用户名: 密码: 验证码:
高铁客运枢纽换乘行为分析与设施配置方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铁客运枢纽是高速铁路系统的核心单元,是综合客运网络的重要节点。如何通过科学的换乘设施配置,高效引导乘客顺利完成换乘,成为摆在广大高铁客运枢纽规划、设计、管理者面前首要解决的问题,由于高铁客运枢纽在我国属于新兴事物,相关理论研究成果也相对不足,难以有效指导我国高铁客运枢纽的建设工作。鉴于上述矛盾,论文依托“十一五”国家科技支撑计划重点项目“城市综合交通系统规划与评价关键技术研究”,以降低高铁客运枢纽乘客换乘时间,提高换乘设施配置水平为目的,系统分析了高铁客运枢纽乘客换乘行为特性,细致研究了乘客换乘时间量化分析方法,给出了高铁客运枢纽换乘设施配置方法,对加快我国高铁客运枢纽规划、设计、建设与后评价的科学化进程具有理论价值和实际意义。
     论文对高铁客运枢纽换乘设施进行了梳理,依据乘客在使用换乘设施时所呈现的行为差异,确立了乘客换乘行为特性度量指标,制定了研究所需数据的调查采集方案,选择北京南站及哈尔滨西站内乘客的换乘行为作为调查对象,对乘客的走行、设施选择、排队及等候四类行为的特性指标数据进行采集。
     利用统计分析方法,确定了高铁客运枢纽乘客的走行期望速度,建立了单向换乘通道及楼梯内乘客流密度与乘客平均走行速度的线性关系模型,以此推导出乘客走行拥挤延误的计算公式,分析了现有社会力模型的不足,建立了基于改进社会力模型的高铁枢纽乘客换乘走行行为模型,搭建了相应的仿真平台,利用该平台验证了拥挤延误计算公式的适用性,并分析了换乘交叉冲突延误的影响因素,利用仿真数据建立了交叉冲突延误的非线性拟合计算模型。
     分析了乘客的行李携带情况、性别、年龄、扶梯入口的排队人数及楼梯的高度对乘客楼梯扶梯选择行为的影响,构建了乘客选择使用扶梯的概率模型,通过数值仿真的途径,阐明了在楼梯与扶梯组合处乘客换乘时间的产生机理。
     对高铁客运枢纽内排队系统的乘客到达规律及服务时间特性进行了分析,在购票排队系统与安检排队系统中,乘客的到达可以看作是一个到达率不断变化的泊松过程,服务时间服从负指数分布;在出站检票排队系统中,一列高速铁路列车出站总乘客数与乘客全部到达出站检票口的时间呈对数关系,与乘客到达时刻的标准差呈线性关系,检票时间服从负指数分布;采用到达率及服务率均随时间变化的多路排队等待制排队模型,对乘客的排队行为进行刻画,给出了乘客排队服务时间的递归计算方法。
     利用对数正态分布函数拟合了高铁候车厅内提前购票乘客的候车时间数据,在对提前购票乘客候车时间显著性影响因素筛选的基础上,建立了提前购票乘客候车时间预测的BP神经网络模型;将到达市内交通换乘点的乘客流看作是多个服从正态分布客流的叠加,建立了考虑换乘车辆运载能力限制的乘客平均候车时间计算模型,通过数值仿真,分析了车辆到达间隔、换乘人数、车辆运载能力及准点率对乘客候车时间的影响。
     界定了高铁客运枢纽乘客换乘服务水平的概念,采用基于乘客换乘“体验-响应”的调查方法,获取了乘客对换乘服务水平等级的评判数据,利用连续类别评判法,以乘客的换乘时间为分级指标,给出了换乘服务水平等级划分标准。
     从换乘设施配置的概念、内容、基本原则及流程四个方面,阐明了换乘设施配置的内涵,利用换乘时间分析方法,结合换乘服务水平等级划分标准,给出了高铁客运枢纽内走行类设施、服务类设施及等待类设施的规模确定方法;以乘客的平均期望走行时间最小、乘客的平均交叉冲突延误最小、高铁枢纽造价最低为目标,考虑面积、形状及布置位置三个方面约束,构建了乘客换乘设施三维布局优化模型,利用改进的遗传算法对模型进行了求解;从运能匹配及调度协调两个方面,探讨了换乘接驳类设施的运营组织方法。
     论文以研究高铁客运枢纽乘客换乘时间为突破点,强调理论的实用性,在研究框架搭建、概念界定、分析方法及模型构建等方面有所创新,为高铁客运枢纽换乘设施配置研究提供了新的思路。
High-speed rail passenger hub, the core component of high-speed railway system,is an important node in comprehensive passenger transport network. designers andadministration of the high-speed rail passenger hubs are facing up with the problem thathow to guide passengers to complete the transfer efficiently through scientific andeffective transfer facilities configurations. However,due to the fact that high-speedrailway system is newly introduced to China and there is a lack of experience inplanning, design and management in high-speed rail passenger hub and relativetheoretical research,it is difficult to guide the construction of high-speed rail passengerhub in China effectively. In view of the contradiction mentioned above and based on the"eleven five" national technology support project—"Urban comprehensivetransportation system planning and evaluation of key technology research" this researchis aimed at reducing transfer delay in the high-speed rail passenger hub and improvingthe level of transfer facilities configurations. To realize the purpose above, passengers’transfer behaviors in the high-speed rail passenger hub are systematically analyzed,quantitative analysis technologies for passengers transfer delay are detailed studied andconfiguration of transfer facilities in the high-speed rail passenger hub is proposed.Thus, theoretical value and practical significance in planning, design, construction andevaluation of configurations for China's high-speed rail passenger hub are provided..
     The high-speed rail passenger hub transfer facilities are reviewed and on the basisof the diversities of passengers’ transfer behaviors in the high-speed rail passenger hubthe measurement index system for passengers’ transfer behavior is established; dataacquisition scheme is developed and data of the characteristics of passengers’ walkingbehaviors, facilities selection behaviors, queuing and waiting behaviors are collected inBeijing South Railway Station and Harbin West Railway Station.
     Through statistical analysis, the expected walking speed in the high-speed railpassenger hub passenger is established; linear model for density and average walkingspeed for passengers in the stairs and one-way transfer channels is established thus thecongestion delay calculation formula of passengers checking in the transfer channel isderived; by analyzing the shortcomings of existing social force model, a walkingbehavior model for transfer passengers in the high-speed rail passenger hub isestablished based on the improved social force model and a corresponding simulationplatform is built to verify the applicability of the formula; last but not the least,influencing factors of transfer intersecting delay are analyzed and the nonlinear fittingintersection delay model is established by using the simulation data.
     The effects of passengers’ luggage, gender, age, staircase entrance queue numberand the height of the stairs on passengers’ choice behavior of choosing stairs or escalators are quantitative analyzed and the probability model for passengers’ choice ofescalators is established. And by means of numerical simulation, the mechanism ofproduction of transfer delay at the junction of stairs and escalators is expounded.
     Regular patterns of arriving and characteristics of service time for passengers in thequeuing system of high-speed rail passenger hub are analyzed. In the queuing systemfor tickets and the security, passengers’ arrival can be regarded as a Poisson processwhere the arrival rate keeps changing and the service time is subject to negativeexponential distribution; in a queuing system for checking out, the relation between thenumber of outbound passengers and the time that all the outbound passengers use toarrive at the ticket exit is logarithmic; the relation between the number of passengersand the standard deviation of passengers’arrival time is linear and the time for checkingout obey negative exponential distribution. By using multipath waiting queuing modelwhere arrival rate and service rate may change with time, the queuing behaviors ofpassengers are depicted and a recursive method to calculate the passengers’ queuingdelay is present.
     The waiting time for passengers who bought tickets in advance is fit by logarithmicnormal distribution and a BP neural network model to predict waiting delay ofpassengers who bought tickets in advance is established on the basis of screeningsignificant influencing factors of passengers waiting time. Flow of passengers arrivingat urban transit transfer point inside the city is regarded as the congregation of passengerflows which obey normal distribution and a calculation model of passengers’ averagewaiting time considering the capacity limit of transfer vehicles is founded. Andinfluences of vehicles’ arrival interval, number of transferring passengers, vehiclecapacity and punctuality rate on passengers’ waiting delay are analyzed throughnumerical simulation.
     Concept of transfer delay degree is defined and transfer delay evaluation data isobtained by research method based on passengers’ transfer―experience–response‖.The division standard of degree of travel delay is given using continuous classificationevaluation method and the passengers’ transfer time is regarded as the classificationindex.
     Connotation of transfer facilities configurations is clarified from four aspectsincluding the concept, the content, basic principles and procedures of transfer facilitiesconfigurations. Method to determine the scale of walking facilities, service facilities andwaiting facility is given by taking advantage of the transfer time analysis methodscombined with the classification standard of the transfer time degree. For the purpose ofminimizing the average expected walking time, the average crossed delay of passengersand the cost of high-speed rail project, a three-dimensional layout optimization modelfor passengers’ transfer facilities is constructed considering three aspects of restraintthat is area, shape and location of the high-speed rail passenger hub and the model is solved by genetic the improved algorithm and the organization of operation ofpassengers’ transfer facilities is discussed from the match of transport capacity and thecoordination of scheduling.
     Research on passengers’ transfer delay in the high-speed rail passenger hub is thebreakthrough point and the practicability of the theory is emphasized. There existsinnovation in several aspects such as the construction of the research framework,thedefinition of the concept, analysis method and the construction of the model, thusproviding a new way for the study of transfer facilities in high-speed railway passengerhub.
引文
[1]左辅强.日本新干线高速铁路发展历程及其文化特征研究[J].城市轨道交通研究,2012,11:37~39.
    [2]何华武.快速发展的中国高速铁路[J].中国铁路,2006,7:23~31.
    [3] J.Fruin. Pedestrain Planning and Design[M]. NewYork: MetroPolitanAssoeiation of Urban Designer and Environmental Planners Inc,1971.
    [4] Pauls, J. Calculating evacuation times for tall buildings[J]. Fire Safety Journal,1987,12(3):213~236.
    [5] Lam, W.H.K., Morrall, J.F, Ho H. Pedestrain flow characteristics in HongKong[J]. Transportaion Reseach Record,1995,1487:56~62.
    [6] Lam, W.H.K., Cheung C Y. Pedestrain Speed/Flow Relationships for WalkingFacilities in Hong Kong[J]. Journal of Transportation Engineering,2000,126(4):343~349.
    [7] Daamen. W. Modelling Passenger flows in Public Transport Facilities[D]. DelftUniversity Press,2004.
    [8] Joseph S. Milazzo II, Nagui M. Rouphail, Joseph E. Hummer, D. Patrick Allen.Quality of Service for Interrupted-Flow Pedestrian Facilities in HighwayCapacity Manual2000[J]. Transportation Research Record: Journal of theTransportation Research Board,2007,1678(1999):25~31.
    [9] Inger Marie Bernhoft, Gitte Carstensen. Preferences and behaviour ofpedestrians and cyclists by age and gender[J]. Transportation Research Part F,2008,11(2):83~95.
    [10]Seth B. Young. Evaluation of Pedestrian Walking Speeds in AirportTerminals[J]. Transportation Research Record: Journal of the TransportationResearch Board,2007,1674(6):20~26.
    [11]Daamen. W, Serge P. Hoogendoorn. Free Speed Distributions for PedestrianTraffic[C]. TRB Annual Meeting CD-ROM,2006:1~13.
    [12]Daly P. N, Mcgrath F, Annesley T. J. Pedestrian speed/flow relationships forunderground stations[J]. Traffic engineering&control,1991,32(2):75~78.
    [13]Roger L. Hughes. A continuum theory for the flow of pedestrians[J].Transportation Research Part B,2002,36(3):507~535.
    [14]Ando K, Ota H, Oki T. Forecasting the flow of people(in Japanese)[J]. RailwayResearch Review,1988,45(8):8~14.
    [15]Yordphol Tanaboriboon, Sim Siang Hwa, Chin Hoong Chor. PedestrianCharacteristics Study in Singapore[J]. Journal of Transportation Engineering,1986,112(3):229~235.
    [16]Virkler Mark R, Elayadath S. Pedestrian speed-flow-density relationships [J].Transportation Research Board,1994,1438:51~58.
    [17]Serge Hoogendoorn, Piet H. L. Bovy. Gas-kinetic modeling and simulation ofpedestrian flows[J]. Transportation Research Record: Journal of theTransportation Research Board,2000,1710(4):28~36.
    [18]Masakuni Muramatsu, Tunemasa Irie, Takashi Nagatani. Jamming transition inpedestrian counter flow[J]. Physica A,1999,267(3-4):487~498.
    [19]Masakuni Muramatsu, Takashi Nagatani. Jamming transition of pedestriantraffic at a crossing with open boundaries[J]. Physica A,2000,286(1-2):377~390.
    [20]Yusuke Tajima, Takashi Nagatani. Scaling behavior of crowd flow outside ahall[J]. Physica A,2001,292(1-4):545~554.
    [21]Dirk Helbing, Illés Farkas, Tamás Vicsek. Simulating dynamical features ofescape panic[J]. Nature,2000,407:487~490.
    [22]Lewin K, Field. Theory in social Science[M]. NewYork: Harper,1951.
    [23]Taras I. Lakoba, D. J. Kaup, Neal M. Finkelstein. Modifications of theHelbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution[J].Simulation,2005,81(5):339~352.
    [24]Armin Seyfried, Bernhard Steffen, Wolfram Klingsch, Maik Boltes. Thefundamental diagram of pedestrian movement revisited[J]. Journal of StatisticalMechanics,2005,10(1):65~67.
    [25]Armin Seyfried, Bernhard Steffen, Thomas Lippert. Basics of modelling thepedestrian flow[J]. Physica A,2006,368(1):232~238.
    [26]Victor J. Blue, Jeffrey L. Adler. Emergent Fundamental Pedestrian Flows fromCellular Automata Microsimulation[J]. Transportation Research Record:Journal of the Transportation Research Board,1998,1664:29~36.
    [27]Fang W, L Yang, W Fan. Simulation of bi-direction pedestrian movement usinga cellular automata model[J]. Physica A: Statistical Mechanics And ItsApplications,2003,321(3):633~640.
    [28]Li, J., L.H.Yang, D.L.Zhao. Simulation of bi-direction pedestrian movement incorridor. Physica A: Statistical mechanics and its applications,2005,354:619~628.
    [29]Victor J. Blue, Jeffrey L. Adler. Cellular automata microsimulation formodeling bi-directional pedestrian walkways[J]. Transportation Research Part B,2001,35(3):293~312.
    [30]Xu X, W G Song, H Y Zheng. Discretization effect in a multi-grid egressmodel[J]. Physica A,2008,387(22):5567~5574.
    [31]Liu Shaobo, Yang Lizhong, Fang Tingyong Liu, et al. Evacuation from aclassroom considering the occupant density around exits[J]. Physica A:Statistical mechanics and its applications,2009,388(9):1921~1928.
    [32]Suqin Ge. Estimating the returns to schooling: Implications from a dynamicdiscrete choice model[J]. Labour Economics,2013,20:92~105.
    [33]Moshe Ben-Akiva, Michel Bierlaire. Discrete Choice Models with Applicationsto Departure Time and Route Choice[M]. Handbook of Transportation Science,2003,56:7~37.
    [34]Gianluca Antonini, Michel Bierlaire, Mats Weber. Discrete choice models ofpedestrian walking behavior[J]. Transportation Research Part B,2006,40(8):667~687.
    [35]Alexandre G. de Barros, David D. Tomber. Quantitative analysis of passengerand baggage security screening at airports[J]. Journal of AdvancedTransportation,2007,41(2):171~193.
    [36]Robertson, Craig V, Accenture LLP et al. The role of modeling demand inprocess re-engineering[C]. Proceedings of the2002Winter SimulationConference,2002,2:1454~1458.
    [37]Lorenzo Brunetta, Luca Righi, Giovanni Andreatta. An operations researchmodel for the evaluation of an airport terminal: SLAM (simple landsideaggregate model)[J]. Journal of Air Transport Management,1999,5(3):161~175.
    [38]Adrian J.Lee, Sheldon H.Jacobson The impact of aviation checkpoint queues onoptimizing security[J]. Reliability Engineering and System Safety,2011,96(8):900~911.
    [39]David J. Lovell, Kleoniki Vlachou, Tarek Rabbani, Alexander Bayen. Adiffusion approximation to a single airport queue[J]. Transportation ResearchPart C,2012, in press.
    [40]Marin CV, Drury CG, Batta R, Lin L. Human factors contributes to queueingtheory: Parkinson’s law and security screening[C]. Proceedings of humanfactors and ergonomics society annual meeting,2007,51(10):602~606.
    [41]Tosic V. A review of airport passenger terminal operations analysis andmodelling[J]. Transportation Research Part A,1992,26(1):3~26.
    [42]Tumquist, M.A. Strategies for improving reliability of bus transit service[J].Transportation Research Record,1981,818:7~13.
    [43]Wei Fan, Randy B. Machemehl. Characterizing bus transit waiting times[C].Proceedings of the Second Material Specialty Conference of the Canadian,2002.
    [44]Marco Luethi, Ulrich Weidmann, Andrew Nash. Passenger arrival rates atpublic transport stations[C]. TRB86th Annual Meeting Compendium of PapersCD-ROM,2007.
    [45]Seddon P A, Day M P. Bus passenger waiting time in great manchester[J],Traffic Engineering and Control,1974,15(9):422~445.
    [46]Georgina Santos, Ma l Robin. Determinants of delays at European airports[J].Transportation Research Part B,2010,44(3):392~403.
    [47]Ronald Wesonga, Fabian Nabugoomub, Peter Jehopio. Parameterizedframework for the analysis of probabilities of aircraft delay at an airport[J].Journal of Air Transport Management,2012,23(1):1~4.
    [48]Keith Briggs, Christian Beck. Modelling train delays with q-exponentialfunctions[J]. Physica A,2007,378(2):498~504.
    [49]Jianxin Yuan, Ingo A. Hansen. Optimizing capacity utilization of stations byestimating knock-on train delays[J]. Transportation Research Part B,2007,41(2):202~217.
    [50]H Van Landeghem. A Beuselinck. Reducing passenger boarding time inairplanes: A simulation based approach[J]. European Journal of OperationalResearch,2002,142(2):294~308.
    [51]Jason H. Steffen. Optimal boarding method for airline passengers[J]. Journal ofAir Transport Management,2008,14(3):146~150.
    [52]Tie-Qiao Tang, Yong-Hong Wu, Hai-Jun Huang, Lou Caccetta. An aircraftboarding model accounting for passengers’ individual properties[J].Transportation Research Part C,2012,22:1~6.
    [53]Kurt K. T. Lee, Paul Schonfeld. Optimal slack time for timed transfers at atransit terminal[J]. Journal of Advanced Transportation,1991,25(3):281~308.
    [54]Knoppers P, Muller T, Optimized transfer opportunities in public transport[J],Transportation Science,1995,29(1):101~105.
    [55]Chien S.I.-J, Optimization of headway, vehicle size and route choice forminimum cost feeder service[J]. Transportation Planning and Technology,2005,28(5):359~380.
    [56]Spring C. Hsu. Determinants of passenger transfer waiting time at multi-modalconnecting stations[J]. Transportation Research Part E,2010,46(3):404~413.
    [57]Senay Solak, John-Paul B. Clarke, Ellis L. Johnson. Airport terminal capacityplanning[J]. Transportation Research Part B,2009,43(6):659~676.
    [58]Dipasis Bhadra. You (expect to) get what you pay for: A system approach todelay, fare, and complaints[J]. Transportation Research Part A,2009,43(9-10):829~843.
    [59]Shoaib M. Chowdhury, Steven I-Jy Chien. Intermodal Transit SystemCoordination[J]. Transportation Planning and Technology,2002,25(4):257~287.
    [60]Andrew Kusiak, Sunderesh S. Heragu. The facility layout problem[J]. EuropeanJournal of Operational Research,1987,29(3):229~251.
    [61]Kyu-Yeul Lee, Seong-Nam Han, Myung-Il Roh. An improved genetic algorithmfor facility layout problems having inner structure walls and passages[J].Computers&Operations Research,2003,30(1):117~138.
    [62]Kyu-Yeul Lee, Myung-Il Roh, Hyuk-Su Jeong. An improved genetic algorithmfor multi-floor facility layout problems having inner structure walls andpassages[J]. Computers&Operations Research,2005,32(4):879~899.
    [63]Giuseppe Aiello, Giada La Scalia, Mario Enea. A multi objective geneticalgorithm for the facility layout problem based upon slicing structureencoding[J]. Expert Systems with Applications,2012,39(10):352~358.
    [64]McKendall, A R, Shang, J, Kuppusamy, S. Simulated annealing heuristics forthe dynamic facility layout problem[J]. Computers&Operations Research,2006,33(8):2431~2444.
    [65]I-Cheng Yeh. Architectural layout optimization using annealed neuralnetwork[J]. Automation in Construction,2006,15(4):531~539.
    [66]Lou Y. Liang, Wen C. Chao. The strategies of tabu search technique for facilitylayout optimization[J]. Automation in Construction,2008,17(6):657~669.
    [67]Solimanpur, M, Vrat P, Shankar R. An ant algorithm for the single row layoutproblem in flexible manufacturing systems[J]. Computers&OperationsResearch,2005,32(3):583~598.
    [68]International Air Transport Association(IATA). Airport Terminals ReferenceManual[M]. Pennsylvania: The Pennsylvania State University,1989.
    [69]Bandara S, Wirasinghe S. C. Walking distance minimization for airport terminalconfigurations[J]. Transportation Research,1992,26(1):59~74.
    [70]Ali Haghani, Min-Ching Chen. Optimizing gate assignments at airportterminals[J]. Transportation Research Part A,1992,26(1):59~74.
    [71]McLay LA, Jacobson SH, Kobza JE. Integer programming models and analysisfor a multilevel passenger screening problem[J]. IIE Transactions2007,39(1):73~81.
    [72]Ana Lisbeth Concho, Jose Emmanuel Ramirez-Marquez. A mathematicalframework for passenger screening optimization via a multi-objectiveevolutionary approach[J]. Computers&Industrial Engineering,2012,62(4):839~850.
    [73]Yu-Chun Chang, Ching-Fu Chen. Meeting the needs of disabled air passengers:Factors that facilitate help from airlines and airports[J]. Tourism Management,2012,33(2):529~536.
    [74]Mei Ling Tam. An optimization model for wayfinding problems i n terminalbuilding[J]. Journal of Air Transport Management,2011,17(2):74~79.
    [75]Braaksma, John P; Cook, W.Jordan. Human orientation in transportationterminals[J]. Journal of Transportation Engineering,1980,106(2):189~203.
    [76]Mei-ling Tam, William H.K. Lam. Determination of service levels for passengerorientation in Hong Kong International Airport[J]. Journal of Air TransportManagement,2004,10(3):181~189.
    [77]Alexandre G. de Barrosa, A. K. Somasundaraswaranb, S. C. Wirasinghe.Evaluation of level of service for transfer passengers at airports[J]. Journal ofAir Transport Management,2007,13(5):293~298.
    [78]W.M.P. van der Aalst, M.A. Odijk. Analysis of railway stations by means ofinterval timed coloured Petri nets[J]. Real-Time Systems,1995,9(3):241~263.
    [79]吴哲辉. Petri网导论[M].北京:机械工业出版社,2006.
    [80]Fateh Kaakai, Said Hayat, Abdellah El Moudni. A hybrid Petri nets-basedsimulation model for evaluating the design of railway transit stations[J].Simulation Modelling Practice and Theory,2007,15(8):935~969.
    [81]Ioanna E. Manataki, Konstantinos G. Zografos. A generic system dynamicsbased tool for airport terminal performance analysis[J]. Transportation ResearchPart C,2009,17(5):428~443.
    [82]Chaug-Ing Hsu, Ching-Cheng Chao. Space allocation for commercial activitiesat international passenger terminals[J]. Transportation Research Part E,2005,41(1):29~51.
    [83]Julien Tardieu, Patrick Susini, Franck Poisson, Hiroshi Kawakami, StephenMcAdams. The design and evaluation of an auditory way-finding system in atrain station[J]. Applied Acoustics,2009,70(9):1183~1193.
    [84]曲昭伟,周立军,王殿海.城市信号交叉口自行车及行人到达与释放规律[J].公路交通科技,2004,21(8):93~94.
    [85]裴玉龙,冯树民.城市行人过街速度研究[J].公路交通科技,2006,23(9):104~107.
    [86]陈然,董力耘.中国大都市行人交通特征的实测和初步分析[J].上海大学学报(自然科学版),2005,11(1):93~97.
    [87]金晓琼,韩萍,左忠义,刘岩.大连市西安路商业区行人交通特性分析[J].大连交通大学学报,2008,29(2):27~31.
    [88]龚晓岚,魏中华.行人交通流自由速度模型研究[J].北京工业大学学报,2009,35(4):493~497.
    [89]柳伍生,余朝玮.地铁站楼梯行人流交通特征的数据拟合分析[J].计算机工程与应用,2008,44(3):50~52.
    [90]CHEN Feng, WU Qibing, ZHANG Huihui, LI Sanbing, ZHAO Liang.Relationship Analysis on Station Capacity and Passenger Flow: A Case ofBeijing Subway Line1[J]. Journal of Transportation Systems Engineering andInformation Technology,2009,9(2):93~98.
    [91]贾洪飞,杨丽丽,唐明,孟丹.综合交通枢纽内部行人微观特性及建模需求研究[J].交通运输系统工程与信息,2009,9(2):17~22.
    [92]刘栋栋,孔维伟,李磊等.北京地铁交通枢纽行人特征的调查与分析[J].建筑科学,2010,26(3):70~83.
    [93]李得伟.城市轨道交通枢纽乘客集散模型及微观仿真理论[D].北京:北京交通大学博士学位论文,2007:34~37.
    [94]唐明.客运枢纽行人交通模型与仿真算法研究[D].北京:北京交通大学博士学位论文,2010:24~26.
    [95]胡清梅.轨道交通车站客流承载能力的评估与仿真研究[D].北京:北京交通大学博士学位论文,2011:51~59.
    [96]宋卫国,于彦飞,陈涛.出口条件对人员疏散的影响及其分析[J].火灾科学,2003,12(2):100~104.
    [97]冯萍萍.基于社会力模型的高铁综合客运枢纽行人交通仿真研究与实现[D].北京:北京交通大学硕士学位论文,2012.
    [98]廖明军,王凯英,孟宪强,王显利.基于元胞自动机的单向行人道行人交通仿真[J].北华大学学报(自然科学版),2008,9(1):85~88.
    [99]岳昊,邵春福,姚智胜.基于元胞自动机的行人疏散流仿真研究[J].物理学报,2009,58(7):4523~4530.
    [100]张诗波,何民,骆勇,暴秀超.行人交通微观仿真虚拟动力学模型研究[J].交通运输系统工程与信息,2009,9(1):51~55.
    [101]黄鹏,刘箴.一种面向人群仿真的改进型社会力模型研究[J].系统仿真学报,2012,24(9):16~19.
    [102]汪蕾,蔡云,徐青.社会力模型的改进研究[J].南京理工大学学报(自然科学版),2011,35(1):144~148.
    [103]马剑.相向行人流自组织行为机理研究[D].合肥:中国科学技术大学博士学位论文,2010.
    [104]Zheng Xiaoping, Sun Jiahui, Cheng Yuan. Analysis of crowd jam in publicbuildings based on cusp-catastrophe theory[J]. Building and Environment,2010,45(8):1755~1766.
    [105]吉岩,李力,胡坚明,王法.一种基于分片磁场和动态博弈的行人仿真模型[J].自然科学进展,2009,3(19):337~343.
    [106]孙立光,史其信.用于微观行人仿真的邻域决策模型[J].公路工程,2009,34(4):68~72.
    [107]张琦.城市轨道交通枢纽乘客与环境交互理论[D].北京:北京交通大学博士学位论文,2008.
    [108]饶雪平.轨道交通车站楼梯和自动扶梯处客流延时分析[J].交通与运输(学术版),2005,1:13~15.
    [109]高金华,李洁.爱尔朗排队模型在旅客候机楼中的应用[J].中国民航大学学报,2007,25(2):48~51.
    [110]曹守华,袁振洲,赵丹.城市轨道交通出站楼梯处乘客排队机理[J].吉林大学学报(工学版),2009,39(6):1465~1468.
    [111]李乾.综合客运枢纽集散服务网络分析与建模[D].北京:北京交通大学博士学位论文,2011,65~79.
    [112]F.R.B. Cruza, J. MacGregor Smith, R.O. Medeiros. An M/G/C/Cstate-dependent network simulation model[J]. Computers&OperationsResearch,2005,919~941.
    [113]钟绍林,王修华,何宇强,毛保华.北京西站客流集散特征调查[J].铁道运输与经济,2005,27(2):37~39.
    [114]何宇强,毛保华,陈绍宽,郭谨一.铁路客运站旅客最高聚集人数计算方法研究[J].铁路学报,2006,28(1):6~11.
    [115]张天伟.铁路客运站旅客聚集规律研究[J].铁路学报,2006,31(1):31~34.
    [116]马卫武,刘小燕,李立清,陈治亚.铁路客运站旅客候车时间研究[J].铁路学报,2009,31(5):104~107.
    [117]付延冰,陈治亚.基于随机分析的公交站点乘客等车时间[J].系统工程,2009,27(6):119~122.
    [118]郭淑霞,陈旭梅,于雷,胡东方.轨道交通换乘常规公交平均候车时间模型[J].交通运输系统工程与信息,2010,10(2):143~147.
    [119]沈艳松,钟仰晋,张柳.基于排队论的地铁站台设施客流延误分析[J].交通科技与经济,2009,1:101~103.
    [120]谢征宇.高铁综合客运枢纽客流安全预警关键技术研究[D].北京:北京交通大学博士学位论文,2012:26~27.
    [121]漆凯.城市客运枢纽站旅客流线优化研究[D].北京:北京交通大学博士学位论文,2012:50~56.
    [122]漆凯,张星臣.枢纽通道中行人走行延误计算方法[D].物流技术,2011,30(12):129~131.
    [123]赵莉.城市轨道交通枢纽交通设计理论与方法研究[D].北京:北京交通大学博士学位论文,2011:45~72.
    [124]杜鹏,刘超,刘智丽.地铁通道换乘乘客走行时间规律研究[J].交通运输系统工程与信息,2009,9(4):103~109.
    [125]谢立宏.城市轨道交通与快速公交换乘时间衔接分析[J].城市轨道交通研究,2010,6:59~62.
    [126]马洪.轨道交通枢纽动态换乘效率及网络客流研究[D].北京:清华大学博士学位论文,2010:18~44.
    [127]陈大伟,李旭宏,刘佐.城市对外客运枢纽选址方案比选模型与遗传算法应用[J].公路交通科技,2006,23(9):145~148.
    [128]王大伟.铁路枢纽内高铁客运站选址布局优化研究[D].成都:西南交通大学硕士学位论文,2012:93~95.
    [129]黄坤鹏,杨玉丽,杨晓熙.火车站综合交通客运枢纽客流与设施容量预测分析[J].交通标准化,2009,1:119~123.
    [130]张蕾.武广高铁客流变化分析与预测[D].长沙:中南大学硕士学位论文,2010.
    [131]沈景炎.乘客动态分布于站台宽度的研究[J].城市轨道交通研究,2001:21~25.
    [132]刘明姝,张国宝.基于排队系统的城市轨道交通进站检票机配置[J].城市轨道交通研究,2004,5:34~37.
    [133]丰伟.城市对外交通综合换乘枢纽系统关键问题理论研究[D].成都:西南交通大学博士学位论文,2005:56~60.
    [134]邱丽丽,顾保南.国外典型综合交通枢纽布局设计实例剖析[J].城市轨道交通研究,2006,3:55~59.
    [135]陈方红.城市对外交通综合换乘枢纽布局规划与设计理论研究[D].成都:西南交通大学硕士学位论文,2006:137~138.
    [136]张海晔,晏克非.上海南站综合客运枢纽的换乘诱导标识研究[J].交通与运输(学术版),2007,2:25~30.
    [137]蒋玲钰,陈方红,彭月.综合客运枢纽功能区空间布局优化研究[J].铁道运输与经济,2009,11:69~71.
    [138]张红.城市轨道交通换乘枢纽人行设施配置问题研究[D].成都:西南交通大学硕士学位论文,2011:51~52.
    [139]赵莉,袁振洲,李之红,李艳红.基于活动关联度的城市综合客运换乘枢纽设施布置模型[J].吉林大学学报(工学版),2011,41(5):1246~1251.
    [140]贾洪飞,孙宝凤,罗清玉,韩佳辰.地铁换乘枢纽设施能力测度方法及其适应性分析[J].吉林大学学报(工学版),2009,39(2):199~103.
    [141]徐苗,钱振东,陆振波.高铁型综合交通枢纽换乘组织综合评价[J].山西建筑,2010,36(2):33~34.
    [142]吴先宇.城市轨道交通枢纽设施配置适应性分析及仿真优化方法[D].北京:北京交通大学博士学位论文,2010:159~160.
    [143]徐前前.城市轨道交通换乘站设施协调性评价[J].现代城市轨道交通,2011,6:101~103.
    [144]朱竞争.基于客流特征的轨道换乘站换乘设施服务水平研究[D].北京:北京交通大学硕士学位论文,2011:71~72.
    [145]武勇彦,刘小明,魏中华,荣建,孙立山.换乘交通枢纽行人设施布局仿真评价研究[J].交通信息与安全,2012,30(3):74~77.
    [146]Kevin Lynch. The image of the city[M]. UK: mit press,1960:25~27.
    [147]Paul Arthur, Romedi Passini. Wayfinding: People, Signs, and Architecture[M].New York: McGraw-Hill,1992.
    [148]曹守华.城市轨道交通乘客交通特性分析及建模[D].北京:北京交通大学博士学位论文,2012:70~78.
    [149]Welding P.I. The instability of a close-interval service[J]. OperationalResearch Quarterly,1957,8(3):133~142.
    [150]Osuna E.E, Newell G.F. Central strategies for an idealized public transportsystem[J]. Transportation Science,1972,6(1):52~72.
    [151]柯林春,袁长伟.城市综合客运枢纽旅客换乘影响因素分析[J].交通企业管理,2002,3:68~69.
    [152]Hoogendoorn, S P, Bovy, P H L. Normative pedestrian behaviour theory andmodelling[C]. Proceedings of the15th International Symposium onTransportation and Traffic Theory,2007,219~245.
    [153]Helbing, D. P. Molnar. Social force model for pedestrian dynamics[J].Physical Review,1995,51(5):4282~4286.
    [154]Marko Apel. Simulation of pedestrian flows based on the social force modelusing the Verlet Link Cell algorithm[D]. Poznan University of Technology,2004:85~87.
    [155]Serge P. Hoogendoorn, Winnie Daamen. Microscopic calibration andvalidation of pedestrian models: cross-comparison of models usingexperimental Data[M]. Traffic and Granular Flow’05, Berlin: Springer,2007:239~340.
    [156]A. Steiner, M. Philipp, A. Schmid. Parameter estimation for a pedestriansimulation model[C]. STRC:7th Swiss Transport Research Conference, MonteVeritàAscona,2007,9:1~29.
    [157]冯萍萍.基于社会力模型的高铁综合客运枢纽行人交通仿真研究与实现[D].北京:北京交通大学硕士学位论文,2012:10~11.
    [158]徐高.人群疏散的仿真研究[D].成都:西南交通大学硕士学位论文,2003:43~44.
    [159]http://ccl.northwestern.edu/netlogo/
    [160]Dirk Helbing, Lubos Buzna, Anders Johansson, Torsten Werner.Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, andDesign Solutions[J]. Transportation Science,2005,39(1):1~24.
    [161]CY Cheung, WHK Lam. Pedestrian route choices between escalator andstairway in Hong Kong Mass Transit Railway stations[J]. Journal ofTransportation Engineering, ASCE,1998,124(3):277~285.
    [162]孙荣恒,李建平.排队论基础[M].北京:科学出版社,2002.
    [163]Linda v. Green, Peter J. Kolesar, Joao Soares. Improving the SIPP approachfor staffing service systems that have cyclic demands[J]. Operations Research,2001,49(4):549~564.
    [164]William H.K. Lam, Chung-Yu Cheung, C.F. Lam. A study of crowding effectsat the Hong Kong light rail transit stations[J]. Transportation Research Part A,1999,33(5):401~415.
    [165]Anderson R. Correia, S.C. Wirasinghe, Alexandre G. de Barros. Overall levelof service measures for airport passenger terminals[J]. Transportation ResearchPart A,2008,42(2):330~346.
    [166]Transportation Research Board. Airport Passenger Terminal Planning andDesign, Volume1: Guidebook[M]. WASHINGTON, D.C: National Academy ofSciences,2010,148~149.
    [167]Cao Shouhua, Yuan Zhenzhou, Zhang Chiqing, Zhao Li. Los Classification forUrban Rail Transit Passages Based on Passenger Perceptions[J]. J ournal ofTransportation Systems Engineering and Information Technology,2009,9(2):99~104.
    [168]耿美君.综合客运枢纽服务水平评价研究[D].长春:吉林大学硕士学位论文,2009:25~33.
    [169]赵宇刚.考虑服务水平的城市轨道交通换乘问题研究[D].北京:北京交通大学博士学位论文,2011:18~20.
    [170]Simon Haykin.神经网络原理[M].北京:机械工业出版社,2004.
    [171]董长虹. Matlab神经网络与应用[M].北京:国防工业出版社,2005.
    [172]王吉权. BP神经网络的理论及其在农业机械化中的应用研究[D].沈阳:沈阳农业大学博士学位论文,2011:20~23.
    [173]飞思科技研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [174]张磊,郭莲英. MATLAB实用教程[M].北京:人民邮电出版社,2008.
    [175]Taylor, M.A.P, Travel time variability-the case of two public modes[J].Transportation Science,1982,16(4):507~521.
    [176]Bates J, Polak J, Jones P et al. The valuation of reliability for personaltravel[J]. Transportation Research Part E,2001,37(2-3),191~229.
    [177]Wong R.C.W, Yuen T.W.Y, Fung K.W et al. Optimizing timetablesynchronization for rail mass transit[J]. Transportation Science,2008,42(1):57~69.
    [178]关宏志.非集计模型-交通行为分析的工具[M].北京:人民交通出版社,2004.
    [179]Bock R.D, Jones L.V. The measurement and prediction of judgment andchoice[M]. San Francisco: Holden-Day,1968.
    [180]程涌.采空区稳定的可靠度及其影响因素的敏感性分析研究[D].昆明:昆明理工大学硕士学位论文,2007:44~45.
    [181]辞海编辑委员会编.辞海[2].上海:上海辞书出版社,1980.
    [182]Transportation Research Board. Highway capacity manual2000[M].Washington D C: National Research Council,2000.
    [183]http://lieche.huoche.com.
    [184]BERT SEKASDP. A Simple and Fast Label Correcting Algorithm for ShortestPaths[J]. Networks,1993,23:703~709.
    [185]孙靖.用于区间参数多目标优化问题的遗传算法[D].北京:中国矿业大学博士学位论文,2012:12~13.
    [186]刘彤.解多目标问题的进化算法[D].西安:西安电子科技大学硕士学位论文,2010:2~4.
    [187]Haimes Y Y, Lasdon L S, Wismer D A. On a bicriterion formulation of theproblems of integrated system identification and system optimization[J]. IEEETransactions on Systems, Man and Cybernetics,1971,1:296~297.
    [188]庞峰.模拟退火算法的原理及算法在优化问题上的应用[D].长春:吉林大学硕士学位论文,2005.
    [189]高尚.蚁群算法理论、应用及其与其它算法的混合[D].南京:南京理工大学博士学位论文,2005.
    [190]雷英杰,张善文,李续武,周创明.遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [191]刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学博士学位论文,2009.
    [192]Srinivas N, Deb K. Multiobjective optimization using nondominated sorting ingenetic algorithms[J]. Evolutionary Computation,1994,2(3):221~248.
    [193]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation,2002,6(2):184~197.
    [194]Tate DM, Smith AE. Unequal-area facility layout by genetic search[J]. IIETransactions,1995,27(4):465~472.
    [195]G. Aiello, M. Enea, G. Galante. A multi-objective approach to facility layoutproblem by genetic search algorithm and Electre method[J]. Robotics andComputer-Integrated Manufacturing,2006,22(5-6):447~455.
    [196]Kuan Yew Wong, Komarudin. Solving facility layout problems using FlexibleBay Structure representation and Ant System algorithm[J]. Expert Systems withApplications,2010,37(7):5523~5527.
    [197]Berna Haktanirlar Ulutas, Sadan Kulturel-Konak. An artificial immune systembased algorithm to solve unequal area facility layout problem[J]. ExpertSystems with Applications,2012,39(5):5384~5395.
    [198]陈大伟.大城市对外客运枢纽规划与设计理论研究[D].南京:东南大学博士学位论文,2006:93~94.
    [199]岳朝龙,黄永兴,严忠. SAS系统与经济统计分析[M].安徽:中国科学技术大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700