用户名: 密码: 验证码:
沙枣对氯化钠和硫酸钠胁迫差异性响应的生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国盐渍土面积广大、类型复杂多样的现状,本论文以北方生态脆弱区造林绿化先锋树种沙枣(Elaeagnus angustifolia L.)为对象,在温室盆栽和溶液培养控制试验条件下,采用电感耦合等离子体发射光谱仪(ICP-OES)、扫描离子选择电极技术(SIET)并结合其他常规仪器与方法,系统研究和对比分析了2种盐(NaCl和Na_2SO_4)胁迫下沙枣的(1)盐害症状、生长表现和耐盐性;(2)光合气体交换参数、光响应与CO_2响应曲线及其特征参数;(3)盐离子(Na~+、Cl~-、SO_4~(2-))的吸收、运输与分配,以及K~+、Ca~(2+)、Mg~(2+)、NO_3~--N、P等矿质营养状况;以及(4)粒子流(Na~+、K~+、H~+)的轴向、稳态和原初动态变化。
     基于上述4个方面的研究内容,本论文验证了沙枣的耐盐性并量化了其耐盐阈值,探讨了沙枣的盐适应机制,揭示了沙枣对NaCl和Na_2SO_4胁迫具有差异性响应的光合生理、离子代谢生理以及电生理学机制,旨在为沙枣的规模化推广与应用、适应不同盐碱地类型新种质的培育提供理论基础,为不同类型盐碱地生物治理中植物材料的选择提供参考和借鉴。主要研究结论归纳如下:
     1.盐胁迫对沙枣生长具有显著的抑制效应。经NaCl和Na_2SO_4胁迫后,沙枣幼苗呈现出不同程度的叶片脱落、枯黄等典型盐害症状,幼苗的株高、基径与侧枝生长、叶片生长参数、各组织以及全株生物量累积均低于或显著低于对照。随胁迫溶液中[Na~+]的升高,上述盐害症状呈现出加剧的趋势,各生长参数呈不同程度的下降,根生物量分配百分比和根冠比值则呈增加的趋势。
     2. Na_2SO_4胁迫下沙枣的耐盐性强于NaCl胁迫。在相同[Na~+](均为100或200mmol· L~(-1))条件下,与NaCl胁迫相比,Na_2SO_4胁迫沙枣的盐害症状较轻、生长表现较好、耐受性较强,且植株的盐害率、生长抑制效应、耐盐性在NaCl和Na_2SO_4之间的差异随盐胁迫的加剧呈增大的趋势。沙枣耐盐性很强,在NaCl和Na_2SO_4胁迫下的生长临界钠离子浓度(C50)分别为180和280mmol· L~(-1)。
     3.盐胁迫显著降低了沙枣的光合能力。与对照相比,2种盐胁迫均显著降低了沙枣的Pn、Gs、Ci、Tr和LUE,增大了Ls和WUE,且Pn下降主要受气孔限制。盐胁迫对沙枣光合作用和叶片功能参数的影响最终反映到植株的生长和生物量累积上。在等[Na~+]条件下,NaCl胁迫对沙枣光合作用的抑制效应显著强于Na_2SO_4胁迫;与NaCl胁迫相比,沙枣幼苗在Na_2SO_4胁迫下具有更高的最大光合能力、光能转化效率和Rubisco羧化效率,更为宽泛的CO_2利用域,对光的生态适应性也更强。
     4.沙枣的盐(NaCl)适应机制为根系拒盐和冠组织耐盐。盐胁迫改变了植株体内Na~+和Cl~-的分配格局,200mmol· L~(-1)NaCl胁迫沙枣根和叶中聚积的Na~+分别占全株Na~+净累积量的36.2%和42.3%,而叶中聚积的Cl~-占全株Cl~-净累积量的58.9%,并显著提高了根系向叶片选择性运输K~+、Ca~(2+)的能力。200mmol· L~(-1)NaCl胁迫沙枣茎[Na~+]、叶[Na~+]、冠Na~+净累积量以及JNa~+shoot分别是对照植株的7.22、9.58、5.45和5.36倍,而茎[Cl~-]、叶[Cl~-]、冠Cl~-净累积量以及JCl~-shoot分别是对照的2.27、3.70、2.03和2.01倍,但植株仍正常生长,叶片并未呈现出典型的盐害症状、肉质化特征和避盐机制。
     5.沙枣在NaCl和Na_2SO_4胁迫下具有不同的盐适应机制和矿质营养状态。在200mmol· L~(-1)等[Na~+]条件下,NaCl胁迫植株将更大比例的Na~+滞留、聚积在根系和叶片中;而Na_2SO_4胁迫植株将更大比例的Na~+滞留、限制在茎组织中,从而维持了较好的K~+-Na~+平衡。NaCl胁迫植株叶片是Cl~-净累积量最大的组织和Cl~-分配的主要组织(约占全株Cl~-净累积量的60%);而Na_2SO_4胁迫幼苗吸收的SO_4~(2-)主要聚集、限制在根系中(约占全株SO_4~(2-)净累积量的50%),叶片[SO_4~(2-)]仍维持在对照水平;NaCl胁迫植株对Cl~-的吸收或运输速率远大于Na_2SO_4胁迫幼苗对SO_4~(2-)的吸收或输运速率。NaCl胁迫对沙枣吸收NO_3~--N、P等矿质营养的抑制效应显著强于Na_2SO_4胁迫。
     6.粒子流的短期响应机制和原初响应机制具有盐类型差异性。盐胁迫改变了沙枣根系的显微组织结构,根系粒子流测定的最佳扫描位置为距离根尖约600μm(对照/50mmol· L~(-1)Na_2SO_4胁迫植株)和300~450μm范围内(100mmol· L~(-1)NaCl胁迫植株)。经对照、Na_2SO_4和NaCl胁迫24h,根系稳态Na~+、K~+均为外流,其中,K~+流速在对照和Na_2SO_4胁迫之间无显著差异,且均显著低于NaCl胁迫,而Na~+流速在3种处理之间的差异均达到显著水平;对于稳态H~+,对照幼苗为内流,而Na_2SO_4和NaCl胁迫幼苗均为外流,且Na_2SO_4胁迫的流速显著低于NaCl胁迫。不同化学试剂或试剂组合(Na_2SO_4、NaCl、Choline Cl以及Na_2SO_4+Choline Cl)瞬时胁迫后初始5min以及约25min时间域内,沙枣根系平均K~+、H~+流速具有较大差异,且2种离子流速在Na_2SO_4与NaCl胁迫之间的差异均达到显著水平。
     总之,本研究证实,在NaCl和Na_2SO_4胁迫下,沙枣幼苗根系具有不同的显微组织结构以及短期(24h)和原初(10~25min)Na~+、K~+、H~+粒子流动态交换特性,从而使得植株在长期(30d)盐胁迫下具有不同的离子组织区隔化水平和矿质营养状态,继而抑制幼苗叶片生长、降低叶片的光合能力并影响到光合机构的正常运转,这些最终均反映到植株的生长表现和生物量累积上,即使得沙枣在NaCl和Na_2SO_4胁迫之间具有不同的耐盐性。
There are complex and diverse types of saline soil with a large total area in China. As oneof the first-choice tree species which are widely and extensively used for land afforestation innorthern China’s ecologically fragile regions, Elaeagnus angustifolia L. seedlings stressed byNaCl or/and Na_2SO_4were used as experimental materials in this research. Under the controlledconditions of potted culture and nutrient solution culture in greenhouse, the following fouraspects were investigated by Inductively Coupled Plasma Optical Emission Spectrometer(ICP-OES), Scanning Ion-selective Electrode Technique (SIET), and other conventionalinstruments and methods, those are,(1) salt-damaged symptoms, plant growth performanceand salt tolerance;(2) photosynthetic gas exchange parameters, net photosynthetic rate (Pn)~light intensity response curves, Pn~CO_2concentration response curves, and their characteristicparameters;(3) the absorption, transportation and allocation of salt ions (Na~+, Cl-and SO_4~(2-)),and the status of mineral nutrition elements (K~+, Ca~(2+), Mg~(2+), NO_3~--N, P, etc.); and (4) dynamicchanges in ion fluxes (Na~+, K~+and H~+) in root axial direction or root meristematic zone aftervarious salt treatments for24h or different chemical shocks for25min.
     Based on the above-mentioned four research aspects, firstly, the salt tolerance and thecritical growth Na~+concentration (C50) were comprehensively analyzed and compared betweenNaCl-and Na_2SO_4-treated E. angustifolia seedlings. Secondly, the adaptation mechanisms tosalt (NaCl) of E. angustifolia were elucidated clearly. Furthermore, the physiologicalmechanisms (including photosynthesis, ionic metabolism and electrophysiology) of differentialresponses of E. angustifolia seedlings to NaCl and Na_2SO_4stress were revealed and discussed.The aims of this current study were to provide theoretical basis for the large-scale extensionand utilization of E. angustifolia resources and for the selection and breeding of new E.angustifolia germplasms suitable for plantation and utilization in different types ofsaline-alkaline lands, and to provide reference for plant material selection in the process ofbiological control and development of different types of saline-alkaline lands.
     The main results of this study were summarized as follows:
     1. Plant growth was significantly inhibited by both types of salt stress. There was typicalsalt-damaged symptoms (such as abscised and turning-yellow leaves), to a different extent, inNaCl-and Na_2SO_4-stressed E. angustifolia seedlings. The plant height, the growth of grounddiameter and branch, the various leaf growth parameters, and the biomass accumulation ofvarious plant tissues (root, stem, leaf, shoot and even whole-plant) of two types of salt-stressedseedlings were lower or significantly lower than the corresponding parameters of no saltcontrol. With the increase of stressed solution [Na~+], the above-mentioned salt-damagedsymptoms and various growth parameters were generally exhibited an aggravated anddecreasing trend, respectively, whereas, the root biomass allocation ratio and root to shoot ratiowere both presented an increasing trend.
     2. The salt tolerance of Na_2SO_4-stressed E. angustifolia is higher than that ofNaCl-stressed. Under the conditions of equal [Na~+](100or200mmol· L~(-1)), compared withNaCl-stressed E. angustifolia seedlings, Na_2SO_4-stressed seedlings had a lower leaf-damagedpercentage, a better growth performance and a higher tolerance, and the differences inleaf-damaged percentage, growth performance and salt tolerance between seedlings stressed byNaCl and Na_2SO_4enlarged gradually with the solution [Na~+] increased. E. angustifolia is highsalt tolerance, its critical growth Na~+concentration (C50) is180and280mmol· L~(-1)under thestress of NaCl and Na_2SO_4, respectively.
     3. Photosynthetic capacity was significantly decreased by both types of salt stress. Netphotosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO_2content (Ci) andtranspiration rate (Tr), and stomatal limitation value (Ls) and water use efficiency (WUE) of twokinds of salt-stressed seedlings was significantly lower, and higher than those of no salt control,respectively. The decreased Pnof stressed seedlings was mainly attributed to stomatalrestrictions. The effects of salt stress on photosynthesis and various leaf growth parametersultimately induced a decrease in plant growth and biomass accumulation. Under the conditionsof equal solution [Na~+], the inhibitory effects of NaCl stress on photosynthesis were strongerthan those of Na_2SO_4stress, while the Na_2SO_4-stressed seedlings presented a higher maximum net photosynthetic rate (Pn-max), a larger apparent quantum yield (AQY) and carboxylationefficiency (CE), a wider CO_2utilization range, and a higher light eco-adaptability.
     4. The NaCl-adaptation mechanisms of E. angustifolia are root salt-rejection and shootsalt-tolerance. The Na~+and Cl-allocation model were changed by salt stress,36.2%and42.3%of net Na~+accumulation allocated in roots and leaves of seedlings stressed by200mmol· L~(-1)NaCl, respectively,58.9%of net Cl-accumulation was restricted in stems, and the abilities inK~+and Ca~(2+)selective transportation from root to leaf were enhanced substantially. Stem [Na~+],leaf [Na~+], net shoot Na~+accumulation and net shoot Na~+flux (JNa~+shoot) of200mmol· L~(-1)NaCl-stressed seedlings were7.22,9.58,5.45and5.36times that of control seedlings,respectively. For Cl-, it was2.27,3.70,2.03and2.01times in the same tissue order,respectively. Even stressed by200mmol· L~(-1)NaCl, the seedlings still grew well, and there wasno typical salt-damaged symptoms, succulent characteristics and salt-avoidance mechanism.
     5. There were great differences in salt-adaptation mechanisms and mineral nutrientstatuses between NaCl-and Na_2SO_4-stressed E. angustifolia seedlings. Under the conditions of200mmol· L~(-1)equal [Na~+], there was a larger proportion of root Na~+retention and a largeramount of Na~+transportation from stem to functional leaves in NaCl-stressed E. angustifolia,whereas for Na_2SO_4-stressed seedlings, it held a higher capacity in stem Na~+retention, leaf K~+selective transportation and leaf Na~+avoidance, thus kept a better K~+-Na~+homeostasis. Net Cl-accumulation in leaves of NaCl-stressed seedlings was the largest among the three plant tissues,accounting for approximately60%of the total net Cl-accumulation. While for Na_2SO_4-stressedseedlings, the absorbed SO_4~(2-)was mainly distributed in root, approximately accounting for halfof the total net SO_4~(2-)accumulation, and the leaf [SO_4~(2-)] maintained an equivalent level withthat of control seedlings. The Cl-absorption or transportation rate in NaCl-stressed seedlingswas substantially larger than SO_4~(2-)rate in Na_2SO_4-stressed seedlings. The inhibitory effects ofNaCl stress on mineral nutrient (such as NO_3~--N and P) absorption were stronger than those ofNa_2SO_4stress.
     6. The short-term steady and initially dynamic response mechanisms of root ion fluxes aresalt-type heterogeneity. Salt stress induced a changed root functional structure, the optimal scanning position in the process of ion flux measurement are600μm (for control or50mmol· L~(-1)Na_2SO_4-stressed seedlings) and300~450μm (for100mmol· L~(-1)NaCl-stressedseedlings) from root tip, respectively. After stressed by no salt control,50mmol· L~(-1)Na_2SO_4or100mmol· L~(-1)NaCl for24h, the steady Na~+and K~+were all efflux. There was nosignificant difference in K~+efflux between control and Na_2SO_4stress, and both weresignificantly lower than NaCl-induced K~+efflux, while the difference in Na~+efflux betweenany two of the three treatments reached a significant level. For steady H~+flux, it was influx incontrol roots, and efflux in NaCl-and Na_2SO_4-stressed roots, and the NaCl-induced H~+effluxwas significantly higher than Na_2SO_4-induced. The mean K~+and H~+fluxes within themeasuring periods of the initial5min and the whole25min after the transient addition ofvarious chemicals (50mmol· L~(-1)Na_2SO_4,100mmol· L~(-1)NaCl,100mmol· L~(-1)Choline Cl,and50mmol· L~(-1)Na_2SO_4+100mmol· L~(-1)Choline Cl) presented a great difference, of them,the difference in K~+and H~+fluxes between NaCl and Na_2SO_4treatment arrived a significantlevel.
     In conclusion, differences in microscopical root structure, short-term (24h) and initial (10~25min) ion flux dynamic exchange characteristics of Na~+, K~+and H~+between E. angustifoliaseedlings stressed by NaCl and Na_2SO_4conferred the long-term (30d) stressed seedlings witha different salty ions tissue-level compartmentation and a different mineral nutrient status,which further induced a different leaf inhibitory growth, a differently reduced leafphotosynthetic capacity, and a different photosynthetic apparatus dysfunction. All thesedifferences between NaCl and Na_2SO_4stressed seedlings finally exhibited a different plantgrowth performance and biomass accumulation, and a different salt tolerance.
引文
艾力江·买买提,齐曼·尤努斯,公勤. NaCl胁迫对三种胡颓子属植物幼苗活性氧清除酶与渗透调节物质含量的影响.新疆农业科学,2008,45(6):1069-1075.
    蔡海霞,吴福忠,杨万勤.干旱胁迫对高山柳和沙棘幼苗光合生理特性的影响.生态学报,2011,31(9):2430-2436.
    蔡时青,许大全.大豆叶片CO2补偿点和光呼吸的关系.植物生理学报,2000,26(6):545-550.
    丁水林,赵延茂,乔来秋.黄河三角洲地区沙枣引种初报.山东林业科技,1999,(4):10-11.
    高海波,张淑静,沈应柏.灰斑古毒蛾口腔反吐物诱导沙冬青细胞Ca2+内流及H2O2累积.生态学报,2012,32(20):6520-6526.
    公勤,齐曼·尤努斯,艾力江·买买提. NaCl胁迫对3种胡颓子属植物幼苗体内物质积累及水分含量的影响.新疆农业大学学报,2008a,31(3):46-50.
    公勤,齐曼·尤努斯,艾力江·买买提.盐胁迫对尖果沙枣离子分布及渗透调节的影响.经济林研究,2008b,26(3):34-37.
    顾大形,陈双林,顾李俭,等.盐胁迫对四季竹细胞膜透性和矿质离子吸收、运输和分配的影响.生态学杂志,2011,30(7):1417-1422.
    管洪斌,王晓兰,冷俊昭,等.沙枣对滨海盐渍土的改良作用探究.资源开发与市场,2012,28(1):9-10.
    侯江涛.盐胁迫下扁桃砧木营养器官细胞结构的研究.新疆农业大学硕士学位论文,2006.
    郎莹,张光灿,张征坤,等.不同土壤水分下山杏光合作用光响应过程及其模拟.生态学报,2011,31(16):4499-4508.
    李利,潘响亮,李宏.模拟干旱和盐分胁迫对沙枣PSII活力的影响.西北植物学报,2011,3(4):768-775.
    李绍忠,潘文利,于雷.沙枣的耐盐力与固氮研究.防护林科技,1997,1:17-21.
    李士磊,霍鹏,高欢欢,等.复合盐胁迫对小麦萌发的影响及耐盐阈值的筛选.麦类作物学报,2012,32(2):260-264.
    李秀霞,齐曼·尤努斯,高桥久光,等. Na2SO4胁迫对沙枣光合速率及其它生理指标的影响.新疆农业科学,2005,42(2):102-106.
    李彦慧,李向应,白瑞琴,等.4种李属彩叶树木对SO2的抗性.林业科学,2008,44(2):28-33.
    李阳,齐曼·尤努斯,安萍.渗透胁迫对新疆大果沙枣幼苗叶片膜脂过氧化及膜保护酶的影响.新疆农业大学学报,2005,28(2):47-50.
    廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展.生态学报,2007,27(5):2077-2089.
    刘宝玉,张文辉,刘新成,等.沙枣和柠条种子萌发期耐盐性研究.植物研究,2007,27(6):721-728.
    刘海涛,张川红,郑勇奇,等.抗虫转基因欧洲黑杨苗期光合特性研究.北京林业大学学报,2011,33(1):36-43.
    刘建峰,杨文娟,江泽平,等.遮阴对濒危植物崖柏光合作用和叶绿素荧光参数的影响.生态学报,2011,31(20):5999-6004.
    刘建新,王金成,王鑫,等.外源NO对NaHCO3胁迫下黑麦草幼苗光合生理响应的调节.生态学报,2012,32(11):3460-3466.
    刘俊祥,孙振元,巨关升,等.结缕草对重金属镉的生理响应.生态学报,2011,31(20):6149-6156.
    刘蕾.新疆土壤盐分的组成和分布特征.干旱环境监测,2009,23(4):227-229.
    刘立全,杨剑超,修妍伟,等.磷对盐胁迫下三角叶滨藜幼苗生长的缓解效应.现代农业科技,2009,10:27.
    刘一明,程凤枝,王齐,等.四种暖季型草坪植物的盐胁迫反应及其耐盐阈值.草业科学,2009,18(3):192-199.
    马正龙,白生文.盐度对沙枣离子分布和渗透调节影响的研究.甘肃科学学报,2007,19(3):83-85.
    买合木提·卡热.扁桃砧木抗盐性研究.新疆农业大学硕士学位论文,2005.
    孟凡娟,庞洪影,王建中,等. NaCl和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构.生态学报,2011,31(3):734-741.
    孟康敏,崔玉国,潘文利,等.滨海苏打盐渍土的改良与造林技术研究.辽宁林业科技,1999,2:1-5.
    莫海波,殷云龙,芦治国,等. NaCl胁迫对4种豆科树种幼苗生长和K+、Na+含量的影响.应用生态学报,2011,22(5):1155-1161.
    宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,2010,21(2):325-330.
    彭立新,周黎君,冯涛,等.盐胁迫对沙枣幼苗抗氧化酶活性和膜脂过氧化的影响.天津农学院学报,2009,16(4):1-4.
    齐曼·尤努斯,李阳,木合塔尔,等. NaCl、Na2SO4胁迫对新疆大果沙枣种子萌发及生理特性的影响.新疆农业科学,2006,43(2):136-139.
    齐曼·尤努斯,李秀霞,李阳,等.盐胁迫对大果沙枣膜脂过氧化和保护酶活性的影响.干旱区研究,2005,22(4):503-506.
    钱云,符淙斌. SO2排放、硫酸盐气溶胶和气候变化.地球科学进展,1997,12(5):440-446.
    邱念伟,杨洪兵,丁顺华,等.植物根部的拒Na+作用与叶片Na+含量的相关性分析.曲阜师范大学学报,2001,27(1):65-68.
    史庆华,朱祝军,Al-aghabary K,等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191.
    石松利,王迎春,周红兵,等.濒危种四合木与其近缘种霸王水分关系系数和光合特性的比较.生态学报,2012,32(4):1163-1173.
    孙健.胡杨响应盐胁迫与离子平衡调控信号网络研究.北京林业大学博士学位论文,2011.
    陶晶,陈士刚,李青梅,等.耐寒型抗盐碱树种银莓、沙枣引种及应用.防护林科技,2007,5:94-96.
    王柏青,王耀辉.混合盐碱胁迫对沙枣种子萌发的影响.东北林业大学学报,2008a,36(12):11-12.
    王柏青,于福平,王耀辉,杜凤国.盐碱胁迫对沙枣愈伤组织的影响.北华大学学报(自然科学版),2008b,9(5):466-468.
    王殿,袁芳,王宝山,等.能源植物杂交狼尾草对NaCl胁迫的响应及其耐盐阈值.植物生态学报,2012,36(6):572-577.
    王景艳,刘赵普,刘玲,等. NaCl胁迫对长春花幼苗离子分布和光合作用的影响.生态学杂志,2008,27(10):1680-1684.
    王磊,隆小华,孟宪法,等.不同形态氮素配比对盐胁迫下菊芋幼苗生理的影响.生态学杂志,2011,30(2):255-261.
    王利军,马履一,王爽,等.水盐胁迫对沙枣幼苗叶绿素荧光参数和色素含量的影响.西北农业学报,2010,19(12):122-127.
    王树凤,胡韵雪,李志兰,等.盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响.生态学报,2010,30(17):4609-4616.
    王伟,高捍东,陆小青.盐胁迫对中山杉无性系幼苗光响应曲线的影响.林业科技开发,2010,24(3):29-32.
    王晓东,王成,马智宏,等.短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响.生态学报,2011,31(10):2822-2830.
    王泳,张晓勉,高智慧,等.盐胁迫对大果沙枣和尖果沙枣幼苗生长的影响.林业科技开发,2010,24(3):25-28.
    王志刚,包耀贤.12个树种耐盐性田间比较试验.防护林科技,2000,4:9-11.
    王忠.植物生理学.北京:中国农业出版社,2000.
    王遵亲等.中国盐渍土.北京:科学出版社,1993.
    吴秀华,胡庭兴,杨万勤,等.巨桉凋落叶分解对菊苣生长及光合特性的影响.应用生态学报,2012,23(1):1-8.
    郗金标,张福锁,田长彦.新疆盐生植物.北京:科学出版社,2006
    夏方山,董秋丽,董宽虎.盐胁迫对碱地风毛菊生长特性的影响.畜牧与饲料科学,2010,31(2):78-79.
    夏江宝,田家怡,张光灿,等.黄河三角洲贝壳堤岛3种灌木光合生理特征研究.西北植物学报,2009,29(7):1452-1459.
    夏阳,梁慧敏,王太明,等.盐胁迫对苹果器官中钙镁铁锌含量的影响.应用生态学报,2005,16(3):431-434.
    许大全.气孔的不均匀关闭与光合作用的非气孔限制.植物生物学通讯,1995,31(4):246-252.
    许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,33(4):241-244.
    徐恒刚.中国盐生植被及盐渍化生态治理.北京:中国农业科学技术出版社,2004.
    徐静,董宽虎,高文俊,等. NaCl和Na2SO4胁迫下冰草幼苗的生长及生理响应.中国草地学报,2011,33(1):36-40.
    杨玲,沈海龙,崔晓涛. NaHCO3胁迫下新西伯利亚银白杨幼苗生长和光合能力变化.林业科学,2012,48(7):50-55.
    杨升.滨海耐盐树种筛选及评价标准研究.中国林业科学研究院硕士学位论文,2010.
    杨升,刘正祥,张华新,等.3个树种苗期耐盐性综合评价及指标筛选.林业科学,2013,49(1):91-98.
    杨升,张华新,刘涛.16个树种盐胁迫下的生长表现和生理特性.浙江农林大学学报,2012,29(5):744-754.
    杨晓英,杨劲松.盐胁迫对黑麦草幼苗生长的影响及磷肥的缓解作用.土壤通报,2005,36(6):899-902.
    杨瑛,马梅,郑青松,等.不同供氮形态下油菜幼苗对盐胁迫的响应.植物营养与肥料学报,2012,18(5):1220-1227.
    姚广,王鑫,高辉远,等.盐胁迫对高羊茅叶片光系统活性的影响.中国草地学报,2009,31(2):46-52.
    叶子飘,于强.光合作用光响应模型的比较.植物生态学报,2008,32(6):1356-1361.
    印莉萍,上官宇,许越.非损伤性扫描离子选择电极技术及其在高等植物研究中的应用.自然科学进展,2006,16(3):262-266.
    原俊凤,田长彦,封固,等.硝态氮对盐胁迫下囊果碱蓬幼苗根系生长和耐盐性的影响.植物营养与肥料学报,2009,15(4):953-959.
    袁琳.盐胁迫下阿月浑子生理生化特性研究.新疆农业大学硕士学位论文,2004.
    曾小美,袁琳,沈允钢.拟南芥连体和离体叶片光合作用的光响应.植物生理学通讯,2002,38(1):25-26.
    张宝泽,曹子谊,赵可夫.盐分胁迫下沙枣某些生理特性的研究.林业科学,1992,28(2):187-189.
    张德罡.盐胁迫对五个早熟禾草坪草品种苗期细胞膜伤害性的研究.甘肃农业大学学报,1998,33(1):38-41.
    张桂霞,李树玲.盐胁迫对两种沙枣抗氧化酶活性的影响.北方园艺,2011,10:46-49.
    张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长及其耐盐性.生态学报,2009,29(5):2263-2271.
    张建民. NaCl对沙枣组织培养影响的研究.聊城师院学报(自然科学版),1999,12(4):66-68.
    张科,田长彦,李春俭.一年生盐生植物耐盐机制研究进展.植物生态学报,2009,33(6):1220-1231.
    张怡,沈应柏,罗晓芳.水分胁迫对四倍体刺槐生长和光合作用的影响.林业科学研究,2010,2(4):920-923.
    张永霞,李国旗,张琦,等.不同遮阴条件下罗布麻光合特性的初步研究.西北植物学报,2007,27(12):2555-2558.
    张志刚,尚庆茂.辣椒幼苗叶片光合特性对低温、弱光及盐胁迫3重逆境的响应.中国生态农业学报,2010,18(1):77-82.
    赵可夫,范海.盐生植物及其对盐渍生境的适应生理.北京:科学出版社,2005.
    赵可夫,冯立田.中国盐生植物资源.北京:科学出版社,2001.
    赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999.
    赵可夫,周澍波,刘家尧.盐分胁迫下沙枣幼苗一些生理特性的观测.山东师范大学报(自然科学版),1992,7(1):72-76.
    郑志兴,孙振华,张志明,等.干热河谷植物叶片,树高和种子功能性状比较.生态学报,2011,31(4):982-988.
    朱军涛,李向义,张希明,等.昆仑山北坡不同海拔塔里木沙拐枣的光合生理生态特性.生态学报,2011,31(3):611-619.
    朱俊英,高荣孚,许越.选择性微电极在植物生理学研究中的应用.植物生理与分子生物学学报,2007,33(2):101-108.
    Abd El-Samad H M, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodiumchloride on the growth and related metabolic activities of pea plants. Journal of Plant Nutrition,1996,19(5):717-728.
    Ahmed D, Karim B H, Claude G, et al. Salinity effects on germination, growth and seed production of thehalophyte Cakile maritime. Plant and Soil,2004,262(1/2):179-189.
    Akhtar S, Wahid A, Akram M, et al. Some growth, photosynthetic and anatomical attributes of sugarcanegenotypes under NaCl salinity. International Journal of Agriculture and Biology,2001,4(3):439-443.
    Albassam B A. Effect of nitrate nutrition on growth and nitrogen assimilation of pearl millet exposed tosodium choride stress. Journal of Plant Nutrition,2001,24(9):1325-1335.
    Al-Sobhi O A, Al-Zahrani H S, Al-Ahmadi S B. Effect of salinity on chlorophyll and carbohydrate contentsof Calotropis procera seedlings. Scientific Journal of King Faisal University (Basic and AppliedSciences),2006,7:105-114.
    Apostol K G, Zwiazek J J, MacKinnon M D. NaCl and Na2SO4alter responses of jack pine (Pinus banksiana)seedlings to boron. Plant and Soil,2002,240(2):321-329.
    Bernstein L. Effects of salinity and sodicity on plant growth. Annual Review of Phytopathology,1975,13:295-312.
    Bilski J J, Nelson D C, Conlon R L. Response of six wild potato species to chloride and sulfate salinity.American Journal of Potato Research,1988,65(10):605-612.
    Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology,2000,12(4):431-434.
    Bois G, Bigras F J, Bertrand A, et al. Ectomycorrhizal fungi affect the physiological responses of Piceaglauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiology,2006,26(9):1185-1196.
    Bose J, Xie Y J, Shen W B, et al. Haem oxygenase modifies salinity tolerance in Arabidopsis by controllingK+retention via regulation of the plasma membrane H+-ATPase and by altering SOS1transcript levelsin roots. Journal of Experimental Botany,2013,64(2):471-481.
    Carter M R. Effects of sulphate and chloride soil salinity on growth and needle composition of Siberian larch(Larix sibirica). Canadian Journal of Plant Science,1980,60:903-910.
    Cataldo D A, Haroon M, Schrader L E, et al. Rapid calorimetric determination of nitrate in plant tissues bynitration of salicylic acid. Communications in Soil Science and Plant Analysis,1975,6(1):71-80.
    Chen J, Xiao Q, Wu F H, et al. Nitric oxide enhanced salt secretion and Na+sequestration in a mangroveplant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+antiporter underhigh salinity. Tree Physiology,2010,30(12):1570-1585.
    Chen Z, Newman I, Zhou M, et al. Screening plants for salt tolerance by measuring K+flux: a case study forbarley. Plant, Cell and Environment,2005,28(10):1230-1246.
    Chen Z H, Shabala S, Mendham N, et al. Combining ability of salinity tolerance on the basis ofNaCl-induced K+flux from roots of barley. Crop Science,2008,48(4):1382-1388.
    Chen Z H, Zhou M X, Newman I A, et al. Potassium and sodium relations in salinised barley tissues as abasis of differential salt tolerance. Functional Plant Biology,2007,34(2):150-162.
    Ci L J, Yang X H. Desertification and its control in China. Beijing: Higher Education Press,2010.
    Cuin T A, Betts S A, Chalmandrier R, et al. A root’s ability to retain K+correlates with salt tolerance inwheat. Journal of Experimental Botany,2008,59(10):2697-2706.
    Cuin T A, Bose J, Stefano g, et al. Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat: in planta quantification methods. Plant, Cell andEnvironment,2011,34(6):947-961.
    Cuin T A, Shabala S. Amino acids regulates salinity-induced potassium efflux in barley root epidermis.Planta,2007,225(3):753-761.
    Curtin D H, Steppuhn H. Plant responses to sulfate and chloride salinity: growth and ionic relations. SoilScience Society of America Journal,1993,57(5):1304-1310.
    Deak K I, Malamy J. Osmotic regulation of root system architecture. The Plant Journal,2005,43(1):17-28.
    Debez A, Saadaoui D, Ramani B, et al. Leaf H+-ATPase activity and photosynthetic capacity of Cakilemaritima under increasing salinity. Environmental and Experimental Botany,2006,57(3):285-295.
    Dhanapackiam S, Muhammad-Ilyas M H. Leaf area and ion contents of Sesbania grandiflora under NaCland Na2SO4salinity. Indian Journal of Science and Technology,2010,3(5):561-563.
    Ding X D, Tian C Y, Zhang S R. Effects of NO-3-N on the growth and salinity tolerance of Tamarix laxaWilld.. Plant and Soil,2010,331(1/2):57-67.
    Dirr M A. Tolerance of honeylocust seedlings to soil-applied salts. Hortscience,1974,9:53-54.
    Djanaguiraman M, Sheeba J A, Shanker A K, et al. Rice can acclimate to lethal level of salinity bypre-treatment with sublethal level of salinity through osmotic adjustment. Plant and Soil,2006,284(1):363-373.
    Ebrahimi R, Bhatla S C. Effect of sodium chloride levels on growth, water status, uptake, transport, andaccumulation pattern of sodium and chloride ions on young sunflower plants. Communications in SoilScience and Plant Analysis,2011,42(7):415-431.
    Egan T P, Ungar I A. Effect of different salts of sodium and potassium on the growth of Atriplex prostrata(Chenopodiaceae).. Journal of Plant Nutrition,1998,21(10):2193-2205.
    Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals ofBotany,2009,104(7):1263-1280.
    FAO. Land and Water Development Division, Food and Agriculture Organization of the United NationsRome,2000, Land Resource Potential and Constraints at Regional and Country Levels In: World SoilResources Reports:1-112.
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-345.
    Franklin J A, Zwiazek J J. Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate.Physiologia Plantarum,2004,120(3):482-490.
    Franklin J A, Zwiazek J J, Renault S, et al. Growth and elemental composition of jack pine (Pinus banksiana)seedlings treated with sodium chloride and sodium sulfate. Trees-Structure and Function,2002,16(4/5):325-330.
    Garg N, Manchanda G. Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescene inCajanus cajan (Pigeonpea). Journal of Plant Growth Regulation,2008,27(2):115-124.
    Garnier E, Shipley B, Roumet C, et al. A standardized protocol for the determination of specific leaf area andleaf dry matter content. Functional Ecology,2001,15(5):688-695.
    Genc Y, Tester M, McDonald G K. Calcium requirement of wheat in saline and non-saline conditions. Plantand Soil,2010,327(1/2):331-345.
    Gomez-Cadenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salt tolerancein citrus plants. Journal of Plant Growth Regulation,2003,21(3):234-240.
    Grattan S R, Grieve C M Mineral nutrient acquisition and response by plants grown in saline environments.In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York,1994,203-226.
    Grundmann O, Nakajima J, Seo S, et al. Anti-anxiety effects of Apocynum venntum L. in the elevated plusmaze test. Journal of Ethnopharmacology,2007,110(3):406-411.
    He J L, Qin J J, Long L Y, et al. Net cadmium flux and accumulation reveal tissue-specific oxidative stressand detoxification in Populus×canescens. Physiologia Plantarum,2011,143(1):50-63.
    Iqbal R M. Effect of NaCl and Na2SO4salinity on leaf appearance stage, tiller production and percentmotality of spring wheat. Pakistan Journal of Biological Sciences,2003a,6(24):2001-2006.
    Iqbal R M. Leaf extension growth of wheat grown under NaCl and Na2SO4salinity. Asian Journal of PlantScience,2003b,2(15/16):1092-1096.
    Iqbal R M. Leaf area and ion content of wheat grown under NaCl and Na2SO4salinity. Pakistan Journal ofBiological Sciences,2003c,6(17):1512-1514.
    Jamil M, Rehman S, Lee K J, et al. Salinity reduced growth, PSII photochemistry and chlorophyll content inRadish. Scientia Agricola,2007,64(2):111-118.
    Kaymakanova M, Stoeva N, Mincheva T. Salinity and its effects on the physiological response of bean(Phaseolus vulgaris L.). Journal of Central European Agriculture,2008,9(4):749-756.
    Khan A H, Ashraf M Y, Naqvi S S M, et al. Growth, ion and solute contents of sorghum grown under NaCland Na2SO4salinity stress. Acta Physiologiae Plantarum,1995,17:261-268.
    Kong X Q, Luo Z, Dong H Z, et al. Effects of non-uniform root zone salinity on water use, Na+recirculation,and Na+and H+flux in cotton. Journal of Experimental Botany,2012,63(5):2105-2116.
    Kovda V A. Loss of productive land due to salinization. Ambio,1983, XII (2):91-93.
    Kozlowski T T. Responses of woody plants to flooding and salinity. Tree Physiology Monograph No.1,1997,1-29.
    Lewis J D, Olszyk D, Tingey D T. Seasonal patterns of photosynthetic light response in Douglas-firseedlings subjected to elevated atmospheric CO2and temperature. Tree Physiology,1999,19(4/5):243-252.
    Li Q, Li B H, Kronzucker H J, et al. Root growth inhibition by NH+4in Arabidopsis is mediated by the roottip and is linked to NH+4efflux and GMPase activity. Plant, Cell and Environment,2010,33(9):1529-1542.
    Li Y L, Su X H, Zhang B Y, et al. Expression of jasmonic ethylene responsive factor gene in transgenicpoplar tree leads to increased salt tolerance. Tree Physiology,2009,29(2):273-279.
    Long W X, Zang R G, Schamp B S, et al. Within-and among-species variation in specific leaf area drivecommunity assembly in a tropical cloud forest. Oecologia,2011,167(4):1103-1113.
    Lucas W J, Kochian L V. Ion transport processes in corn roots. An approach utilizing microelectrodetechniques. In advanced agricultural instrumentation: design and use (ed. Gensler W G), Dordrecht M N,1986,402-425.
    Manchanda H R, Sharma S K. Tolerance of chloride and sulfate salinity in chickpea (Cicer arietinum). TheJournal of Agricultural Science,1989,113:407-410.
    Martin P K, Koebner P M K. Sodium and chloride ions contribute synergistically to salt toxicity in wheat.Biologia Plantarum,1995,37(2):265-271.
    Meiri A, Kamburoff J, Poljakoff-Mayber A. Response of bean plants to sodium chloride and sodium sulfatesalinization. Annals of Botany,1971,35(4):837-847.
    Munns, R. Comparative physiology of salt and water stress. Plant Cell and Environment,2002,25(2):239-250.
    Munns R. Genes and salt tolerance: bring them together. New Phytologist,2005,167:645-663.
    Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology,2008,59:651-681.
    Muralitharan M S, Chandler S, Van Steveninck R F M. Effects of NaCl and Na2SO4on growth and solutecomposition of highbush blueberry (Vaccinium corymbosum). Australian Journal of Plant physiology,1992,19(2):155-164.
    Navarro J M, Garrido C, Carvajal M, et al. Yield and fruit quality of pepper plants under sulphate andchloride salinity. Journal of Horticultural Science and Biotechnology,2002,77(1):52-57.
    Navarro J M, Garrido C, Martinez V, et al. Water relations and xylem transport of nutrients in pepper plantsgrown under two different salt stress regimes. Plant Growth Regulation,2003,41(3):237-245.
    Newman I A. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes tocharacterize transporter function. Plant, Cell and Environment,2001,24(1):1-14.
    Newman I A, Kochian L V, Grusak M A, et al. Fluxes of H+and K+in corn roots: characterization andstoichiometries using ion-selective microelectrodes. Plant Physiology,1987,84(4):1177-1184.
    Nguyen H, Calvo-Polanco M, Zwiazek J J. Gas exchange and growth responses of ectomycorrhizal Piceamariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4. Plant Biology,2006,8(5):646-652.
    Niinemets U. Global-scale climate controls of leaf dry mass per areas, density, and thickness in trees andshrubs. Ecology,2001,82(2):453-469.
    Niu G H, Rodriguez D S. Responses of growth and ion uptake of four rose rootstocks to chloride-orsulfate-dominated salinity. Journal of the American Society for Horticultural Science,2008,133(5):663-669.
    Pagter M, Bragato C, Malagoli M, et al. Osmotic and ionic effects of NaCl and Na2SO4salinity onPhragmites australis. Aquatic Botany,2009,90(1):43-51.
    Pamoliya P J, Patel H M, Pandey A N. Effect of salinization of soil on growth and macro-and micro-nutrientaccumulation in seedlings of Salvadora persica (Salvadoraceae). Forest Ecology and Management,2004,202(1-3):181-193.
    Pandolfi C, Pottosin I, Cuin T, et al. Specificity of polyamine effects on NaCl-induced ion flux kinetics andsalt stress amelioration in plants. Plant and Cell Physiology,2010,51(3):422-434.
    Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology andEnvironmental Safety,2005,60(3):324-349.
    Ramoliya P J, Pandey A N. Effect of salinization of soil on emergence, growth and survival of seedlings ofCordia rothii. Forest Ecology and Management,2003,176(1):185-194.
    Redfield E B, Zwiazek J J. Drought tolerance characteristics of black spruce (Picea mariana) seedlings inrelation to sodium sulfate and sodium chloride injury. Canadian Journal of Botany,2002,80(7):773-778.
    Renault S, Croser C, Franklin J A, et al. Effects of NaCl and Na2SO4on red-osier dogwood (Cornusstolonifera Michx.) seedlings. Plant and Soil,2001,233(2):261-268.
    Rennenberg H. The fate of excess sulfur in higher plants. Annual Review of Plant Physiology.1984,35:121-53.
    Rogers M E, Grieve C M, Shannon M C. The response of lucerne (Medicago sativa L.) to sodium sulphateand chloride salinity. Plant and Soil,1998,202(2):271-280.
    Rossatto D R, Hoffman W A, Franco A C. Differences in growth patternsco-occurring forest and savannatrees affect the forest-savanna boundary. Functional Ecology,2009,23(4):689-698.
    Saur E, Lambrot C, Loustau D, et al.. Growth and uptake of mineral elements in response to sodium chlorideof three provenances of maritime pine. Journal of Plant Nutrition,1995,18(2):243-256.
    Schiefelbein J W, Shipley A, Rowse P. Calcium influx at the tip of growing root-hair cells of Arabidopsisthaliana. Planta,1992,187(4):455-459.
    Shabala S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leafmesophyll. Plant, Cell and Environment,2000,23(8):825-837.
    Shabala S, Demidchik V, Shabala L, et al. Extracellular Ca2+ameliorates NaCl-induced K+loss fromArabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. PlantPhysiology,2006,141(4):1653-1665.
    Shabala L, Cuin T A, Newman I A, et al. Salinity-induced ion flux patterns from the excised roots ofArabidopsis sos mutants. Planta,2005a,222(6):1041-1050.
    Shabala S, Shabala L, Van Volkenburgh E, et al. Effects of divalent cations on ion fluxes and leafphotochemistry in salinized barley leaves. Journal of Experimental Botany,2005b,56(415):1369-1378.
    Soltanpour P N, Al-Wardy M M, Ippolito J A, et al. Chloride versus sulfate salinity effects on alfalfa shootgrowth and ionic balance. Soil Science Society of America Journal,1999,63(1):111-116.
    Song J, Chen M, Feng G, et al. Effect of salinity on growth, ion accumulation and the roles of ions inosmotic adjustment of two populations of Suaeda salsa. Plant and Soil,2009,314(1/2):133-141.
    Spotts R A, Altman J, Staley J M. Soil salinity related to ponderosa pine tipburn. Phytopathology,1972,62:705-708.
    Strogonov B S. Physiological basis of salt tolerance of plants. In Eds. A Poljakoff-Mayber and AM Mayer,Monson S., Jerusalem.1964.
    Sun J, Chen S L, Dai S X, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots ofsalt-resistant and salt-sensitive poplar species. Plant Physiology,2009a,149(2):1141-1153.
    Sun J, Dai S X, Wang R G, et al. Calcium mediates root K+/Na+homeostasis in poplar species differing insalt tolerance. Tree physiology,2009b,29(9):1175-1186.
    Sun J, Wang M J, Ding M Q, et al. H2O2and cytosolic Ca2+signals triggered by the PM H+-coupledtransport system mediate K+/Na+homeostasis in NaCl-stressed Populus euphratica cells. Plant, Celland Environment,2010,33(6):943-958.
    Tang C, Turner N C. The influence of alkalinity and water stress on the stomatal conductance, photosyntheticrate and growth of Lupinus angustifolius L. and Lupinus pilosus Murr.. Australian Journal ofExperimental Agriculture,1999,39(4):457-464.
    Tarchoune I, Degl’Innocenti E, Kaddour R, et al. Effects of NaCl or Na2SO4salinity on plant growth, ioncontent and photosynthetic activity in Ocimum basilicum L.. Acta Physiologiae Plantarum,2012,34(2):607-615.
    Tattini M, Remorini D, Pinelli P, et al. Morpho-anatomical, physiological and biochemical adjustments inresponse to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs,Myrtus communis and Pistacia lentiscus. New Phytologist,2006,170(4):779-794.
    Teakle N L, Flowers T, Real D, et al. Lotus tenuis tolerates the interactive effects of salinity andwaterlogging by 'excluding' Na+and Cl-from the xylem. Journal of Experimental Botany,2007,58(8):2169-2180.
    Vincent P, Chua M, Nogue F, et al. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizesmembrane growth of Arabidopsis thaliana root hairs. The Journal of Cell Biology,2005,168(5):801-812.
    Vicente O, Boscaiu M, Naranjo M A, et al. Responses to salt stress in the halophyte Plantago crassifolia(Plantaginaceae). Journal of Arid Environments,2004,58(4):463-481.
    Vile D, Garnier E, Shipley B, et al. Specific leaf area and dry matter content estimate thickness in laminarleaves. Annals of Botany,2005,96(6):1129-1136.
    Wu F Z, Bao W K, Li F L, et al. Effects of water stress and nitrogen supply on leaf gas exchange andfluorescence parameters of Sophora davidii seedlings. Photosynthetica,2008,46(1):40-48.
    Xu Y, Sun T, Yin L P. Application of non-invasive micro-sensing system to simultaneously measure both H+and O2fluxes around the pollen tube. Journal of Interactive Plant Biology,2006,48(7):823-831.
    Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. WorldScience-Technology Research and Development,2006,28(4):70-76.
    Yin C Y, Berninger F, Li C Y. Photosynthetic responses of Populus przewalski subjected to drought stress.Photosynthetica,2006:44(1),62-68.
    Zhang X K, Zhou Q H, Cao J H, et al. Differential Cl-/salt tolerance and NaCl-induced alternations of tissueand cellular ion fluxes in Glycine max, Glycine soja and their hybrid seedlings. Journal of Agronomyand Crop Science,2011,197(5):329-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700