deog-Kyoon Jeong. A Practical Implementation of IEEE 1588-2008 Transparent Clock for Distributed Measurement and Control Systems. IEEE Transactions on Instrumentation and Measurement, 2010, 59(2): 433-439.
    [67] C. Brunner. IEC 61850 and the PSR Committee Protection, Automation and Control (PAC), 2010, 3(2): 25.
    [68] Andersson L., Brunner C., Engler F. Substation automation based on IEC 61850 with new process-close technologies. 2003 IEEE Bologna PowerTech, Bologna, Italy, 2003.
    [69]辛建波,段献忠.基于DiffServ网络实现变电站信息综合传输.电力系统自动化, 2005, 29(5): 69~73.
    [70]朱国防,陆于平.基于RPR的变电站通信系统传输时延上界计算.中国电机工程学报, 2010, 30(7): 77-84.
    [71] Kanabar M. G., Sidhu T. S. Performance of IEC 61850-9-2 process bus and corrective measure for digital relaying. IEEE Transactions on power Delivery, accepted for publication.
    [72]曹团结,陈建玉,俞拙非.电子式互感器接入的光纤差动保护数据同步方法.电力系统自动化, 2009, 33(23): 65-68.
    [73]曹团结,陈建玉,黄国方.基于IEC 6185029的光纤差动保护数据同步方法.电力系统自动化, 2009, 33(24): 58-60/103.
    [74] Djokic B., So, E. Calibration system for electronic instrument transformers with digital output. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2): 479-482.
    [75]谌争鸣,陈辉,陈卫,等.全数字化继电保护测试系统设计.电力自动化设备, 2009, 29(5): 109-113.
    [76]赵勇,韩平,王洪涛,等.利用IEC61850实现继电保护远程校验.电力系统自动化, 2010, 34(3): 63-65/74.
    [77]许伟国,蒋晔,张亮,等.数字化变电站中网络通信黑匣子的设计与应用.电力系统自动化, 2008, 32(17): 92-94.
    [78] Allen D. E., Apostolov A., Kreiss D. G. Automated analysis of power system events. IEEE Power & Energy Magazine, 2005, 3(5): 48-55.
    [79]操丰梅,宋小舟,秦应力.基于数字化变电站过程层的分布式母线保护的研制.电力系统自动化, 2008, 32(4): 69-72.
    [80]罗毅.分布式故障录波系统.电力系统自动化, 2001, 25(10):59-62.
    [81]唐成虹,宋斌,胡国.基于IEC 61850标准的新型变电站防误系统.电力系统自动化, 2009, 33(5): 96-99.
    [82]易永辉,曹一家,张金江,等.基于IEC 61850标准的新型集中式IED.电力系统自动化, 2008, 32(12): 36-40.
    [83] De Mesmaeker I., Hindle P., Amantegui J.,等. SC B5 Protection and Control: Current activities and prospects. Electra, 2008, (236): 14-20.
    [84]黎强,李延新.基于数字化变电站的系统保护装置设计.电力系统自动化, 2009, 33(18): 77-81.
    [85] P. Norberg, A. Fogelberg, A. Johnsson. Field experiences from using PC software for protection and control of AC substations. 2006 CIGRE Session, Paris, France, 2006.
    [86]国家电网公司. Q/GDW智能变电站技术导则. 2009.
    [87] A. Apostolov, V. Leotloff, T. Welfonder,等. Acceptable functional integration in HV substations. Electra, 2010, (248): 39-45.
    [88]张金江,郭创新,曹一家.变电站设备状态监测系统及其IEC模型协调.电力系统自动化, 2009, 33(20): 67-72.
    [89]王德文,朱永利,王艳.基于IEC 61850的输变电设备状态监测集成平台.电力系统自动化, 2010, 34(13): 43-47.
    [90] Mohagheghi S., Alaileh R.H., Cokkinides G.,等. Distributed state estimation based on the supercalibrator concept - laboratory implementation. 2007 iREP Symposium Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability. Charleston, SC, USA, Aug. 19-24, 2007
    [91] Jaen Adl.V., Romero P.C., Exposito, A.G. Substation data validation by a localthree-phase generalized state estimator. IEEE Transactions on Power Systems, 2005, 20(1): 264-271.
    [92] IEC 61850. Communication networks and systems for power utility automation. (2nd ed.), 2010.
    [93] A. P. S. Meliopoulos, G. J. Cokkinides, and F. Galvan. Delivering accurate and timely data to all. IEEE Power & Energy Magazine, 2007, 5(3): 74-86.
    [94] David E. Bakken, Carl H. Hauser, and Harald Gjermundrod,等. Techinical report EECS-GS-009. Towards more flexible and robust data delivery for monitoring and control of electric power grid. Washington State University, Pullman, WA, USA. http://www.gridstat.net/publications/
    [95] Su Sheng, Li K. K., Zeng Xiangjun. Distribute coordinated wide area current differential protection based on IEC 61850. 2006 IEEE Region 10 Conference, Hong Kong, China, 2006.
    [96]赵曼勇,周红阳,陈朝晖.基于IEC 61850标准的广域一体化保护方案.电力系统自动化, 2010, 34(6): 58-60.
    [97]董新洲,丁磊,刘琨.基于本地信息的系统保护.中国电机工程学报, 2010, 30(22): 7-13.
    [98] G. Le Lann. A deterministic multiple CSMA/CD protocol, internal report of INRIA project. 1983.
    [99] R. Zurawski. Special issue on industrial communication systems. Proceedings of the IEEE, 2005, 93(6): 1067-1072.
    [100] Gianluca Cena, Francisco Vasques. Special section on communication in automation - Part I. IEEE Transactions on Industrial Informatics, 2008, 4(1): 2-5.
    [101] Gianluca Cena, Francisco Vasques. Special section on communication in automation - Part II. IEEE Transactions on Industrial Informatics, 2008, 4(2): 69-70.
    [102] Gianluca Cena, Simonot-Lion Fran?oise. Special section on communication in automation. IEEE Transactions on Industrial Informatics, 2009, 5(2): 70-74.
    [103]史久根,张培仁,陈真勇. CAN现场总线系统设计技术.北京:国防工业出版社, 2004.
    [104] Sobrinho J.L., Krishnakumar A.S. EQuB—Ethernet Quality of Service Using Black Bursts. 23rd Conference on Local Computer Networks, Boston, MA, 1998.
    [105] Krommenacker N., Rondeau E., Divoux N. Study of algorithms to define thecabling plan of switched Ethernet for real-time applications. 8th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Antibes-Juan les Pins, France, 2001.
    [106] Krommenacker N., Rondeau E., Divoux N. Genetic algorithms for industrial ethernet network design. 4th IEEE International Workshop on Factory Communication Systems (WFCS), Vasteras, Sweden, 2002.
    [107]顾凯,张奇智.基于遗传算法的工业以太网环型拓扑优化.控制理论与应用, 2006, 23(4), 597-600.
    [108] Jork Loeser, Hermann Haertig. Using switched Ethernet for hard real-time communication. International Conference on Parallel Computing in Electrical Engineering, 2004.
    [109] Jasperneite J., Neumann P., Theis M.,等. Deterministic real-time communication with switched Ethernet. 4th IEEE International Workshop on Factory Communication Systems (WFCS), Vasteras, Sweden, 2002.
    [110] IEEE. IEEE 802.1Q: Standards for local and metropolitan area networks: virtual bridged local area networks. 1998.
    [111]张奇智,曹春生,张卫东. EDF调度方法在交换式工业以太网中的实现.化工自动化及仪表, 2004, 31(6): 41-43.
    [112]李苗,殷弼君,王玉艳,等.以太网交换控制电路流量控制研究与实现.计算机工程. 2007, 33(13): 268-271.
    [113] Seok-Kyu Kweon, Cho, M.-G., Shin, K.G. Soft Real-Time Communication over Ethernet with Adaptive Traffic Smoothing. IEEE Transactions on Parallel and Distributed Systems, 2004, 15(10): 946-959.
    [114] Lo Bello, L., Kaczynski, G.A., Mirabella, O. Improving the Real-Time Behavior of Ethernet Networks Using Traffic Smoothing. IEEE Transactions on Industrial Informatics, 2005, 1(3): 151-161.
    [115] F. Carreiro, J. A. Fonseca, P. Pedreiras. Virtual token-passing Ethernet-VTPE. 5th IFAC Internatioan Conference on Fieldbus Systems and their Applications, Aveiro, Portugal, 2003.
    [116] N. Malcolm, W. Zhao. The timed-token protocol for real-time communications. IEEE Computer, 1994, 27(1): 35-41.
    [117] J. Martínez, M. Harbour, J. Gutiérrez. A multipoint communication protocol based on Ethernet for analyzable distributed applications. 1st Internation Workshop onReal-Time LAN’s in the Internet Age, Vienna, Austria, 2002.
    [118] C. Venkatramani, T. Chiueh. Supporting real-time traffic on Ethernet. IEEE Real-Time Systems Symposium, San Juan, PR, Dec. 1994.
    [119]国家标准化管理委员会.用于工业测量与控制系统的EPA系统结构与通信规范.北京:中国标准出版社, 2006.
    [120] Paulo Pedreiras, Paolo Gai, Luís Almeida,等. FTT-Ethernet: A flexible real-time communication protocol that supports dynamic QoS management on Ethernet-based systems. IEEE Transactions on Industrial Informatics, 2005, 1(3): 162-172.
    [121] Skeie T., Johannessen S., Holmeide O. Timeliness of real-time IP communication in switched industrial Ethernet networks. IEEE Transactions on Industrial Informatics, 2006, 2(1): 25-39.
    [122] Kleines H., Detert S., Drochner, M.,等. Performance Aspects of PROFINET IO. IEEE Transactions on Nuclear Science, 2008, 55(1): 290-294.
    [123] IEC 61850-8-1. Communication networks and systems in substations - Part 8-1 Specific Communication Service Mapping (SCSM) - Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3, 2004.
    [124] IEC. Modbus/TCP: Proposal for a publicly available specification for real-time Ethernet, Doc. IEC 65C/341/NP. 2004.
    [125] IEC. Ethernet/IP: Proposal for a publicly available specification for real-time Ethernet, Doc. IEC 65C/361/NP. 2004.
    [126] IEC. Ethernet Powerlink: Proposal for a publicly available specification for real-time Ethernet, Doc. IEC 65C/356a/NP.
    [127] J. Feld. FROFINET-scalable factory communication for all applications. 5th IEEE International Workshop on Factory Communication Systems (WFCS), Vienna, Austria, 2004.
    [128] IEC. PROFINET IO: Proposal for a publicly available specification for real-time Ethernet, Doc. IEC 65C/359/NP.
    [129] IEC. EthernetCAT: Proposal for a publicly available specification for real-time Ethernet, Doc. IEC 65C/355/NP. 2004.
    [130] IEC. SERCOS III: Proposal for a publicly available specification for real-time Ethernet, Doc. IEC 65C/358/NP. 2004.
    [131] C. R. Ozansoy, A. Zayegh, A. Kalam. The Real-Time Publisher-Subscriber Communication Model for Distributed Substation Systems. IEEE Transactions onPower Delivery, 2007, 22(3): 1411-1423.
    [132] Andersson L., Brand K. P., Fuechsle D. Optimized architectures for process bus with IEC61850-9-2. CIGRE 2008, Paris, France, 2008.
    [133] IEEE 802.1w. Rapid Reconfiguration of Spanning Tree, 2004.
    [134] OPNET, Introduction to OPNET Modeler: Accelerating Network R&D, 2003. http://www.opnet.com/products/opnet_modeler/opnet_modeler.pdf.
    [135]陈敏. OPNET网络仿真.北京:清华大学出版社, 2004.
    [136] UCA International Users Group. Implementation guideline for digital interface to instrument transformers using IEC 61850-9-2. http://www.tc57wg10.info /information/index.html.
    [137] P. Myrda, K. Donahoe. The true vision of automation. IEEE Power & Energy Magazine, 2007, 5(3): 32-44.
    [138] L. Hosenlopp. Engineering perspectives on IEC 61850. IEEE Power & Energy Magazine, 2007, 5(3): 45-50.
    [139] Sikdar B., Manjunath D. Queueing analysis of scheduling policies in copy networks of space-based multicast packet switches. IEEE/ACM Transactions on Networking, 2000, 8(3): 396-406.
    [140] Hagirahim H. Expression for the probability of packet loss owing to buffer overflow for multiplexing packetised voice. IEE Proceedings-Communications, 2006, 153(2): 238-244.
    [141] Rojas-Cessa, R. Oki, E. Chao, H.J. On the combined input-crosspoint buffered switch with round-robin arbitration. IEEE Transactions on Communications, 2005, 53(11): 1945-1951.
    [142] Jonghoon Lee, Chul-ki Lee, Jiho Han,等. An ethernet switch architecture for bandwidth provision of broadband access networks. IEEE Communications Magazine, 2008, 46(4): 160-167.
    [143] Pahlevanzadeh B., Seno S.A.H., Tat-Chee Wan. New approach for flow control using PAUSE frame management. 1st International Conference on Distributed Framework and Applications (DFmA), 2008.
    [144] Chung-Ju Chang, Chung-Hsun Yu, Chih-Sheng Chang,等. Intelligent leaky bucket algorithms for sustainable-cell-rate usage parameter control in ATM networks. IEEE Transactions on Multimedia, 2004, 6(5): 749-759.
    [145] Orphanoudakis T.G., Charopoulos C.N., Leligou, H.C. Leaky-bucket shaper designbased on time interval grouping. IEEE Communications Letters, 2005, 9(6): 573-575.
    [146] B. S. Heck, L. M. Wills, G. J. Vachtsevanos. Software technology for implementing reusable, distributed control systems. IEEE Control System Magazine, 2003, 23(1): 21-35.
    [147] Lau Kung-Kiu, Wang Zheng. Software component models. IEEE Transactions on Software Engineering, 2007, 33(10): 709-724.
    [148] IEC. IEC 61499-1: Function Blocks for industrial-process measurement and control system-Part 1: Architecture. 2005.
    [149] N. Higgins, V. Vyatkin, K. Schwarz. Concept for intelligent distributed power system automation with IEC 61850 and IEC 61499. 2008 IEEE International Conference on Systems, Man and Cybernetics, 2008.
    [150] Higgins N., Vyatkin V., Nair N.-K. C.,等. Distributed power system automation with IEC 61850, IEC 61499, and intelligent control. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, accepted for publication.
    [151] IEC 61850-7-4. Communication networks and systems in substations- Part 7-4: Basic communication structure for substation and feeder equipment-Compatible logical classes and data classes, 2004.
    [152] IEC 61850-7-2. Communication networks and systems in substations- Part 7-2: Basic communication structure for substation and feeder equipment- Abstract communication service interfaces, 2004.
    [153] SISCO. MMS-EASE Lite Reference Manual. http://www.sisconet.com
    [154] OMICRON. IEDScout Demo. https://www.omicron.at/en/content/iedscout/ download-iedscout/
    [155] IEEE Standard C37.233. IEEE Guide for Power System Protection Testing. 2009.
    [156] Kezunovic M., Meliopoulos S., Jewell W. Transient Testing of Protective Relays: Study of Benefits and Methodology. http://www.pserc.wisc.edu/research /public_reports/td.aspx.
    [157] Kezunovic M., Ren, J. New test methodology for evaluating protective relay security and dependability. IEEE PES General Meeting, Pittsburgh, USA, July 20 - July 24, 2008.
    [158] A. Apostolov. Testing of complex IEC 61850 based substation automation systems. International Journal of Reliability and Safety, 2008, 2(1-2): 51-63.
    [159] WinPcap. The Windows Packet Capture Library. http://www.WinPcap.org.
    [160] ATP-Alternative Transient Program (ATP). http://www.emtp.org
    [161] Sheng Su, Xianzhong Duan, Xiangjun Zeng. ATP-Based Automated Fault Simulation. IEEE Transaction on Power Delivery, 2008, 23(3): 1687-1689.
    [162] Power System Relaying Committee. EMTP Reference Models for Transmission Line Relay Testing Report. http://www.pes-psrc.org
    [163]沈晓凡,舒治淮,刘宇,等.2007年国家电网公司继电保护装置运行情况.电网技术, 2008, 32(16): 5-8.
    [164]沈晓凡,舒治淮,刘宇,等. 2008年国家电网公司继电保护装置运行情况.电网技术, 2010, 34(3): 173-177.
    [165]张宇娇,程炯.光学电流互感器在电力系统应用中出现的问题及处理方法.电力自动化设备,2006,26(7):101-103.
    [166] Su Sheng, W. L. Chan, K. K. Li,等. Context information-based cyber security defense of protection system. IEEE Transactions on Power Delivery, 2007, 22, (3): 1477-1481.
    [167] IEEE PSRC WG C1. Cyber security issues for protective relays. http://www.pes-psrc.org/Reports/Cyber%20Security%20Issues%20for%20Protective%20Relays.pdf.
    [168] McDonald, J.D. Substation automation. IED integration and availability of information. IEEE Power & Energy Magazine, 2005, 1(2): 22-31.
    [169] Hyun Seung Ho, Jin Bogun, Lee Seung Jae. A novel bad data processing algorithm for analog data in substation automation systems. Applied Mathematics and Computation, 2008, 205(2): 824-831.
    [170] David L. Hall, James Llinas. Handbook of multisensor data fusion. CRC Press, Boca Raton, 2001.
    [171] G. Shafer. A mathematical theory of evidence. Princeton University Press, Princeton, 1976.
    [172]段新生.证据理论与决策、人工智能.北京:中国人民大学出版社, 1993.
    [173] A. L. Jousselme, D. Grenier, E. Bosse. A new distance between two pieces of evidence. Information Fusion, 2001, 2(2): 91-101.
    [174] Deng Yong, Shi WenKang, Zhu ZhenFu,等. Combining belief functions based on distance of evidence. Decision Support System, 2004, 38(4): 489-493.
    [175] E. Lefevre, O. Colot, P. Vannoorenberghe. Belief functions combination and conflict management. Information Fusion, 2002, 3(2): 149-162.
    [176] C. K. Murphy. Combining belief functions when evidence conflicts. Decision Support System, 2000, 29(1): 1-9.
    [177] DL/T 584-95. 3~110kV电网继电保护装置运行整定规程. 1996.
    [178] S.I. Lim, D.H. Park, D.W. Lee,等. Fault-tolerant technology to increase reliability for IEC 61850-based substation automation system. 2006 CIGRE Session, Paris, France, 2006.
    [179]余锐,熊小伏.数字化变电站继电保护装置失效后备措施研究.电力自动化设备, 2009, 29(7): 127-129.
    [180]范建忠,战学牛,王海玲.基于IEC61850动态建立IED模型的构想.电力系统自动化, 2006, 30(9): 76-79.
    [181] GB/T 15145-94.微机线路保护装置通用技术条件. 1995.
    [182] IEEE PSRC WG I 19. Redundancy - Considerations for Protective Relay Systems. Protection Automation Control (PAC), 2010, 3(1): 16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700