用户名: 密码: 验证码:
热障涂层结构性能及健康状况微波无损检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高发动机的热效率,热障涂层(Thermal Barrier Coatings,简称TBCs)已经被广泛应用到发动机的涡轮叶片等热端部件上,热障涂层是在叶片等热端部件表面涂覆的具有一定厚度和耐久性的绝热陶瓷层薄膜。由于热障涂层的制备工艺复杂,在制备过程中制备工艺参数的变化会影响热障涂层的厚度和孔隙率等结构性能,热障涂层的结构性能直接影响其热障效果;高温的工作环境会造成各层间粘结状况差的位置脱粘,并且产生的热生长氧化层(Thermal Growth Oxide,简称TGO层)会促进脱粘现象的产生。为了保证热障涂层良好的热障效果,并避免在工作过程中失效而造成不必要的损失,急需一种可以在位检测的无损检测方法。
     微波无损检测技术是一种新型的无损检测技术,因其具有穿透介电材料的能力强、对界面和不均匀性很敏感等特点,适合对热障涂层进行无损检测。根据热障涂层的结构特性,适合用微波反射法对其进行无损检测。
     本文在电磁波理论的指导下,利用微波无损检测技术对热障涂层中陶瓷顶层(Top coating,简称TC层)的厚度、孔隙率等结构特性,粘结层(Bond coating,简称BC层)表面的裂缝、TC层与BC层间的脱粘等健康状况参数,以及TC层和BC层间的TGO层进行了检测和评价。主要以理论分析和数值模拟为指导,通过优化检测参数进行了试验研究,提出了一种高频、宽带、高分辨率,适合热障涂层检测的微波无损检测方法。主要工作如下:
     (1)建立了微波反射系数法检测热障涂层的理论模型。通过模型的建立可知,在检测中探头的特性、工作频率以及提离距离会影响检测的灵敏度,因此在检测前需要对这几个参数进行优化设计,以期达到更好的检测效果。通过对理论模型的计算可知,利用微波信号的反射系数可以表征热障涂层中各介质层的厚度、与介电常数有关的物理特性、合金层表面的健康状况以及各层间的脱粘状况等。
     (2)规则波导探头的参数敏感性分析。根据微波在波导中的传输条件,确定了波导中单模传播时波导尺寸与工作频率间的对应关系,以简化微波检测过程中模态分析的过程。根据微波在不同形状波导中的传播特点,以及检测空间分辨率的要求,分析了如何根据工作频率选择合适的波导探头;并分析了波导探头法兰对检测结果的影响。
     (3)微波检测热障涂层时检测参数的优化研究。利用CST微波工作室(Computer Simulation Technology-Microwave Studio)仿真软件对检测过程中工作频率和提离距离等参数进行了优化设计。在接触式检测中,主要对检测的工作频率进行了优化设计,根据优化的工作频率选择合适的波导探头进行无损检测以达到较高的检测灵敏度;在非接触式检测中,主要对提离距离进行了优化设计,为扫描检测时提离距离的选择奠定了理论基础。
     (4)微波检测热障涂层的试验研究。根据检测参数优化的结果,利用网络分析仪E8363C对热障涂层的厚度和孔隙率进行了微波无损检测试验研究。在检测工作频率范围内,可以利用微波信号的反射系数相位差,来良好的表征热障涂层厚度的变化,并且利用卡尺测量法对微波检测结果进行了标定;在敏感工作频率处,可以用微波信号的反射系数相位差,来表征热障涂层孔隙率的变化,利用切片图像分析的方法对微波无损检测结果进行了标定。
     (5)热障涂层健康状况的毫米波无损检测研究。选用了多种型号的终端开口矩形波导作为探头,在毫米波段对热障涂层系统中常见的缺陷进行了无损检测研究,检测中利用信号的反射系数相位差来表征被检测参数的变化。在毫米波段可以实现对热障涂层中裂缝、脱粘和TGO层的微波无损检测;利用高频率段的探头进行检测可以明显提高检测灵敏度。
Thermal barrier coatings (TBCs) have been developed in order to increase theoperating temperature in gas turbine engines and some components operating inhigh-temperature condition. TBCs are thin ceramic layers with durability whichdeposited onto the hot-section components. In the process to produce TBCs, processparameters affect coating thickness profiles and morphological features, which affectthermal conductivity of TBCs. Besides, the delamination is induced by thermalstresses under the environment of high temperature and TGO. Therefore, it isnecessary to detect TBCs in order to ensure the quality of TBCs.
     Although not as widely known or understood as other NDE techniques,microwave non-destructive evaluation (NDE) has proven to be very useful in certainapplications. Non-contact inspection and the ability to penetrate into dielectricmaterials are two of most import attributes of microwave NDE and make it suitablefor the non-destructive inspection of TBCs. Due to the structure features of TBCs, inthis paper microwave NDE is simply based on wave reflection from a dielectric mediainterface.
     The objective of this paper is to investigate feasibility of microwave NDE todetect or monitor TC thickness, TC porosity, crack on BC, delamination between TCand BC and thermally grown oxide (TGO) growth. Three main works are setting upthe theory model, optimizing detecting parameters and detecting TBCs usingmicrowave NDE. Main works are as follows:
     (1) The theory model to detecting TBCs using wave reflection of microwaveNDE was established. An effective reflection coefficient is determined in this waywhose phase characteristics are used in the detection and evaluation of TC thickness,TC porosity, crack on BC, delamination between TC and BC and thermally grownoxide (TGO) growth. The characteristics of this phase as a function of severalparameters such as the frequency of operation, standoff distance and probe featuresare investigated.
     (2) The optimization of waveguide probe was carried out. According to thetransmission condition of microwave in waveguide, the relation of frequency andprobe size was presented in order to predigest model analysis of microwave in probe.How to select the appropriate probe shape was showed according to the transmissioncharacter of microwave in probe. Besides, the influence of probe flange wasdiscussed.
     (3) The optimization of detect parameter was carried out in microwave NDE byusing computer simulation technology-microwave studio (CST–MS). The detectparameters include frequency and standoff distance (in non-contact detection). The best parameters would be used to detect TBCs, in order to improve sensitivity ofmicrowave NDE.
     (4) TC thickness measurements and TC porosity monitor in TBCs system hasbeen carried out using microwave NDE. The measurement system used in this paperconsisted of a network analyzer (Agilent E8363C,100MHz-40GHz) feeding signalsto a Ka-band rectangular waveguide (Agilent R281A). The results showed that thephase difference can be used to evaluate TC thickness and porosity. The results werevalidated using destructive detection.
     (5) The defects of TBCs were detected using millimeter wave NDE. Four kindsof rectangular waveguides were used to detect TBCs. Changes in the phase ofreflection coefficient were primarily studied. The results showed the crack, thedelamination and TGO in TBCs, can be detected effectively using millimeter wavenondestructive testing techniques. Besides, the sensitivity is greater in high frequencythan low frequency.
引文
[1]刘风岭.面向21世纪的热障涂层结构设计[J].材料保护.2000,33:86-88.
    [2]曹学强.热障涂层材料[M].北京,科学出版社,2007.
    [3]文生琼,何爱杰,王皓.热障涂层在航空发动机涡轮叶片上的应用[J].燃气涡轮机试验与研究.2009,22(1):59-62.
    [4]陈慧君,李其连,程旭东.热障涂层中TGO的生长行为[J].航空制造技术.2012,8:67-70.
    [5]何箐,吕玉芬,汪瑞军,李宏.等离子喷涂常规和纳米8YSZ热障涂层的性能[J].中国表面工程.2008,21(6):18-22.
    [6]孙永兴,王引真,何艳玲.等离子喷涂工艺稳定性对陶瓷涂层组织和性能的影响[J].材料保护.2001,34(7):26-28.
    [7]杨德明,高阳.大气和低压等离子喷涂ZrO2-8%Y2O3涂层及性能研究[J].热喷涂技术.2012,4(3):13-18.
    [8]刘海浪,王宝健,刘永丹,闫丰.热障涂层的研究现状与发展[J].新技术新工艺.2008,5:92-95.
    [9] A. N. Khan, S. H. Khan, A. Farhad, M. A. Iqbal. Evaluation of ZrO2–24MgO ceramic coatingby eddy current method[J]. Computational Materials Science.2009,44(3):1007-1012.
    [10]周俊华,徐可北,葛子亮.热障涂层厚度涡流检测技术研究[J].航空材料学报.2006,26(3):353-354.
    [11] J.H. Park a, J.S. Kim b, K.H. Lee. Acoustic emission characteristics for diagnosis of TBCdamaged by high-temperature thermal fatigue[J]. Journal of Materials Processing Technology.2007,187-188:537-541.
    [12] D. Renusch, M. Schütze. Measuring and modeling the TBC damage kinetics by usingacoustic emission analysis[J]. Surface&Coatings Technology.2007,202(4-7):740-744.
    [13] L. Yang, Y. CH. Zhou. Wavelet analysis of acoustic emission signals from thermal barriercoatings[J]. Transacfions of Nonferrous Metals Society of China.2006,16:s270-s275.
    [14]杨丽,周益春.热障涂层基于小波变换的声发射源定位方法[J].湘潭大学自然科学学报.2009(31)1:38-43.
    [15] G. Newaz, X. Chen. Progressive damage assessment in thermal barrier coatings using thermalwave imaging technique[J]. Surface&Coatings Technology.2005,190(1):7–14.
    [16] B. Franke, Y. H. Sohn, X. Chen, J. R. Price, Z. Mutasim. Monitoring damage evolution inthermal barrier coatings with thermal wave imaging[J]. Surface&Coatings Technology.2005,200(5-6):1292–1297.
    [17] B. Heeg, D. R. Clarke. Non-destructive thermal barrier coating (TBC) damage assessmentusing laser-induced luminescence and infrared radiometry[J]. Surface&CoatingsTechnology.2005,200(5-6):1298–1302.
    [18] J. I. Eldridge, T. J. Bencic. Monitoring delamination of plasma-sprayed thermal barriercoatings by reflectance-enhanced luminescence[J]. Surface&Coatings Technology.2006,201(7):3926–3930.
    [19] F. Cernuschi, P. Bison, A. Moscatelli. Microstructural characterization of porous thermalbarrier coatings by laser fash technique[J]. Acta Materialia.2009,57(12):3460–3471.
    [20] K. Ogawa, D. Minkov, T. Shoji, M. Sato, H. Hashimoto. NDE of degradation of thermalbarrier coating by means of impedance spectroscopy[J]. NDT&E International.1999,32(3):177–185.
    [21] M. S. Ali, S. Song, P. Xiao. Evaluation of degradation of thermal barrier coatings usingimpedance spectroscopy[J]. Journal of the European Ceramic Society.2002,22(1):101–107.
    [22] S. Song, P. Xiao. An impedance spectroscopy study of high-temperature oxidation of thermalbarrier coatings[J]. Materials Science and Engineering B.2003,97(1):46-53.
    [23] P.S. Anderson, X. Wang, P. Xiao. Impedance spectroscopy study of plasma sprayed andEB-PVD thermal barrier coatings[J]. Surface&Coatings Technology.2004,185(1):106–119.
    [24] R. Heung, X. Wang, P. Xiao. Characterisation of PSZ/Al2O3composite coatings usingelectrochemical impedance spectroscopy[J]. Electrochimica Acta.2006,51(8-9):1789–1796.
    [25] B. Jayaraj, V.H. Desai, C.K. Lee, Y.H. Sohn. Electrochemical impedance spectroscopy ofporous ZrO2–8wt.%Y2O3and thermally grown oxide on nickel aluminide[J].Materials Science and EngineeringA.2004,372(1-2):278–286.
    [26] J. Zhang, V. Desai. Determining thermal conductivity of plasma sprayed TBC byelectrochemical impedance spectroscopy[J]. Surface&Coatings Technology.2005,190(1):90–97.
    [27] J. Zhang, V. Desai. Evaluation of thickness, porosity and pore shape of plasma sprayed TBCby electrochemical impedance spectroscopy[J]. Surface&Coatings Technology.2005,190(1):98–109.
    [28] J.W. Byeon, B. Jayaraj, S. Vishweswaraiah, S. Rhee, V.H. Desai, Y.H. Sohn. Non-destructiveevaluation of degradation in multi-layered thermal barrier coatings by electrochemical impedancespectroscopy[J]. Materials Science and EngineeringA.2005,407(1-2):213–225.
    [29] C. Amaya, W. Aperador, J. C. Caicedo, F. J. Espinoza-Beltrán, J. Mu oz-Salda a, G.Zambrano, P. Prieto. Corrosion study of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ)nanostructured Thermal Barrier Coatings (TBC) exposed to high temperature treatment[J].Corrosion Science.2009,51(12):2994–2999.
    [30] K. Arunachalam, V. R. Melapudi, L. Udpa, S. S. Udpa. Microwave NDT of cement-basedmaterials using far-feld refection coeffcients[J]. NDT&E International,2006,39:585–593.
    [31] Y. Ju, M. Saka, H. Abé. Detection of delamination in IC packages using the phase ofmicrowaves[J]. NDT&E international,2001,34:49-56.
    [32]田雨波,钱鉴.微波近场成像检测乳腺癌及其微波热疗[J].微波学报.2003,19(3):72-78.
    [33] W. Saleh, N. Qaddoumi. Breast Cancer Detection Using Non-invasive Near-field MicrowaveNondestructive Testing Techniques[J]. IEEE International Conference on Electronics, Circuits,and Systems.2003,3(10):1320-1323.
    [34] F. Delbary, M. Brignone, G. Bozza, R. Aramini, M. Piana. A Visualization Method for BreastCancer Detection Using Microwaves[J]. SIAM Journal on Applied Mathematics.2010,70(7):2509-2533.
    [35] T. Henriksson, N. Joachimowicz, C. Conessa, J. C. Bolomey. Quantitative MicrowaveImaging for Breast Cancer Detection Using a Planar2.45GHz System[J]. IEEE Transactions onInstrumentation and Measurement.2010,59(10):2691-2699.
    [36] A. Mashal, B. Sitharaman, X. Li, P. K. Avti, A. V. Sahakian, H. B. John, S. C. Hagness.Toward Carbon-Nanotube-Based Theranostic Agents for Microwave Detection and Treatment ofBreast Cancer: Enhanced Dielectric and Heating Response of Tissue-Mimicking Materials[J].IEEE Transactions on Biomedical Engineering.2010,57(8):1831-1834.
    [37] O. Baltag, M. Costin1, S. Ojica, S. Bejinariu, C. Stefanescu. Outlines on Microwave Imagingin Breast Cancer Early Detection[J]. International Workshop on Soft ComputingApplications.2010,4:131-136.
    [38]赵亦波,李建龙,丁亮.基于雷达原理的脉冲微波共焦成像检测乳腺癌[J].生物医学工程研究.2010,29(1):50-54.
    [39]李而周,陈楚平,张彦舫,陈伟.食管癌微波信息检测的探讨[J].实用癌症杂志.2003,18(5):503-504.
    [40] C. Cao, L. Nie, C. Lou, D, Xing. The feasibility of using microwave-induced thermoacoustictomography for detection and evaluation of renal calculi[J]. Physics in Medicine andBiology.2010,55:5203-5212.
    [41] D. Obeid, S. Sadek, G. Zaharia, G. Eizein. Multitunable Microwave System for TouchlessHeartbeat Detection and Heart Rate Variability Extraction[J]. Microwave and Optical TechnologyLetters.2010,52(1):192-198
    [42] N. S. M. Salim, K. Khalid, N. A. Yusof. Microwave-Based Biosensor for GlucoseDetection[J]. AIPConference Proceedings.2010,1250:401-404.
    [43]刘海艳,许会.钢筋混凝土结构的微波有限元模型研究[J].沈阳理工大学学报.2009,28(2):71-74.
    [44] Y. J. Kim, L. Jofre, F. D. Flaviis, M. Q. Feng. Microwave Reflection Tomography Array forDamage Detection in Concrete Structures[J]. IEEE MTT-S International Microwave SymposiumDigest.2002,2:651-654.
    [45] Y. J. Kima, L. Jofreb, F. D. Flaviisc, M. Q. Feng.3D Microwave Imaging Technology forDamage Detection of Concrete Structures[J]. The International Society for OpticalEngineering.2003,5057:29-36.
    [46] A. Khanfar, M. A. Khousa, N. Qaddoumi. Microwave near-feld nondestructive detection andcharacterization of disbonds in concrete structures using fuzzy logic techniques[J]. CompositeStructures.2003,62:335–339.
    [47] J. Nadakuduti, G. Chen, R. Zoughi. Semiempirical Electromagnetic Modeling of CrackDetection and Sizing in Cement-Based Materials Using Near-Field Microwave Methods[J]. IEEETransactions on Instrumentation and Measurement.2006,55(2):588-597.
    [48] M. Q. Fenga, F. D. Flaviis", J. Kima, R. Diaz. Application of Electromagnetic Waves inDamage Detection of Concrete Structures[J]. The International Society for OpticalEngineering.2000,3988:118-126.
    [49] M. Q. Feng, A. M. ASCE, F. D. Flaviis, Y. J. Kim. Use of Microwaves for Damage Detectionof Fiber Reinforced Polymer-Wrapped Concrete Structures[J]. Journal of EngineeringMechanics.2002,128(2):172-183.
    [50] D. Hughes, M. Kazemi1, K. Marler1, R. Zoughi, J. Myers, A. Nanni. Microwave Detection ofDelaminations between Fiber Reinforced Polymer (FRP) Composite and Hardened CementPaste[J]. AIPConference Proceedings.2002,615A:512-519.
    [51] B. Akuthota, D. Hughes, R. Zoughi, J. Myers, A. Nanni. Near-Field Microwave Detection ofDisbond in Carbon Fiber Reinforced Polymer Composites Used for Strengthening Cement-BasedStructures and Disbond Repair Verifcation[J]. Journal of Materials in CivilEngineering.2004,16(6):540-546.
    [52] U.C. Hasar. Non-destructive testing of hardened cement specimens at microwave frequenciesusing a simple free-space method[J]. NDT&E International.2009,42(6):550-557.
    [53] C. Y. Yeh, R, Zoughi. A Novel Microwave Method for Detection of Long Surface Cracks inMetals[J]. IEEE Transactions on Instrumention and Measurement.1994,43(5):719-725.
    [54] R.Zoughi, K.Hayes, S. Ganchev. Microwave detection of hairline surface-breaking cracksin metals using open-ended coaxial sensors: preliminary results[J]. The International Society forOptical Engineering.1996,2945:444-450.
    [55] J. Kerouedan, P. Quéffélec, S. D. Blasi, A. L. Brun, P. Talbot. Theoretical and experimentaldemonstration of the feasibility of metallic surface cracks detection using microwavestechniques[J]. IEEE Conference on Electromagnetic Field Computation.2006,12:7-8.
    [56] K. Julien, Q. Patrick, T. Philippe, C. Quendo, D. B. Serge, L. B. Alain. Detection ofmicro-cracks on metal surfaces using near-feld microwave dual-behavior resonator flters[J].Measurement Science&Technology.2008,19(10):105701-105710.
    [57] N. Qaddoumi, S. Ganchev, R. Zoughi. A Novel Microwave Fatigue Crack DetectionTechnique Using an Open-ended Coaxial Line[J]. Conference on Precision ElectromagneticMeasurements Digest.1994,94:59-60.
    [58] N. Qaddoumi, E. Ranu, J. D. McColskey, R. Mirshahi, R. Zoughi. Microwave Detection ofStress-Induced Fatigue Cracks in Steel and Potential for Crack Opening Determination[J].Research in Nondestructive Evaluation.2000,12(2):87-103.
    [59] R. Zoughi, S. Kharkovsky. Microwave and millimetre wave sensors for crack detection[J].Fatigue Fracture Engineering Material Structure.2008,31:695–713.
    [60] H.Christian, H. Abiri, S. I. Ganchev, R. Zoughi. Modeling of Surface Hairline-CrackDetection in Metals Under Coatings Using an Open-Ended Rectangular Waveguide[J]. IEEETransactions on Microwave Theory and Techniques.1997,45(11):2049-2057.
    [61] R. A. Kleismit, M. K. Kazimierczuk. Evanescent Microwave Sensor Scanning for Detectionof Sub-surface Defects in Wires[J]. Electrical Insulation Conference and Electrical Manufacturingand Coil Winding Conference.2001,01CH37264:245-250.
    [62] N. Wang, K. Donnell, M. Castle, R. Zoughi, M. Novack. Microwave Detection of CoveredSurface Cracks in Metals[J]. AIPConference Proceedings.2001,557A:430-437.
    [63] D. Hughes, R. Zoughi, R. Austin, N. Wood, R. Engelbart. Near-field Microwave Detection ofCorrosion Precursor Pitting under Thin Dielectric Coatings in Metallic Substrate[J]. AIPConference Proceedings.2003,657A:462-469.
    [64] Y. Li, G. Y. Tian, N. Bowring, N. Rezgui. A Microwave Measurement System for MetallicObject Detection Using Swept-frequency Radar[J]. The International Society for OpticalEngineering.2008,7117(13):71170K-1-71170K-13.
    [65] V. P. Kempa, Y. M. Koba, S. I. Klymonchuk, R. V. Lyashchyk, O. B. Naumets, N. A. Rybak,Y. N. Tsukornuk[J]. Microwave Pipe Corrosion Detector. Microwave and TelecommunicationTechnology.2001,01EX487:660-661.
    [66]黄山田,王朝晖,张来斌,慕松.基于微波技术的输气管道泄漏检测方法[J].石油机械.2006,34(1):67-70.
    [67]陈志刚,张来斌,王朝晖,梁伟.应用微波技术检测天然气管道泄漏[J].天然气工业.2008,28(1):119-122.
    [68] Y. Ju, L. Liu, M. Ishikawa. Quantitative evaluation of wall thinning of metal pipes bymicrowaves[J]. Materials Science Forum.2009,614:111-116.
    [69] K. Klaus. RF&Microwave Instrumentation for Moisture Measurements in Process and CivilEngineering[J]. The International Society for Optical Engineering.1999,3752:39-46.
    [70] C. D. Angelo, N. Claudia, P. Francesco, C. Giuseppe, C. Domenico, M. Antonio, S. Vincenzo.Microwave polarimetric scatterometer as a tool for monitoring topsoil moisture[J]. TheInternational Society for Optical Engineering.2001,4491:300-309.
    [71] O. Manfred, A. M. Richard. Recent advances in microwave sensing of soil moisture[J]. TheInternational Society for Optical Engineering.2002,4542:117-121.
    [72] A. Penirschke, M. Sch¨ussler, M. Vossiek, P. Gulden, R. Jakoby. Moisture Detection ofMaterials in Leaky Cavities using Microwave Techniques[J].35th European MicrowaveConference.2005,2:1387-1390.
    [73]卢智远,孙文权,吴志刚,石频频,丁华,周佳社.烟支湿度与密度检测的微波谐振腔传感器研究[J].传感技术学报.2007,20(5):1030-1033.
    [74]刘雷,何道清,周小玲.微波检测原油含水率研究[J].科学仪器与装置.2009,4:60-62.
    [75]伟利国,张小超,胡小安,李福超.微波在线式粮食水分检测系统[J].农机化研究.2009,6:145-147.
    [76] J. F. Jing, P. F. Li, H. W. Zhang, N. H. Lu. Research on On-line Inspection System forMoisture Content of Fabric Based on LabVIEW[J]. International Conference on Computer-AidedIndustrial Design&Conceptual Design.2009:2114-2117.
    [77] Y. Y. Jiang, Y. Zhang. Research on Microwave Measurement for Grain Moisture Content inGranary[J]. International Conference on Control, Automation and Systems Engineering.2009:327-330.
    [78]徐少磊,孙文光.微波检测实验—微波相位与含湿物质含水量变化关系的研究[J].物理与工程.2010,20(1):43-45.
    [79] P. F. Li, B. Wang, J. K. Li, N. H. Lu. Research on Moisture Content Measurement of FabricBased on Microwave Transmission[J]. International Conference on Measuring Technology andMechatronics Automation.2010:120-123.
    [80] P. F. Li, B. Wang, J. F. Jing. The Application of Microwave Detecting textile MoistureContent[J]. International Conference on Intelligent Computation Technology andAutomation.2010:706-709.
    [81] T. Samir, S. O. Nelson. Microwave Moisture Sensor for Rapid and Nondestructive Grading ofPeanuts[J]. Southeast Conference.2010:57-59.
    [82]陆荣林.复合材料的微波无损检测研究[J].上海化工.1998,19:30-32.
    [83]陆荣林,费云鹏,白宝泉.微波检测原理及其在复合材料中的应用[J].玻璃钢/复合材料.2001,2:40-41.
    [84]宋海平,安同一.微波相敏法检测分层介质材料的粘贴缺陷[J].华东师范大学学报(自然科学版).1999,2:55-60.
    [85]樊明捷,黄勇,钱鉴,尹秋艳.微波零平衡相位法检测多层复合材料的粘结缺陷[J].微波学报.2003,19(4):87-91.
    [86]赵丽生.微波技术分析复合材料的缺陷[J].无损检测.2004,26(12):643-644,646.
    [87] R. Zoughi, S. Bakhtiari. Microwave Nondestructive Detection and Evaluation of Disbondingand Delamination in Layered-Dielectric-Slabs[J]. IEEE Transactions on Instrumentation andMeasurement.1990,39(6):1059-1063.
    [88] N. Qaddoumi, R. Zoughi, G. W. Carriveau. Microwave Detection and Depth Determination ofDisbonds in Low-Permittivity and Low-Loss Thick Sandwich[J]. Research in NondestructiveEvaluation.1996,8(1):51-63.
    [89] M. A. Khousa, R.Zoughi. Disbond Thickness Evaluation Employing Multiple-FrequencyNear-Field Microwave Measurements[J]. IEEE Transactions on Instrumentation and Measurement.2007,56(4):1107-1113.
    [90] K. Sergey, E. Nanni, R. Zoughi. Application of Frustrated Total Internal Reflection ofMillimeter Waves for Detection and Evaluation of Disbonds in Dielectric Joints[J]. AppliedPhysics Letters.2008,92(9):094101-(1-3).
    [91] M. T. Ghasr, S. Devin, R.Zoughi. Multimodal Solution for a Waveguide Radiating intoMultilayered Structures-Dielectric Property and Thickness Evaluation[J]. IEEE Transactions onInstrumentation and Measurement.2009,58(5):1505-1513.
    [92] M. A. Khousa, W. Saleh, N. Qaddoumi. Defect imaging and characterization in compositestructures using near-field microwave nondestructive testing techniques[J]. Composite Structures.2003,62(3-4):255–259.
    [93] W. Saleh, N. Qaddoumi, M. A. Khousa. Preliminary investigation of near-field nondestructivetesting of carbon-loaded composites using loaded open-ended waveguides[J]. CompositeStructures.2003,62(3-4):403–407.
    [94] S. Bakhtiari, S. I. Ganchev, R. Zoughi. Open-Ended Rectangular Waveguide forNondestructive Thickness Measurement and Variation Detection of Lossy Dielectric Slabs Backedby a Conducting Plate[J]. IEEE Transactions on Instrumentation and Measurement.1993,42(1):19-24.
    [95] K. Yoshitomi, H. R. Sharobin. Radiation from a Rectangular Waveguide with a LossyFlange[J]. IEEE Transactions onAntennas and Propagation.1994,42(10):1398-1403.
    [96] K. J. Bois, A. D. Benally, R. Zoughi. Multimode Solution for the Reflection Properties of anOpen-Ended Rectangular Waveguide Radiation into a Dielectric Half-Space: The Forward andInverse Problems[J]. IEEE Transactions on Instrumentation and Measurement.1999,48(6):1131-1140.
    [97] M. T. Ghasr, R. Zoughi. Multimodal Solution for a Rectangular Waveguide Radiating into aMultilayered Dielectric Structure its Application for Dielectric Property and ThicknessEvaluation[C]. IEEE International Instrumentation and Measurement Technology Conference,Victoria, Vancouver Island, Canada, May12-15,2008:552-556.
    [98] A.M. Grishin, V.P. Denysenkov. Broad band microwave probe for nondestructive test ofdielectric coatings[J]. IEEE International Symposium on Applications of Ferroelectrics.2002:91-93.
    [99] H. K. Sezer, L. Li, Z. Wu, B. Anderson, P. Williams. Non-destructive microwave evaluationof TBC delamination induced by acute angle laser drilling[J]. Measurement Science andTechnology.2007,18(1):167-175.
    [100] M. Sayar, D. Seo, K. Ogawa. Non-destructive microwave detection of layer thickness indegraded thermal barrier coatings using K-and W-band frequency range[J]. NDT&EInternational.2009,42(5):398–403.
    [101] S. Kharkovsky, R. Zoughi. Microwave and Millimeter Wave Nondestructive Testing andEvaluation[J]. IEEE Instrumentation&Measurement Magazine.2007,10(2):26-38.
    [102]周希朗编著.电磁场理论与微波技术基础[M].南京:东南大学出版社,2005.
    [103]王增和,丁卫平,李平辉编著.电磁场与波[M].北京:机械工业出版社,2007.
    [104]杨雪霞编著.微波技术基础[M].北京:清华大学出版社,2009.
    [105]张敏.CST微波工作室用户全书[M].成都:电子科技大学出版社,2004.
    [106] J. Sun, M. Huang, J. J.Yang, J. H. Peng, J. H. Shi. Modelingand Analysis ofa Novel MicrowaveSensor Based on Waveguide Filling with a Metamaterial Particle[J]. Modern Physics LettersB.2010,24(3):305-303.
    [107] Y. S. Maksimovitch, V. A. Mikhnev, P. Vainikainen. UWB Antenna Design Concept for NearFieldApplications[C].2011,8th International Conference onAntenna Theoryand Techniques.185-187.
    [108] J. Li, W. Withayachumnankul, S. J. Chang, D. Abbott. Metamaterial-Based Strain Sensors[C].20117th International Conference on Intelligent Sensors.30-32.
    [109] A. Mohammadi, A. Ismail, M. A. Mahdi, R. S. A. R. Abdullah, M. M. Isa, B. Azarbad. CarbonNanotube-Poly Pyrrol Based Microwave Resonant Circuit for Napropamide Detection[C].2011IEEE17thAsia-PacificConferenceonCommunications.890-893.
    [110] B. Kapilevich, B. Litvak. Optimized Microwave Sensor for Online ConcentrationMeasurements of Binary Liquid Mixtures[J]. IEEE SENSORS JOURNAL.2011,11(10):2611-2616.
    [111] A. Hana, T. H. Farzad. Ultra Wideband Hom Antenna for Microwave ImagingApplication[C].2011Cross Strait Quad-Regional Radio Science and Wireless TechnologyConference.337-340.
    [112] H. Y. Zhang, A. O. El-Rayis, N. Haridas, N. H. Noordin, A. T. Erdogan, T. Arslan. A SmartAntenna Array for Brain Cancer Detection[C].2011Loughborough Antennas&PropagationConference.1-4.
    [113] L. J. Gu, X. ZH. Fan, Y. Zhao, B. L. Zou, Y. Wang, S. M. Zhao, X. Q. Cao. Infuence ofceramic thickness on residual stress and bonding strength for plasma sprayed duplex thermalbarrier coating on aluminum alloy[J]. Surface&Coatings Technology.2012,206:4403-4410.
    [114]王利平,张靖周,姚玉.热障涂层对涡轮叶片冷却效果影响的数值研究[J].化工学报.2012,63(S1):130-137.
    [115]沈君,詹华,刘新基,汪瑞军.热障涂层表面粗糙度对涂层高温性能的影响[J].热喷涂技术.2012,4(2):44-46.
    [116] S. Stephan. Optimization of the NiCrA1-Y/Zr02-Y2O3thermal barrier system[J]. NASATechnical Memorandum.1985,31:86—87.
    [117] P. Li, F. Luo, X. Y. Wang, W. CH. Zou, D. M. Zhu. Effect of Y2O3Content on MicrowaveDielectric Properties of Zirconia Ceramics[J]. Rare Metal Materials and Engineering.2007,36(3):623-626.
    [118]赵才军,蒋全兴,景莘慧.改进的同轴传输/反射法测量复介电常数[J].仪器仪表学报.2011(32)3:695-700.
    [119]刘纯波,林锋,蒋显亮.热障涂层的研究现状与发展趋势[J].中国有色金属.2007,17(1):1-13.
    [120] Y. Bai, J.J. Tang, Y.M. Qu, S.Q. Ma, C.H. Ding, J.F. Yang, L. Yu, Z.H. Han. Infuence oforiginal powders on the microstructure and properties of thermal barrier coatings deposited bysupersonic atmospheric plasma spraying, Part I: Microstructure. Ceramics International,2013(inpress).
    [121] T. Vasco. Numerical analysis of the influence of coating porosity and substrate elasticproperties on the residual stresses in high temperature graded coatings [J]. Surface and CoatingsTechnology.2001,146-147:79-84.
    [122] J. Kerouedan, P. Quéffélec, S. D. Blasi, A. L. Brun, P. Talbot. Theoretical and experimentaldemonstration of the feasibility of metallic surface cracks detection using microwavestechniques[J]. IEEE Conference on Electromagnetic Field Computation.2006,12:7-8.
    [123]韩志勇,张华,王志平. TGO界面特征对热障涂层残余应力的影响[J].焊接学报.2012,33(12):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700