用户名: 密码: 验证码:
气候模式中一种新的云—辐射处理方法的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云对大气辐射传输具有重要的调节作用,但是传统气候模式对云的辐射作用的模拟却存在很大的不确定性,这主要是由于传统气候模式空间分辨率较低,因此云的次网格结构无法准确给出。随着气候模式的不断发展,云-辐射过程逐渐成为限制气候模拟准确性的一个重要因素,因此更好地表征云的次网格结构及其辐射作用无疑具有很重要的意义。本文将一种新的McICA云-辐射方案应用于国家气候中心气候模式BCC_AGCM2.0.1中,该方案一方面能够给出更接近实际的次网格云结构,另一方面在保证计算精度的同时控制了辐射计算所需的时间,因此非常适用于改进大尺度气候模式次网格云辐射传输的需要。但是该方案也会引入一定的随机扰动,可能对模拟的气候场产生影响。
     本文从McICA方案的随机误差对所模拟气候场造成的随机扰动和新方案代替原方案对模拟的气候态的影响两方面,综合探讨了新方案在BCC_AGCM2.0.1中的应用效果;此外,还利用一个全球高分辨率云分辨模式的模拟结果初步研究了改进云的重叠结构、减小总云量模拟误差的方法。主要结论如下:
     1. McICA随机误差引起的模拟扰动很小,随机误差对所模拟的各种气候变量的影响也很小,全球平均值与作为参考的精确独立气柱近似(ICA)结果的差别都在0.01%量级,模拟结果的纬向分布、垂直分布和典型区域内的分布等气候特征都基本上与ICA一致。因此,在BCC_AGCM2.0.1中应用McICA云-辐射方案具有较高的可信度,模拟性能的提升仍然主要取决于模式物理过程、动力框架等方面,而可以忽略随机误差的影响。
     2. McICA云-辐射方案的引入使BCC_AGCM2.0.1模式对晴空和有云条件下地气系统的全球平均长、短波辐射收支的模拟都有了较大的改善,其中全天大气顶OLR模拟误差由原方案的约6.5W/m2降低到了约2.8W/m2,大气顶净短波辐射误差由约5.9W/m2降低到了约3.7W/m2。新的垂直重叠假定的使用使全球总云量的误差由约8%减小到仅有约1.4%。新方案一定程度上减小了原方案对流层温度偏低的现象,同时热带大气比湿的模拟误差比原方案减小约1/3。低纬度地区大气温、湿条件的变化也伴随着大气环流的改变,新方案一定程度上减小了热带地区垂直速度的模拟偏差。地表温度、海平面气压、降水等的分布和季节变化则与原方案相似。
     3.使用气候平均的重叠参数(有效抗相关厚度)数据或者建立重叠参数与其他气象因素(如垂直风速)的参数化关系,可以体现不同地区云的重叠特征差异,有助于减小总云量模拟的误差,未来在McICA云-辐射方案下可以考虑从这两个方面来提高云量及辐射的模拟准确度。
Clouds play an important role in the atmospheric radiative transfer. However, there is stillgreat uncertainty in cloud-radiative transfer process within traditional climate models,primarily due to the low spatial resolution and lack of precise sub-grid cloud structure. As thefast development of climate models, cloud-radiative process becomes more and more abottleneck to the model development. So, it is of great importance to describe sub-grid cloudstructures and their radiative effects more realistically. In this thesis, a new cloud-radiativeframework, named McICA, is introduced into the National Climate Center‘s Global ClimateModel, called BCC_AGCM2.0.1. The McICA framework is suitable for improving therepresentation of sub-grid cloud-radiative process because it has the ability to achieve morerealistic sub-grid cloud structures, as well as keeps the radiative calculation precise withoutsignificantly increasing the CPU time. Unfortunately, one drawback of the McICA frameworkis it will introduce some random noise, which may degrade the modeled climate.
     The impact of McICA noise on the modeled climate and impact of replacing the oldcloud-radiative scheme with the new one are studied in this thesis. In addition, potential waysof better representing cloud overlap structures and decrease biases in modeled total cloudfractions are studied with data from a global high-resolution cloud resolving model. The mainconclusions are as follows:
     1. There is a minor perturbation of modeled climate within McICA samples, and themodeled climate fields are impacted very little by McICA noise, with global mean bias atthe order of0.01%compared to the reference ICA results. Good agreement betweenMcICA and ICA results is also illustrated from zonal mean, vertical, and domaindistributions of variables. So, it‘s highly reliable to use the McICAcloud-radiation schemein BCC_AGCM2.0.1to do climate researches. Because random noises have little impacton the modeling, the modeling ability of BCC_AGCM2.0.1still depends on its physicalparameterization and dynamic framework improvements.
     2. The introduction of McICA framework in BCC_AGCM2.0.1leads to a greatimprovement in clear-sky and cloudy-sky TOA radiative budget of the Earth-atmospheresystem, with the OLR bias reduced from about6.5W/m2to2.8W/m2, and the TOA netshortwave flux bias reduced from about5.9W/m2to3.7W/m2. The use of a new cloud vertical overlap assumption results in a sharp decrease in total cloud fraction from about8%to only1.4%. The cold bias in troposphere is somewhat corrected by the new scheme,and at the same time the bias of specific humidity in the tropics is reduced by about1/3.With the improvement in temperature and specific humidity in the low-latitude area, themodeled tropical convective movements are also more realistic. The global distributionand seasonal variation of surface temperature, sea surface pressure and precipitation arecomparable between the new and old scheme.
     3. A set of climatological cloud overlap parameter (decorrelation depth) data or aparameterized relationship between cloud overlap parameter and other meteorologicalvariables can be used to represent the spacialy different characters of cloud overlap andreduce biases in the modeled total cloud fraction. These provide two alternatives toimprove the modeling of cloud fractions and radiation within the McICA cloud-raditionframework.
引文
[1]. Arakawa A.1975: Modeling clouds and cloud processes for use in climate models. ThePhysical Basis of Climate and Climate Modelling, GARP Publications Series, Vol.16,ICSU/WMO,181–197.
    [2]. Barker H. W.1996. A Parameterization for Computing Grid-Averaged Solar Fluxes forInhomogeneous Marine Boundary Layer Clouds. Part I: Methodology and HomogeneousBiases. Journal of the Atmospheric Sciences,53(16):2289-2303.
    [3]. Barker H W.2002. The Monte Carlo Independent Column Approximation: Applicationwithin Large-Scale Models. Proceedings of the GCSS Workshop,20~24May2002,Kananaskis, Alberta, Canada (available athttp://www.met.utah.edu/skrueger/gcss-2002/Extended-Abstracts.pdf)
    [4]. Barker H. W., B. A. Wiellicki and L. Parker.1996. A Parameterization for ComputingGrid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part II:Validation Using Satellite Data. Journal of the Atmospheric Sciences,53(16):2304-2316.
    [5]. Barker H. W. and P. R is nen.2005. Radiative sensitivities for cloud structural propertiesthat are unresolved by conventional GCMs. Quarterly Journal of the Royal MeteorologicalSociety,131:3103-3122.
    [6]. Barker H W., Cole J N S. Morcrette et al.,2008. The Monte Carlo independent columnapproximation: an assessment using several global atmospheric models. Quart. J. Roy.Meteor. Soc.,134:1463-1478.
    [7]. Barker, H. W., G. L. Stephens, and Q. Fu.,1999: The sensitivity of domain-averaged solarfluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc.,125,2127–2152.
    [8]. Bergman J. W. and P. J. Rasch.2002. Parameterizing Vertically Coherent CloudDistributions. Journal of the Atmospheric Sciences,59(14):2165-2182.
    [9]. Briegleb B. P.1992. Delta-Eddington Approximation for Solar Radiation in the NCARCommunity Climate Model. J. Geophys. Res.,97(D7):7603-7612.
    [10]. Cahalan R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell and J. B. Snider.1994a. TheAlbedo of Fractal Stratocumulus Clouds. Journal of the Atmospheric Sciences,51(16):2434-2455.
    [11]. Cahalan R. F., W. Ridgway, W. J. Wiscombe, S. Gollmer and Harshvardhan.1994b.Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo. Journal of theAtmospheric Sciences,51:3776-3790.
    [12]. Carlin B., Q. Fu, U. Lohmann, G. G. Mace, K. Sassen and J. M. Comstock.2002.High-Cloud Horizontal Inhomogeneity and Solar Albedo Bias. Journal of Climate,15(17):2321-2339.
    [13]. Charney, J. G.,1979: Carbon Dioxide and Climate: A Scientific Assessment. NationalAcademy Press,33pp.
    [14]. Chen T., W. B. Rossow and Y. Zhang.2000. Radiative Effects of Cloud-TypeVariations. Journal of Climate,13(1):264-286.
    [15]. Chou M.-D., M. J. Suarez, C.-H. Ho, M. M. H. Yan and K.-T. Lee.1998.Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties forUse in General Circulation and Cloud Ensemble Models. Journal of Climate,11(2):202-214.
    [16]. Geleyn J F, Hollingsworth A.1979. An economical method for computation of theinteraction between scatting and line absorption of radiation of radiation. Contrib AtmosPhysics,52:1–16.
    [17]. Fu Q. and K. N. Liou.1992. On the Correlated k-Distribution Method for RadiativeTransfer in Nonhomogenecous Atmospheres. Journal of the Atmospheric Sciences,49(22):2139-2156.
    [18]. Hill P G, Manners J and J C Petch.2011Reducing noise associated with the MonteCarlo Independent Column Approximation for weather forecasting models. Q. J. R.Meteorol. Soc.137:219–228. DOI:10.1002/qj.732.
    [19]. Harshvardhan, R. Davies, D. A. Randall and T. G. Corsetti.1987. A Fast RadiationParameterization for Atmospheric Circulation Models. J. Geophys. Res.,92(D1):1009-1016.
    [20]. Hogan R. J., Illingworth A J.2000. Deriving cloud overlap statistics from radar.Quart. J. Roy. Meteor. Soc.,128:2903–2909.
    [21]. Houghton J. T., Ding Y., Griggs D. J., et al.2001. Climate Change2001: TheScientific Basis[M]. New York: Cambridge University Press:1–421.
    [22]. Iacono M. J., R. Pincus, C. Hannay.2006. Representing Sub-Grid Scale CloudVariability with Monte-Carlo Independent Column Approximation and RRTMG in theNational Center for Atmospheric Research Community Atmosphere Model, CAM3.Sixteenth ARM Science Team Meeting Proceedings, Albuquerque, NM, March27-31,2006
    [23]. IPCC.2007. Climate Change2007: Impacts, Adaptation and Vulnerability.Contribution of Working Group II to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,478.
    [24]. Kandel R. and M. Viollier.2010. Observation of the Earth's radiation budget fromspace. Comptes Rendus Geoscience,342:286-300.
    [25]. Kato, S., F. G. Rose, D. A. Rutan, and T. P. Charlock (2008), Cloud effects on themeridional atmospheric energy budget estimated from Cloud and the Earth‘s RadiantEnergy System (CERES) data, J. Clim.,21,4223–4241.
    [26]. Li J.2000. Accounting for overlap of fractional cloud in infrared radiation. QuarterlyJournal of the Royal Meteorological Society,126:3325-3342.
    [27]. Li J.2002. Accounting for Unresolved Clouds in a1D Infrared Radiative TransferModel. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap.Journal of the Atmospheric Sciences,59(23):3302-3320.
    [28]. Li J. and H. W. Barker.2002. Accounting for Unresolved Clouds in a1D InfraredRadiative Transfer Model. Part II: Horizontal Variability of Cloud Water Path. Journal ofthe Atmospheric Sciences,59(23):3321-3339.
    [29]. Li J., S. Dobbie, P. R is nen and Q. Min.2005. Accounting for unresolved clouds in a1-D solar radiative-transfer model. Quarterly Journal of the Royal Meteorological Society,131:1607-1629.
    [30]. Liang X.-Z. and W.-C. Wang.1997. Cloud overlap effects on general circulationmodel climate simulations. J. Geophys. Res.,102(D10):11039-11047.
    [31]. Liou K N.1992, Radiation and Cloud Processes in the Atmosphere. New York: OxfordUniversity press.172~248.
    [32]. Liou K.-N., K. P. Freeman and T. Sasamori.1978. Cloud and aerosol effects on thesolar heating rate of the atmosphere. Tellus,30(1):62-70.
    [33]. Liou K. N., J. L. Lee, S. C. Ou, Q. Fu and Y. Takano.1991. Ice cloud microphysics,radiative transfer and large-scale cloud processes. Meteorology and Atmospheric Physics,46(1):41-50.
    [34].刘玉芝,石广玉,赵剑琦.2007.一维辐射对流模式对云辐射强迫的数值模拟研究.大气科学.31(3):486~494.
    [35]. Lu P., H. Zhang and J. Li.2011. Correlated k-Distribution Treatment of Cloud OpticalProperties and Related Radiative Impact. Journal of the Atmospheric Sciences,68(11):2671-2688.
    [36]. Mace G. G. and S. Benson-Troth.2002. Cloud-Layer Overlap Characteristics Derivedfrom Long-Term Cloud Radar Data. Journal of Climate,15(17):2505-2515.
    [37]. Mace G. G., S. Benson and S. Kato.2006. Cloud radiative forcing at the AtmosphericRadiation Measurement Program Climate Research Facility:2. Vertical redistribution ofradiant energy by clouds. J. Geophys. Res.,111(D11): D11S91,doi:10.1029/2005JD005922.
    [38]. Manabe S. and R. F. Strickler.1964. Thermal Equilibrium of the Atmosphere with aConvective Adjustment. Journal of the Atmospheric Sciences,21(4):361-385.
    [39]. McFarlane N. A., G. J. Boer, J. P. Blanchet and M. Lazare.1992. The CanadianClimate Centre Second-Generation General Circulation Model and Its EquilibriumClimate. Journal of Climate,5(10):1013-1044.
    [40]. Mitchell J., C. Senior and W. Ingram.1989. CO2and climate: a missing feedback?.Nature,341:132-134.
    [41]. Morcrette, J.-J. and Jakob, C.1999. The response of the ECMWF model to changes incloud overlap assumption. Tech. Memorandum No.278, ECMWF, Reading, UK
    [42]. Morcrette J J, Barker H W, Cole J S, Iacono M J, Pincus R.2008. Impact of a newradiation package, McRad, in the ECMWF Integrated Forecasting System. Mon Wea Rev,doi:10.1175/2008MWR2363.1
    [43]. Neale Richard B., Chih-Chieh Chen, Andrew Gettelman et al.2010. Description of theNCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Note TN-486.(availableat http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf)
    [44]. Oreopoulos L. and R. Davies.1998. Plane Parallel Albedo Biases from SatelliteObservations. Part I: Dependence on Resolution and Other Factors. Journal of Climate,11(5):919-932.
    [45]. Oreopoulos L. and R. Davies.1998. Plane Parallel Albedo Biases from SatelliteObservations. Part II: Parameterizations for Bias Removal. Journal of Climate,11(5):933-944.
    [46]. Oreopoulos L. and M. Khairoutdinov.2003. Overlap properties of clouds generated bya cloud-resolving model. J. Geophys. Res.,108(D15):4479. doi:10.1029/2002JD003329.
    [47]. Oreopoulos L., R. F. Cahalan and S. Platnick.2007. The Plane-Parallel Albedo Bias ofLiquid Clouds from MODIS Observations. Journal of Climate,20(20):5114-5125.
    [48]. Pincus R, McFarlane S A, Klein S A.1999. Albedo bias and the horizontal variabilityof clouds in subtropical marine boundary layers: observations from ships and satellites. JGeophys Res,104: D6:6183~6191
    [49]. Pincus R, Barker H W, Morcrette J J.2003. A fast, flexible, approximate technique forcomputing radiative transfer in inhomogeneous cloud fields. J Geophys Res.108: D13,4376. doi:10.1029/2002JD003322.
    [50]. Pincus R., C. Hannay, S. A. Klein, K.-M. Xu and R. Hemler.2005. Overlapassumptions for assumed probability distribution function cloud schemes in large-scalemodels. J. Geophys. Res.,110(D15): D15S09.
    [51]. Pincus R, Hemler R, Klein S A.2006. Using stochastically-generated subcolumns torepresent cloud structure in a large-scale model. Mon. Wea. Rev.,134:3644–3656.
    [52]. Pincus R, Stevens B.2009. Monte Carlo spectral integration: a consistentapproximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst.1:1-9, DOI:10.3894/JAMES.2009.1.1.
    [53]. Randall D., M. Khairoutdinov, A. Arakawa and W. Grabowski.2003. Breaking theCloud Parameterization Deadlock. Bulletin of the American Meteorological Society,84(11):1547-1564.
    [54]. R is nen P.1998. Effective Longwave Cloud Fraction and Maximum-RandomOverlap of Clouds: A Problem and a Solution. Monthly Weather Review,126(12):3336-3340.
    [55].石广玉.1998.大气辐射计算的吸收系数分布模式.大气科学,22(4):659-676.
    [56].石广玉.大气辐射学.北京:科学出版社,2007.302~318.
    [57]. R is nen P, Barker H W, Khairoutdinov M F, et al.2004. Stochastic generation ofsubgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc.,130:2047–2067.
    [58]. R is nen P, Barker H W, Cole J S.2005. The Monte Carlo Independent ColumnApproximation‘s Conditional Random Noise: Impact on Simulated Climate. J Climate.15:4715~4730
    [59]. R is nen P, S. J rvenoja, H. J rvinen.2007. Tests of Monte Carlo IndependentColumn Approximation in the ECHAM5Atmospheric GCM. J. Climate,20:4995-5011.
    [60]. R is nen P, S, S. J rvenoja, H. J rvinen et al.2008. Noise due to the Monte Carloindependent-column approximation: short-term and long-term impacts in ECHAM5. Q. J.R. Meteorol. Soc,134:481–495.
    [61]. R is nen P. and H. J rvinen.2010. Impact of cloud and radiation schememodifications on climate simulated by the ECHAM5atmospheric GCM. Quarterly Journalof the Royal Meteorological Society,136:1733-1752.
    [62]. Shonk J. K. P. and R. J. Hogan.2008. Tripleclouds: An Efficient Method forRepresenting Horizontal Cloud Inhomogeneity in1D Radiation Schemes by Using ThreeRegions at Each Height. Journal of Climate,21(11):2352-2370.
    [63]. Shonk J. K. P., R. J. Hogan, J. M. Edwards and G. G. Mace.2010. Effect of improvingrepresentation of horizontal and vertical cloud structure on the Earth's global radiationbudget. Part I: Review and parametrization. Quarterly Journal of the Royal MeteorologicalSociety,136:1191-1204.
    [64]. Slingo A.1989. A GCM Parameterization for the Shortwave Radiative Properties ofWater Clouds. Journal of the Atmospheric Sciences,46(10):1419-1427.
    [65]. Sohn B.-J.1999. Cloud-Induced Infrared Radiative Heating and Its Implications forLarge-Scale Tropical Circulations. Journal of the Atmospheric Sciences,56(15):2657-2672.
    [66]. Stephens G. L., N. B. Wood and P. M. Gabriel.2004. An Assessment of theParameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part I: VerticalOverlap. Journal of the Atmospheric Sciences,61(6):715-732.
    [67]. Tian L. and J. A. Curry.1989. Cloud Overlap Statistics. J. Geophys. Res.,94(D7):9925-9935.
    [68]. Tiedtke M.1996. An extension of cloud-radiation parameterization in the ECMWFmodel: the representation of subgrid-scale variations of optical depth. Mon Wea Rev,124:745~750
    [69]. Tompkins A. M. and L. Feudale.2009. Seasonal Ensemble Predictions of WestAfrican Monsoon Precipitation in the ECMWF System3with a Focus on the AMMASpecial Observing Period in2006. Weather and Forecasting,25(2):768-788.
    [70].汪方,丁一汇.2005.气候模式中云辐射反馈过程机理的评述地球科学进展,20(2):207–215.
    [71].汪宏七,赵高祥.1994.云和辐射(Ⅰ)云气候学和云的辐射作用.大气科学,18(增刊):910~932.
    [72]. Washington, W. M. and Williamson. D. L.1979. A description of the NCAR GCMs.Pp.111-172in General circulation models of the atmosphere, Vol.17, Methods incomputational physics. Ed. J. Chang. Academic Press
    [73]. Weare B C.2001. Effect of cloud overlap on radiative feedback. Climate Dynamics.17:143–150.
    [74]. Welch R. M. and B. A. Wielicki.1984. Stratocumulus Cloud Field Reflected Fluxes:The Effect of Cloud Shape. Journal of the Atmospheric Sciences,41(21):3085-3103.
    [75]. Wetherald R T, Manabe S.1988. Cloud feedback processes in a general circulationmodel. J. Atmos. Sci.,45:1397–1415.
    [76]. Wood R. and D. L. Hartmann.2006. Spatial Variability of Liquid Water Path inMarine Low Cloud: The Importance of Mesoscale Cellular Convection. Journal of Climate,19(9):1748-1764.
    [77]. Wu T, Yu R, Zhang F, et al.2010. The Beijing Climate Center atmospheric generalcirculation model: description and its performance for the present-day climate. ClimateDynamic,34:123-147. DOI10.1007/s00382-008-0487-2.
    [78].张华.1999.非均匀路径相关k-分布方法的研究.中国科学院大气物理研究所博士学位论文. PP169
    [79]. Zhang H, Shi G, Teruyuki Nakajima, et al.2006a. The effect of the choice of thek-interval number on radiative calculation. J. Quant. Spectro. Rad. Trans.,98:31-43.
    [80]. Zhang H, Tsuneaki Suzuki, Teruyuki Nakajima, et al.2006b. Effects of band divisionon radiative calculations. Optical Engineering,45(1):016002.
    [81].赵高祥,汪宏七.1994.云和辐射(II)环流模式中的云和云辐射参数化.大气科学,18(增刊):933~958.
    [1]. Barker H W.2002. The Monte Carlo Independent Column Approximation: Applicationwithin Large-Scale Models. Proceedings of the GCSS Workshop,20~24May2002,Kananaskis, Alberta, Canada (available athttp://www.met.utah.edu/skrueger/gcss-2002/Extended-Abstracts.pdf)
    [2]. Bergman J W, Rasch P J.2002. Parameterizing vertically coherent cloud distributions. JAtmos Sci,59:2165~2182
    [3]. Boville B A, P J Rasch, J J Hack, J R McCaa.2006. Representation of clouds andprecipitation processes in the Community Atmosphere Model version3(CAM3), J.Climate,19:2184~2198.
    [4]. Cahalan R F.1989. Overview of fractal clouds. RSRM87: Advances in Remote SensingRetrieval Methods, A. Deepak et al., Eds., A. Deepak Publishing:371–388.
    [5]. Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider.1994. Thealbedo of fractal stratocumulus clouds. J. Atmos. Sci.,51:2434–2455.
    [6]. Chambers, L. H., B. A. Wielicki, and K. F. Evans.1997. Independent pixel andtwo-dimensional estimates of Landsat-derived cloud field albedo. J. Atmos. Sci.54:1525–1532.
    [7]. Collins W D, Rasch P J, Boville B A, et al.2004Description of the NCAR CommunityAtmosphere Model (CAM3.0). NCAR Tech. Notes NCAR/TN-464+STR National Centerfor Atmosphere Research, Boulder, Colo.
    [8].董敏,吴统文,王在志,张芳.2009.北京气候中心大气环流模式对季节内振荡的模拟.气象学报,67(6):912-922.
    [9]. Evans K F.1993. Two-dimensional radiative transfer in cloudy atmospheres: The sphericalharmonic spatial grid method. J. Atmos. Sci.,50:3111–3124.
    [10]. Geleyn J F, Hollingsworth A.1979. An economical method for computation of theinteraction between scatting and line absorption of radiation. Contrib Atmos Physics,52:1~16.
    [11]. Gong, S. L., L. A. Barrie, and M. Lazare, Canadian Aerosol Module (CAM), Asize-segregated simulation of atmospheric aerosol processes for climate and air qualitymodels2. Global sea-salt aerosol and its budgets. J. Geophys. Res.,2002,107(D24),4779.
    [12]. Gong S. L., L. A. Barrie, J. P. Blanchet et al.2003. Canadian Aerosol Module: Asize-segregated simulation of atmospheric aerosol processes for climate and air qualitymodels1. Module development. J. Geophys. Res.,108(D1):864007.
    [13]. Hogan R J, Illingworth A J.2000. Deriving cloud overlap statistics from radar. QuartJ Roy Meteor Soc,128:2903~2909.
    [14]. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. B. Boville, D. L. Williamson, and P. J. Rasch.1998. The National Center for Atmospheric Research Community Climate Model: CCM3,J. Climate,11,1131–1149.
    [15]. Pincus R, Barker H W, Morcrette J J.2003. A fast, flexible, approximate technique forcomputing radiative transfer in inhomogeneous cloud fields. J Geophys Res.108: D13,4376. doi:10.1029/2002JD003322.
    [16]. R is nen, P., and H. W. Barker.2004: Evaluation and optimization of sampling errorsfor the Monte Carlo Independent Column Approximation. Quart. J. Roy. Meteor. Soc.,130,2069–2085.
    [17]. R is nen P, Barker H W, Khairoutdinov M F, et al.2004. Stochastic generation ofsubgrid-scale cloudy columns for large-scale models. Quart J Roy Meteor Soc,130:2047~2067
    [18]. R is nen P, Barker H W, Cole J N S.2005. The Monte Carlo Independent ColumnApproximation‘s Conditional Random Noise: Impact on Simulated Climate. J. Climate.18:4715-4730.
    [19]. Rasch P J, Kristjánsson J E.1998. A comparison of the CCM3model climate usingdiagnosed and predicted condensate parameterizations. Journal of Climate,11:1587~1614.
    [20]. Ronnholm, K., M. B. Baker, and H. Harrison.1980. Radiative transfer through mediawith uncertain or variable parameters. J. Atmos. Sci.,37:1279–1290.
    [21]. Slingo, J. M.1987. The development and verification of a cloud prediction scheme forthe ECMWF model, Q. J. R. Meteorol. Soc.,113,899–927.
    [22].卫晓东.2011.大气气溶胶的光学特性及其在辐射传输模式中的应用.中国气象科学研究院硕士毕业论文. PP73.
    [23]. Wu Tongwen, Wu Guoxiong.2004. An empirical formula to compute snow coverfraction in GCMs. Adv Atmos Sci,21:529-535.
    [24]. Wu T, Yu R, Zhang F, et al.2010. The Beijing Climate Center atmospheric generalcirculation model: description and its performance for the present-day climate. ClimateDynamic,34:123-147. DOI10.1007/s00382-008-0487-2.
    [25].颜宏.1987.复杂地形条件下嵌套细网格模式的设计(二):次网格物理过程参数化.高原气象,6(增刊):64-139.
    [26]. Zhang M H, Lin W Y, C. S. Bretherton, et al.2003. A modified formulation offractional stratiform condensation rate in the NCAR Community AtmosphericModel(CAM2). Journal of Geophysical Research,108, D1,4035, doi:10.1029/2002JD002523.
    [27]. Zhang G, Mu M.2005. Effects of modification to the Zhang-Mcfarlane convectionparameterization on the simulation of the tropical precipitation in the National Center forAtmosphere Research Community Climate Model, Version3. J Geophys. Res.,110:D09109, doi:10.1029/2004JD00517.
    [28]. Zhang H., Z. Wang, Z. Wang et al.2012. Simulation of direct radiative forcing ofaerosols and their effects on East Asian climate using an interactive AGCM-aerosolcoupled system. Climate Dynamics,38:1675-1693.
    [29]. Zuidema P, K F Evans.1998. On the validity of the independent pixel approximationfor boundary layer clouds observed during ASTEX. J. Geophys. Res.103:6059–6074.
    [1]. Angell J. Y.1986. Annual and Seasonal Global Temperature Changes in the Troposphere and LowStratosphere,1960–1985. Monthly Weather Review,114(10):1922-1930.
    [2]. Barker H W., Cole J N S. Morcrette et al.,2008. The Monte Carlo independent column approximation:an assessment using several global atmospheric models. Quart. J. Roy. Meteor. Soc.,134:1463-1478.
    [3]. Baum B A., Heymsfield A J., Yang P. et al.2005. Bulk scattering properties for the remote sensing ofice clouds. Part I: Microphysical Data and Models. J. Appl. Meteo,44:1885-1895.
    [4]. Bordi I., K. Fraedrich, M. Ghil and A. Sutera.2009. Zonal Flow Regime Changes in a GCM and in aSimple Quasigeostrophic Model: The Role of Stratospheric Dynamics. Journal of the AtmosphericSciences,66(5):1366-1383.
    [5]. Cai M.2005. Dynamical amplification of polar warming. Geophys. Res. Lett.,32(22): L22710.
    [6].查晶,罗德海.2011.层云加热对热带大气季节内振荡的影响.大气科学.35(4):657-666.
    [7]. Chun H.-Y., I.-S. Song, J.-J. Baik and Y.-J. Kim.2004. Impact of a Convectively Forced Gravity WaveDrag Parameterization in NCAR CCM3. Journal of Climate,17(18):3530-3547.
    [8]. Collins W D, Rasch P J, Boville B A, et al.2004Description of the NCAR Community AtmosphereModel (CAM3.0). NCAR Tech. Notes NCAR/TN-464+STR National Center for Atmosphere Research,Boulder, Colo.
    [9].董敏,吴统文,王在志,张芳.2009.北京气候中心大气环流模式对季节内振荡的模拟.气象学报,67(6):912-922.
    [10].Fu Q.1996. An Accurate Parameterization of the solar radiative properties of cirrus clouds for climatemodels. J. Climate,9:2058-2082.
    [11].郭准,吴春强,周天军,吴统文.2011. LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较.大气科学,35(4):739-752.
    [12].Hack J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz and J. E. Truesdale.2006. CCSM-CAM3Climate Simulation Sensitivity to Changes in Horizontal Resolution. Journal of Climate,19(11):2267-2289.
    [13].Holland M. M. and C. M. Bitz.2003. Polar amplification of climate change in coupled models. ClimateDynamics,21(3):221-232.
    [14].Holton J. R., P. H. Haynes, Michael E. Mclntyre, et al.1995. Stratosphere-troposphere exchange.Review of Geophysics.33(4):403-439.
    [15].IPCC.2007. Climate Change2007: Impacts, Adaptation and Vulnerability. Contribution of WorkingGroup II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge: Cambridge University Press,478.
    [16].Kristjánsson J. E., J. M. Edwards and D. L. Mitchell.2000. Impact of a new scheme for opticalproperties of ice crystals on climates of two GCMs. J. Geophys. Res.,105(D8):10063-10079.
    [17].Li L., Y. Wang, B. Wang and T. Zhou.2008. Sensitivity of the Grid-point Atmospheric Model of IAPLASG (GAMIL1.1.0) climate simulations to cloud droplet effective radius and liquid water path.Advances in Atmospheric Sciences,25(4):529-540.
    [18].李志强,俞永强.2011.耦合模式热带太平洋云—气候反馈模拟误差评估.大气科学,35(3):457-472.
    [19].Liu H. L., F. Sassi and R. R. Garcia.2009. Error Growth in a Whole Atmosphere Climate Model.Journal of the Atmospheric Sciences,66(1):173-186.
    [20].R is nen P, Barker H W.2004. Evaluation and optimization of sampling errors for the Monte CarloIndependent Column Approximation. Q. J. R. Meteorol. Soc.(2004),130:2069–2085.
    [21].R is nen P, Barker H W, Khairoutdinov M F, et al.2004. Stochastic generation of subgrid-scale cloudycolumns for large-scale models. Quart. J. Roy. Meteor. Soc.,130:2047–2067.
    [22].R is nen P, Barker H W, Cole J N S.2005. The Monte Carlo Independent Column Approximation‘sConditional Random Noise: Impact on Simulated Climate. J. Climate.18:4715-4730.
    [23].R is nen P, S. J rvenoja, H. J rvinen.2007. Tests of Monte Carlo Independent Column Approximationin the ECHAM5Atmospheric GCM. J. Climate,20:4995-5011.
    [24].R is nen P, S, S. J rvenoja, H. J rvinen et al.2008. Noise due to the Monte Carlo independent-columnapproximation: short-term and long-term impacts in ECHAM5. Q. J. R. Meteorol. Soc,134:481–495.
    [25].Pincus R., Barker H W. Morcrette J J.,2003. A fast, flexible, approximate technique for computingradiative transfer in inhomogeneous cloud fields. J. Geophys. Res,108(13):4376, doi:10.1029/2002JD003322.
    [26].Pincus R, Hemler R, Klein S A.2006. Using stochastically-generated subcolumns to represent cloudstructure in a large-scale model. Mon. Wea. Rev.,134:3644–3656.
    [27].Shi, G.-Y.1981. An accurate calculation and representation of the infrared transmission function of theatmospheric constituents. Ph.D. dissertation, Tohoku Univ. of Jpn., Sendai, Japan,1-71.
    [28].Stohl A., P. Bonasoni, P. Cristofanelli et al.2003. Stratosphere-troposphere exchange: A review, andwhat we have learned from STACCATO. J. Geophys. Res.,108(D12):8516,doi:10.1029/2002JD002490.
    [29].Uppala S. M., P. W. Kallberg, A. J. Simmons et al.2005. The ERA-40re-analysis. Quarterly Journal ofthe Royal Meteorological Society,131(612):2961-3012.
    [30].Wu Tongwen, Wu Guoxiong.2004. An empirical formula to compute snow cover fraction in GCMs.Adv Atmos Sci,21:529-535.
    [31].Wu T, Yu R, Zhang F, et al.2010. The Beijing Climate Center atmospheric general circulation model:description and its performance for the present-day climate. Climate Dynamic,34:123-147. DOI10.1007/s00382-008-0487-2.
    [32].Wyser K.1998. The effective radius in ice clouds. J. Climate,11:1793-1802.
    [33].Xie P. and P. A. Arkin.1997. Global Precipitation: A17-Year Monthly Analysis Based on GaugeObservations, Satellite Estimates, and Numerical Model Outputs. Bulletin of the AmericanMeteorological Society,78(11):2539-2558.
    [34].颜宏.1987.复杂地形条件下嵌套细网格模式的设计(二):次网格物理过程参数化.高原气象,6(增刊):64-139.
    [35].Yang P, Wei Heli, Hung-Lung Huang, et al.2005. Scattering and absorption property database fornonspherical ice particles in the near-through far-infrared spectral region. Applied Optics.44(26),5512-5523.
    [36].张华.1999.非均匀路径相关k-分布方法的研究.中国科学院大气物理研究所博士学位论文,PP169.
    [37].Zhang, H., T. Nakajima, G. Shi, T. Suzuki, and R. Imasu.2003. An optimal approach to overlappingbands with correlated k-distribution method and its application to radiative calculations. J. Geophys.Res.,108(D20),4641, doi:10.1029/2002JD003358.
    [38].Zhang G, Mu M.2005. Effects of modification to the Zhang-Mcfarlane convection parameterization onthe simulation of the tropical precipitation in the National Center for Atmosphere Research CommunityClimate Model, Version3. J Geophys. Res.,110: D09109, doi:10.1029/2004JD00517.
    [39].Zhang H, Shi G, Teruyuki Nakajima, et al.2006a. The effect of the choice of the k-interval number onradiative calculation. J. Quant. Spectro. Rad. Trans.,98:31-43.
    [40].Zhang H, Tsuneaki Suzuki, Teruyuki Nakajima, et al.2006b. Effects of band division on radiativecalculations. Optical Engineering,45(1):016002.
    [41].张丽霞,周天军,曾先锋等.2011.积云参数化方案对热带降水年循环模态模拟的影响.大气科学,35(4):777-790.
    [1]. Barker H W., Cole J N S. Morcrette et al.,2008. The Monte Carlo independent column approximation:an assessment using several global atmospheric models. Quart. J. Roy. Meteor. Soc.,134:1463-1478.
    [2]. Barker H. W. and P. R is nen.2005. Radiative sensitivities for cloud structural properties that areunresolved by conventional GCMs. Quarterly Journal of the Royal Meteorological Society,131(612):3103-3122.
    [3]. Baum B. A., A. J. Heymsfield, P. Yang and S. T. Bedka.2005a. Bulk Scattering Properties for theRemote Sensing of Ice Clouds. Part I: Microphysical Data and Models. Journal of AppliedMeteorology,44(12):1885-1895.
    [4]. Baum B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu and S. T. Bedka.2005b. BulkScattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models. Journal ofApplied Meteorology,44(12):1896-1911.
    [5]. Baum B. A., P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield and J. Li.2007. Bulk ScatteringProperties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from100to3250cm1. Journal of Applied Meteorology and Climatology,46(4):423-434.
    [6]. Bergman J. W. and P. J. Rasch.2002. Parameterizing Vertically Coherent Cloud Distributions. Journal ofthe Atmospheric Sciences,59(14):2165-2182.
    [7]. Briegleb B. P.1992. Delta-Eddington Approximation for Solar Radiation in the NCAR CommunityClimate Model. J. Geophys. Res.,97(D7):7603-7612.
    [8]. Coakley J. A., R. D. Cess and F. B. Yurevich.1983. The Effect of Tropospheric Aerosols on the Earth'sRadiation Budget: A Parameterization for Climate Models. Journal of the Atmospheric Sciences,40(1):116-138.
    [9]. Collins W. D.2001. Parameterization of Generalized Cloud Overlap for Radiative Calculations inGeneral Circulation Models. Journal of the Atmospheric Sciences,58(21):3224-3242.
    [10].Collins W. D., J. K. Hackney and D. P. Edwards.2002. An updated parameterization for infraredemission and absorption by water vapor in the National Center for Atmospheric Research CommunityAtmosphere Model. J. Geophys. Res.,107(D22):4664.
    [11].Ebert E. E., and J. A. Curry.1992. A parameterization of ice cloud optical properties for climate models,J. Geophys. Res.,97:3831–3836.
    [12].Fu Q.1996. An Accurate Parameterization of the solar radiative properties of cirrus clouds for climatemodels. J. Climate,9:2058-2082.
    [13].Fu Q. and K. N. Liou.1992. On the Correlated k-Distribution Method for Radiative Transfer inNonhomogenecous Atmospheres. Journal of the Atmospheric Sciences,49(22):2139-2156.
    [14].Hack, J. J., B. A. Boville, B. P. Briegleb et al.1993. Description of the NCAR Community ClimateModel (CCM2), Technical Report NCAR/TN-382+STR, National Center for Atmospheric Research,120pp.
    [15].Heymsfield A. J., C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy and D.Baumgardner.2006. Effective Radius of Ice Cloud Particle Populations Derived from Aircraft Probes.Journal of Atmospheric and Oceanic Technology,23(3):361-380.
    [16].Hogan R. J. and A. J. Illingworth.2000. Deriving cloud overlap statistics from radar. Quarterly Journalof the Royal Meteorological Society,126(569):2903-2909.
    [17].Hurrell J. W., J. J. Hack, D. Shea, et al.2008. A New Sea Surface Temperature and Sea Ice BoundaryDataset for the Community Atmosphere Model. Journal of Climate,21(19):5145-5153.
    [18].IPCC.2007: Climate Change2007: The Physical Science Basis. Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge UniversityPress, Cambridge, United Kingdom and New York, NY, USA:630-640.
    [19].Kiehl, J. T., J. J. Hack, and B. P. Briegleb.1994. The simulated Earth radiation budget of the NationalCenter for Atmospheric Research Community Climate Model CCM2and comparisons with the EarthRadiation Budget Experiment (ERBE), J. Geophys. Res.,99:20815–20827.
    [20].Kiehl, J. T., J. J. Hack, G. B. Bonan et al.1998. The National Center for Atmospheric ResearchCommunity Climate Model: CCM3, J. Climate,11:1131–1149.
    [21].Kiehl, J. T., and B. P. Briegleb.1991. A new parameterization of the absorptance due to the15μm bandsystem of carbon dioxide, J. Geophys. Res.,96:9013–9019.
    [22].Kiehl, J. T., and V. Ramanathan.1983. CO2radiative parameterization used in climate models:comparison with narrow band models and with laboratory data, J. Geophys. Res.,88:5191–5202.
    [23].Kristj′ansson and Kristiansen.2000. Impact of a new scheme for optical properties of ice crystals onclimates of two GCMs, J. Geophys. Res.,105:10063–10079.
    [24].Li and Barker,2005. A Radiation Algorithm with Correlated-k Distribution. Part I: Local ThermalEquilibrium. Journal of the Atmospheric Sciences,62(2):132286-309.
    [25].Liou K. N., Y. Gu, Q. Yue and G. McFarguhar.2008. On the correlation between ice water content andice crystal size and its application to radiative transfer and general circulation models. Geophys. Res.Lett.,35(13):18L13805.
    [26].刘式适,刘式达.1991.大气动力学.北京大学出版社. PP536
    [27].Mace G. G. and S. Benson-Troth.2002. Cloud-Layer Overlap Characteristics Derived from Long-TermCloud Radar Data. Journal of Climate,15(17):2505-2515.
    [28].Nakajima T., M. Tsukamoto, Y. Tsushima et al.2000. Modeling of the Radiative Process in anAtmospheric General Circulation Model. Appl. Opt.,39(27):4869-4878.
    [29].R is nen P., H. W. Barker, M. F. Khairoutdinov, J. Li and D. A. Randall.2004. Stochastic generation ofsubgrid-scale cloudy columns for large-scale models. Quarterly Journal of the Royal MeteorologicalSociety,130(601):2047-2067.
    [30].Ramanathan V. and P. Downey.1986. A Nonisothermal Emissivity and Absorptivity Formulation forWater Vapor. J. Geophys. Res.,91(D8):8649-8666.
    [31].Rasch, P. J., and J. E. Kristjansson.1998. A comparison of the CCM3model climate using diagnosedand predicted condensate parameterizations, J. Climate,11:1587—1614.
    [32].Rothman, L. S., D. Jacquemart, A. Barbe et al.2005. The HITRAN2004molecular spectroscopicdatabase, J. Quant. Spectrosc. Radiat. Transfer,96(2):139-204.
    [33].Sekiguchi M. and T. Nakajima.2008. A k-distribution-based radiation code and its computationaloptimization for an atmospheric general circulation model. Journal of Quantitative Spectroscopy andRadiative Transfer,109(17-18):2779-2793.
    [34].石广玉.1998.大气辐射计算的吸收系数分布模式.大气科学,22(4):659-676.
    [35].Slingo, J. M.1987. The development and verification of a cloud prediction scheme for the ECMWFmodel, Q. J. R. Meteorol. Soc.,113,899–927.
    [36].Slingo, A.1989. A GCM parameterization for the shortwave radiative properties of clouds, J. Atmos. Sci.,46,1419–1427.
    [37].Sun Z.2011. Improving transmission calculations for the Edwards–Slingo radiation scheme using acorrelated-k distribution method. Quarterly Journal of the Royal Meteorological Society,137(661):2138-2148.
    [38].Uppala S. M., P. W. Kallberg, A. J. Simmons et al.2005. The ERA-40re-analysis. Quarterly Journal ofthe Royal Meteorological Society,131(612):2961-3012.
    [39].王璐,周天军,吴统文,吴波.2010. BCC大气环流模式对亚澳季风年际变率主导模态的模拟.气象学报,67(6):973-982.
    [40].卫晓东.2011.大气气溶胶的光学特性及其在辐射传输模式中的应用.中国气象科学研究院硕士毕业论文. PP73.
    [41].Wiscombe, W.J. Improved Mie scattering algorithms, Appl. Opt.,1980,19(9):1505-1509.
    [42].Wu T., R. Yu, F. Zhang, Z. Wang, M. Dong, L. Wang, X. Jin, D. Chen and L. Li.2010. The BeijingClimate Center atmospheric general circulation model: description and its performance for thepresent-day climate. Climate Dynamics,34(1):149-150.
    [43].Wyser K.,1998. The Effective Radius in Ice Clouds. Journal of Climate,11(7):1793-1802.
    [44].Xie P. and P. A. Arkin.1997. Global Precipitation: A17-Year Monthly Analysis Based on GaugeObservations, Satellite Estimates, and Numerical Model Outputs. Bulletin of the AmericanMeteorological Society,78(11):2539-2558.
    [45].Yang P, Wei Heli, Hung-Lung Huang, et al.2005. Scattering and absorption property database fornonspherical ice particles in the near-through far-infrared spectral region. Applied Optics.44(26),5512-5523.
    [46].叶笃正,李崇银,王必魁.1988.动力气象学.科学出版社. PP340.
    [47].张华.1999.非均匀路径相关k-分布方法的研究.中国科学院大气物理研究所博士学位论文.PP169
    [48].Zhang H., T. Suzuki, T. Nakajima, G. Shi, X. Zhang and Y. Liu.2006a. Effects of band division onradiative calculations. Optical Engineering,45(1):016002-2(1-10).
    [49].Zhang H., G. Shi, T. Nakajima and T. Suzuki.2006b. The effects of the choice of the k-interval numberon radiative calculations. Journal of Quantitative Spectroscopy and Radiative Transfer,98(1):31-43.
    [50].Zhang H., Z. Wang, Z. Wang et al.2012. Simulation of direct radiative forcing of aerosols and theireffects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dynamics,38:1675-1693.
    [1]. Ackerman T. P. and G. M. Stokes.2003. The Atmospheric Radiation Measurement Program. JournalName: Physics Today; Journal Volume:56; Journal Issue:1,162Medium: X.
    [2]. Barker H W, R is nen P.2005. Radiative sensitivities for cloud structural properties that are unresolvedby conventional GCMs. Quart. J. Roy. Meteor. Soc.,131:3103–3122.
    [3]. Barker H W.2008. Overlap of fractional cloud for radiation calculations in GCMs: A global analysisusing CloudSat and CALIPSO data. J. Geophys. Res.,113, D00A01, doi:10.1029/2007JD009677.
    [4]. Bergman J. W. and P. J. Rasch.2002. Parameterizing Vertically Coherent Cloud Distributions. Journalof the Atmospheric Sciences,59(14):2165-2182.
    [5]. Browning K. A. and Coauthors.1993. The GEWEX Cloud System Study (GCSS). Bulletin of theAmerican Meteorological Society,74(3):387-399.
    [6]. Collins W D.2001. Parameterization of generalized cloud overlap for radiative calculations in generalcirculation models. J. Atmos. Sci.,58:3224–3242.
    [7]. Geleyn J F, Hollingsworth A.1979. An economical method for computation of the interaction betweenscatting and line absorption of radiation of radiation. Contrib Atmos Physics,52:1–16.
    [8]. Grabowski W. W.1998. Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: ASimple Cloud Microphysics Parameterization. Journal of the Atmospheric Sciences,55(21):3283-3298.
    [9]. Heike R.H. s, D.A. Randall.1995. Numerical integration of the shallow-water equations on a twistedicosahedral grid, Part I: Basic design and results of tests, Mon. Weather Rev.123:1862-1880.
    [10].Hogan R J, Illingworth A J.2000. Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor.Soc.,128:2903–2909.
    [11].霍娟,吕达仁.2009.三维辐射传输模式分析非均匀云对天空辐射场影响.大气科学,33(1):168-178.
    [12].Inou e T., M. Satoh, H. Miura and B. Mapes.2008. Characteristics of Cloud Size of Deep ConvectionSimulated by a Global Cloud Resolving Model over the Western Tropical Pacific. Journal of theMeteorological Society of Japan,86A:1-15.
    [13].Inoue T., M. Satoh, Y. Hagihara, H. Miura and J. Schmetz.2010. Comparison of high-level cloudsrepresented in a global cloud system-resolving model with CALIPSO/CloudSat and geostationarysatellite observations. J. Geophys. Res.,115: D00H22.
    [14].Liang X Z, Wang W C.1997. Cloud overlap effects on general circulation model climate simulations. J.Geophys. Res.,102:11,039–11,047.
    [15].Mace G. G. and S. Benson-Troth.2002. Cloud-Layer Overlap Characteristics Derived from Long-TermCloud Radar Data. Journal of Climate,15(17):2505-2515.
    [16].Manabe S. and R. F. Strickler.1964. Thermal Equilibrium of the Atmosphere with a ConvectiveAdjustment. Journal of the Atmospheric Sciences,21(4):361-385.
    [17].Masunaga H., M. Satoh and H. Miura.2008. A joint satellite and global cloud-resolving model analysisof a Madden-Julian Oscillation event: Model diagnosis. J. Geophys. Res.,113(D17): D17210.
    [18].McFarlane S A, JH Mather, and T P Ackerman.2007. Analysis of tropical radiative heating profiles: Acomparison of models and observations. Journal of Geophysical Research. D.(Atmospheres)112:D14218.
    [19].Miura H., M. Satoh, T. Nasuno, A. T. Noda and K. Oouchi.2007. A Madden-Julian Oscillation EventRealistically Simulated by a Global Cloud-Resolving Model. Science,318:1763-1765.
    [20].Morcrette J J, Fouquart Y.1986. The overlapping of cloud layers in shortwave radiationparameterization J. Atmos. Sci.,43:321–328.
    [21].Morcrette J J, Fouquart Y.2000. The response of the ECMWF model to changes in the cloud overlapassumption. Mon. Wea. Rev.,128:1707–1732.
    [22].Noda A. T., K. Oouchi, M. Satoh, H. Tomita, S.-i. Iga and Y. Tsushima.2010. Importance of thesubgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations.Atmospheric Research,96(2–3):208-217.
    [23].Pincus R, Hannay C, et al.2005. Overlap assumptions for assumed probability distribution functioncloud schemes in large-scale models. J. Geophys. Res.,110: D15S091–12.
    [24].Randall D., M. Khairoutdinov, A. Arakawa and W. Grabowski.2003. Breaking the CloudParameterization Deadlock. Bulletin of the American Meteorological Society,84(11):1547-1564.
    [25].Satoh M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno and S. Iga.2008. Nonhydrostatic icosahedralatmospheric model (NICAM) for global cloud resolving simulations. Journal of Computational Physics,227(7):3486-3514.
    [26].Stephens G. L., D. G. Vane, S. Tanelli, et al.2008. CloudSat mission: Performance and early scienceafter the first year of operation. J. Geophys. Res.,113(D8):23D00A18.
    [27].Tomita H., M. Tsugawa, M. Satoh, K. Goto.2001. Shallow water model on a modified icosahedralgeodesic grid by using spring dynamics, J. Comp. Phys.174:579–613.
    [28].Tomita H. and M. Satoh.2004. A new dynamical framework of nonhydrostatic global model using theicosahedral grid. Fluid Dynamics Research,34(6):357-400.
    [29].汪方,丁一汇.2005.气候模式中云辐射反馈过程机理的评述.地球科学进展,20(2):207–215.
    [30].Weare B C.2001. Effect of cloud overlap on radiative feedback. Climate Dynamics.17:143–150.
    [31].Xu K.-M., R. T. Cederwall, L. J. Donner, et al.2002. An intercomparison of cloud-resolving modelswith the atmospheric radiation measurement summer1997intensive observation period data. QuarterlyJournal of the Royal Meteorological Society,128(580):593-624.
    [32].叶笃正,李崇银,王必魁.1988.动力气象学.科学出版社. PP340
    [1]. R is nen P., H. W. Barker, M. F. Khairoutdinov, J. Li and D. A. Randall.2004. Stochastic generationof subgrid-scale cloudy columns for large-scale models. Quarterly Journal of the Royal MeteorologicalSociety,130(601):2047-2067.
    [2]. Larson V. E.2007. From cloud overlap to PDF overlap. Quarterly Journal of the Royal MeteorologicalSociety,133(628):1877-1891.
    [3]. Norris P. M., L. Oreopoulos, A. Y. Hou, W.-K. Tao and X. Zeng.2008. Representation of3Dheterogeneous cloud fields using copulas: Theory for water clouds. Quarterly Journal of the RoyalMeteorological Society,134(636):1843-1864.
    [4]. R is nen P. and H. J rvinen.2010. Impact of cloud and radiation scheme modifications on climatesimulated by the ECHAM5atmospheric GCM. Quarterly Journal of the Royal Meteorological Society,136(652):1733-1752.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700