用户名: 密码: 验证码:
考虑地基影响的高桥墩稳定及水平位移实用计算方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以中交集团特大科技研发项目《山岭区资源节约型高速公路建设关键技术研究》的子课题《山区桥梁高墩形式比选及稳定性研究》为背景,旨在通过高桥墩稳定性分析及水平位移理论方法,寻求影响高桥墩稳定性的敏感性参数及内在规律,建立考虑地基影响的高桥墩稳定及水平位移实用计算方法;并以有限元分析、室内模型试验研究和依托工程现场监测为手段,验证分析高墩稳定性、计算长度和墩顶水平位移的计算方法。
     本文指出稳定计算和水平位移计算问题在高墩桥梁设计中具有重要意义,特别是在计算长度系数对偏心距增大系数影响较大,而我国现行桥梁规范有关条文相比英、美规范较为粗略,且取值未包含“偏保守采用值”。同时,墩顶水平位移的计算至今在多种计算方法之间还存在较大出入。
     本文回顾了桥墩稳定、水平位移和墩型比选的发展及研究现状,梳理了桥墩的分类形式,介绍了多种桥型中桥墩或桥塔的基本情况。调研了我国近年建成的6条不同地域山区高速公路中高桥墩的应用情况,统计分析了213座桥梁中817个高墩样本,总结了4种较常见桥墩墩型的适用高度区间。
     本文基于能量原理,推导了高桥墩在施工阶段自重以及运营阶段墩顶集中竖向荷载作用下临界稳定荷载的近似求解公式。分析了四种桥墩在不同截面参数、不同墩高条件下的稳定性,结果显示各墩型一阶稳定安全系数50~60米范围内降低较快,60~90米降幅区域平缓;薄壁空心墩稳定安全系数明显高于其他三类墩型,尤其是在60~90米区间范围内其稳定性优势明显。基于有限元法,对依托工程进行了两类稳定分析,结果显示:考虑二类非线性影响时,计算结果都比特征值低,说明线性稳定分析求得的结果不保守,是极限承载力的上限;非线性稳定分析结果得到的稳定安全系数均大于1.58,满足稳定安全要求;系梁设置数量对算例中双柱式墩的面内稳定并非呈单调增长。
     本文研究了不同边界约束条件下高墩的计算长度,提出了不同状态下高墩计算长度系数的计算方法。考虑桥墩的几何非线性,推导了桥墩不同边界条件下一阶失稳临界力的计算公式,并利用欧拉公式得到其计算长度系数。其中,本文公式在弹性地基裸墩施工阶段、成桥运营阶段刚性地基状况下、成桥运营阶段弹性地基状况下计算值与规范规范规定值相比,偏差均小于1%。
     本文给出了不同边界约束条件下高墩受力变形的形函数,基于势能驻值原理,针对墩顶位移进行了分析。针对给出的墩身形函数,研究了地基弹性约束条件、无墩顶约束等不同条件下墩顶水平位移的计算公式,并在该基础上,给出了刚性基础有墩顶约束时,计算高墩墩顶水平位移的实用公式。
     本文研究成果不但可在桥梁设计阶段,为确定合理桥高范围、桥墩形式以及受力状态提供技术支持,还可为下一步规范有关条款的修订工作提供依据。
This dissertation is in the background of the sub-topic Pier Form Comparison andStability Research of Mountionous Bridges, which is one of the R&D projects taken byCCCG The Key Technologies of Resource-saving Research in Mountainous HighwayConstruction. The high pier stability analysis and horizontal displacement theory is mainlyused to seek the sensitivity parameters and their regular pattern of impact on high pier stability.Taking the influence of foundation on the high pier stability into consideration, by the meansof horizontal displacement calculation method, and relying on the data collected by innermodel test and monitoring at the project site, the method of the stability analysis, piercalculated length and horizontal displacement calculations is verified.
     Based on the domestic and foreign presdent situation and development of stabilityanalysis theory and horizontal displacement calculation method on bridges, the calculation ofstability calculation and horizontal displacements in the high pier bridge has importantsignificance. Especially the length factor has great impact on increasing eccentricitycoefficient. Compared with British and American norms, the existing bridge specification inChina is not only sketchy, and the value of the safety factor is not included. Designers oftenuse their experience to calculate, so that it is easily to be radical or conservative in designinghigh pier; while pier top horizontal displacement calculations have big differences among thevarious calculation methods.
     This paper reviews the development and research statust of the pier stability, horizontaldisplacement and the pier type on selected bridges, and sort out different types and cablesystem bridge combed on12kinds of pylon pier bridges. Investigation of the practicalapplication of high bridge pier6highway completed in recent years in our country is taken,and based on a statistical analysis of817samples of high pier213bridges, summarize thesuitable height interval of4common pier type.
     In this paper, energy method is used to derive the solving the equation of high pierconstruction stage and operation stage of the pier top weight concentrated vertical loads ofcritical buckling load. Through four types of pier type in different parameters, different heightof pier under the conditions of the stability analysis, the pier one order stability coefficient in50to60meters range decreases quickly, the height between60tand90meters is in flat region.The pier under the action of a concentrated load, the same height distribution under different pier stability coefficient size is dispersing; thin-walled hollow pier stability coefficient ishigher than other three kinds of pier type, especially between the60and90meters. Based onthe project, two kinds of stability analysis is taken and results showes that considering twokinds of nonlinear effects, the calculation results are lower than the values, the linear stabilityanalysis result is not conservative, the ultimate bearing capacity is limit; nonlinear stabilityanalysis of the steady line number is greater than1.58, which meets the safety requirements;and the number of beams in double column pier in-plane stability is monotone increasing.
     This paper studies that under different boundary conditions, calculated length of highpier methods are put forward under different conditions of high pier calculation lengthcoefficient. Considering the geometric nonlinear pier, pier under different boundaryconditionsare derived first order calculation equation for destabilization critical force, usingEuler formulacalculation length coefficient. Under the elastic foundation, pier pier conditionscalculated length andstandard deviation is0.65%; under the bridge into a rigid foundationpiers calculatedlength and standard deviation is less than1%; elastic foundation pier bridgestatecalculation length and standard length, deviation is less than0.5%, and this formula isverified.
     The shape function is given in this paper, a method to calculate the horizontaldisplacement of high pier is set up. Based on the principle of potential energy, thedisplacement of pier top are analyzed. Different boundary conditions of high pierdeformation,a method to calculate the horizontal displacement of high pier is also given.According to the given different mechanical models of boundary conditions of the pier shape,fThe method is derived for elastic constraint conditions, no formula for calculating the piertopconstraints under various conditions such as the horizontal displacement of the top of pier.And on the basis of rigid foundation,a practical formula for calculating the horizontaldisplacement of high pier is proposed for a constraint pier on the top.
     The research achievements not only provide technical support to determine thereasonable range, high pier bridge form and stress state in the stage of bridge designing, butalso provide the basis for the revision of the relevant sections for specification.
引文
[1]郑斐.劲性骨架对悬臂施工桥梁合龙段影响分析[D].西安:长安大学,2008
    [2]杨宁,朱卫国.对山区高墩设计的几点认识[J].公路交通科技,2010
    [3]刘恩.桩柱式高桥墩桩基稳定性分析与室内模型试验研究[D].长沙:湖南大学,2007
    [4]崔恩勇.高墩大跨连续刚构桥成桥稳定系数计算方法[D].西安:长安大学,2012
    [5]王钧利.高墩大跨径连续刚构弯桥全过程稳定性分析[D].西安:长安大学,2006
    [6]曹新建.基于约束混凝土本构关系的高墩稳定性分析[D].西安:长安大学,2004
    [7]李文华.高墩大跨径连续刚构弯桥全过程稳定性分析[D].西安:长安大学,2005
    [8]李国豪.桥梁结构稳定与振动.[M].北京:中国铁道出版社,2003
    [9]交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)北京:人民交通出版社,2004
    [10]刘睿.变截面墩柱计算长度理论研究[D].重庆:重庆交通大学,2011
    [11]齐宏学,高小妮.装配式梁桥高墩计算长度系数探讨[J].中外公路,2011,31(2):190-193
    [12]曾照亮.高墩计算长度探讨[J].中外公路,2008,28(5):160-162
    [13]刘海青.单排桩柱墩压杆的计算长度[J].福州大学学报,2007,31(1):89-94
    [14]郭梅.高墩大跨连续刚构桥稳定性分析[J].西安公路交通大学学报,1999,19(3):31-38
    [15]刘进.弹性地基桥墩稳定性分析[J].特种结构,2004
    [16]潘志炎,史方华.高桥墩稳定性分析[J].公路,2004,(9):60-62
    [17]白青侠,宋一凡.高桥墩几何非线性分析的能量法[J].西安公路交通大学学报,2001,21(2):50-52
    [18]袁伦一.关于箱形截面连续梁及连续刚构设计的两点刍议[J].公路,2009,(9):94-98
    [19]ASSSHTO,LRFD Bridge Design Specifications[S],American Association of StateHighway and Transportation Officials,Washington,D.C.,1994
    [20]AISC,Load Resistance Factor Design Specification for Steel Building[M],2nded,,American Institute of Steel Consturction,Chicago,IL,1993
    [21]铁路桥梁及其他工程结构物规范[S],德国:1993
    [22]陈殿邦.双薄壁高墩连续刚构桥墩顶水平位移分析[D].西安:长安大学,2012
    [23]李运生,阎贵平,王元清,张彦玲.铁路桥墩横向刚度设计标准的研究[J]铁道科学与工程学报,2007
    [24]日本铁路结构设计标准和解释[S],日本:1996
    [25]李运生.铁路桥墩横向刚度设计标准的研究[J]铁道科学与工程学报,2007
    [26]Grant A. Vibration frequencies for a uniform beam with one end elastically suported andcarrying amass at the other end [J]Journal of Applied Mechanics1975,42:501502
    [27]严盛强.刚性基础高桥墩墩顶位移分析[D].柳州:广西工学院,2010
    [28]刘建瑞,沈平.铁路桥梁设计横向刚度指标限值的研究[J].铁道标准设计,2006.12
    [29]DS(804),The Standard of Germany railroad bridge design [S]1991
    [30]铁道结构设计等标准[S]日本:1992
    [31]Liz Graciela Nallim,Ricardo Oscar Grossi. A general algorithm for the study of thedynamic behaviour of beams[J]. Applied Acoustics,1999,57:345-356
    [32]国际铁路联盟UIC规范[S],1992
    [33]Ricardo Oscar Grossi, Carlos Marcelo Albarracin. Some observations on the applicationof theRayleigh-Ritz method.[J] Applied Acoustics,2001,62:1171-1182
    [34]N GSTEPHEN. On Southwell’s and a novel Dunkerley’s method[J]. Journal of Sund andVibration1995,181(1),179-184
    [35]柯在田.铁路桥梁横向变形限值标准问题的研究[J]铁道标准设计,2004年
    [36]Chun R. Free vibration of a beam with one end spring-hinged and the other free.[J]Journal of Sound and Vibration1972,39:1154-1155
    [37]Goel P. Transverse vibrations of tapered beams[J]Journal of Sound andVibration,1976,47:1-7
    [38]Laura PAA,Grossi RO,Alvarez S.Tranverse Vibrations of a beam elastically restrained atoneend and with a mass and spring at the other subjected to an axial force.[J] NuclearEngineering and Design,1982,74:299-302
    [39]Rektorys.Vibrational methods in mathematics,science and engineering.AmsterdamReidel,1980
    [40]中华人民共和国铁道部.铁路桥梁检定规范[S].北京:中国铁道出版社,2004
    [41]中华人民共和国铁道部.铁路桥梁检定规范[S].北京:人民铁道出版社,1978
    [42]TB1002.11999,铁路桥涵设计基本规范[S].北京:中国铁道出版社,1999
    [43]TB1002.12005,铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005
    [44]吴定俊,陈一鸣.铁路轻型桥墩墩顶横向位移限值确定的方法与分析[J],铁道标准设计,2004.4,13-16
    [45]程翔云.高桥墩设计计算中的两个问题[J].重庆交通学院学报.2000,19(2):6-10.
    [46]程翔云.变截面高墩几何非线性的数值分析[J].公路.1996,(6).
    [47]田仲初,程翔云.设置板式橡胶支座的高桥墩之非线性分析[J].重庆交通学院学报,1998,17(2):20-25.
    [48]马朝霞.高桥墩墩顶水平位移的计算与分析[J].重庆交通大学学报.2007.6,50-54
    [49]陈兴冲.桥墩自振频率的能量公式[J].土木工程学报.1999.5:7679
    [50]李建,张炎等.考虑橡胶支座弹性约束时墩顶横向位移计算[J].结构分析与试验研究.2003.5,880-886
    [51]粟伟,赵建三等.旧桥维修加固工程主墩墩顶位移监测与控制[J],重庆交通大学学报,2007.12,152-155
    [52]杭有宏.考虑支座摩阻力时连续梁桥墩顶水平位移的计算[J].扬州工学院学报.1992.12.15-19
    [53]殷晓明,谢耀辉等.Ritz能量法分析约束位置对长桩稳定的影响[J].华北水利水电学院学报.2009.2,84-87
    [54]铁道部西南交通大学.柔性墩的特点和类型[J].铁道建筑.1977.05:27-30
    [55]周津斌.高速铁路简支梁空心墩墩型比选分析[J].高速铁路技术.2013(4):28-34
    [56]周华毅.山区高速公路桥梁设计对墩型选择的研究[J].黑龙江交通科技.2011.9(211):238
    [57]张小月,陈艾荣,吴怀义,罗晓瑜.国内外高墩桥梁桥墩造型应用研究.上海公路.2012.1:44-48
    [58]刘钢成,王耀军.长安高速公路峡谷高墩梁式桥结构类型的选择.公路.2013,1:97-99
    [59]张志平,贾伟红.超高墩长联大跨连续刚构桥桥墩形式选择.第二十届全国桥梁学术会议论文集.2012,179-185
    [60]欧阳青,王艳,王艳华.高墩大跨连续刚构桥墩形式研究.中外公路.2008,2(28):153-155
    [61]石翠芳.山区高墩墩顶水平位移及墩型比选研究[D].西安:长安大学.2013
    [62]陈惠发(美),段炼.桥梁工程下部结构设计[M]北京:机械工业出版社.2008
    [63]刘龄嘉.桥梁工程[M]北京:人民交通出版社.2007
    [64]中交公路规划设计院有限公司.重庆某高速公路施工图[Z].2009
    [65]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社.2001
    [66]董伟.大跨高墩连续刚构铁路桥的稳定性分析[D].成都:西南交通大学,2009
    [67]马庭林,陈克坚,徐勇.南昆铁路清水河大桥预应力连续刚构主桥施工设计[J].预应力技术.2004(4):13-17
    [68]何琼,李国文,潘桂清.贵州惠兴线北盘江特大桥设计[J].公路交通科技(应用技术版).2013.3(99):203-206
    [69]喻梅,廖海黎,李乔.多塔斜拉桥的桥塔设计构思[J].铁道建筑.2010.09:24-27
    [70]吴斌暄.斜拉桥桥塔关键问题研究[D].同济大学博士学位论文.2008
    [71]龚志刚.香港昂船洲大桥主桥工程简况[J].世界桥梁.2004(4):21
    [72]裴宾嘉,石勇,于志斌等.荆岳长江大桥28号主墩特大型分离式双壁钢围堰的下沉[J]公路.2008.3:75-81
    [73]中国交通报.荆岳长江大桥南北主塔封顶[J]中外公路.2009.3:53
    [74]陈光保,魏浩翰,黄腾.南京长江三桥钢索塔施工测量技术[J]公路交通科技.2008.9(25):73-80
    [75]李翠霞.武汉白沙洲长江大桥主塔设计[J].人民长江.2003.5:52-53
    [76]卜一之,赵雷,李乔.苏通长江大桥结构非线性稳定性研究[J].土木工程学报.2013.1(46):84-91
    [77]方卫东,程向阳,何裕仁.鄂黄长江大桥主塔主梁混凝土配合比设计与应用[J].中外公路.2001.06(21):65-67
    [78]金增洪.台湾高屏溪桥的架设安装施工[J].中外公路,2004.10(24):54-56
    [79]梅新咏,徐恭义,廖慕捷.澳门西湾大桥总体设计[A].中国交通土建工程学术论文集
    [C],2006.374-377
    [80]中国公路学会桥梁和结构工程分会.面向创新的中国现代桥梁[M].北京:人民交通出版社.2009
    [81]李利军,胡兆同,曲立清.青岛海湾大桥大沽河航道桥静风稳定性分析[J].郑州大学学报(工学版),2011,04(32):11-15
    [82]徐国平,邓海.武汉阳逻长江大桥总体设计[J].公路.2004.10(10):1-6
    [83]宋晖,王晓冬.舟山大陆连岛工程西堠门大桥总体设计[J].公路.2009.1(1):8-16
    [84]穆保岗,朱建民,牛亚洲.南京长江四桥北锚碇沉井监控方案及成果分析[J].岩土工程学报,2011.2(33)269-274
    [85]AASHTO,Standard Specifications for Highway Bridges[S],American Association ofState Highway and Transportation Officials,Washington,D.C.,1994
    [86]徐腾飞,赵人达,占玉林.钢管混凝土劲性骨架超高墩连续刚构桥施工阶段横向非线性变形分析[J].中外公路,2010.8(30):124-126
    [87]Cai,S.-H,Chinese standard for concrete-filled tube columns,in Composite Construction inSteel and Concrete Ⅱ[R],Proc. Of an Engineering Foudnation Conference,SamuelEasterling,W.and Kim Roddis,W.M.,Eds,Potosi,MO,1992,143
    [88]Cai,S.-H,Ultimate strength of concrete-filled tube columns,in Composite Construction inSteel and Concrete[R],Proc. Of an Engineering Foudnation Conference,DaleBuckner,C.and Viest,I.M.,Eds,Henniker,NH,1987,703
    [89]Zhong,S.-T,New concept and development of research on concrete-filled steel tube(CFST)members[R],in Proc.2nd Int. Symp.On Civil Infrastructure Systems,1996
    [90]CECS28:90,Specifications for the Design and Construction of Construction ofConctete-Filled Steel Tubular Structures[R],China Planning Press,Beijing,1990
    [91]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003
    [92]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [93]项海帆,刘光栋.拱结构的振动与稳定[M].北京:人民交通出版社,1991
    [94]唐家祥等.结构稳定原理[M].北京:中国铁道出版社,1989
    [95]铁摩辛柯.弹性稳定理论(第二版)[M].北京:科学出版社,1965
    [96]李龙元.结构稳定性分析的基本理论及讨论[J].上海工业大学学报,1990(3).
    [97]颜岩.开口薄壁箱型拱桥转体施工中拱肋局部稳定研究[D].武汉:武汉理工大学,2009
    [98]Johnson,D.E.,Lateral stability of frames by energy method[J],J.Eng.Mech. ASCE,95(4),23,1960
    [99]Taucher T R.Energy Principle in Structual Mechauics.McGnaw-Hill Inc,1974
    [100]刘光栋,罗汉泉.杆系结构稳定理论[M].北京:人民交通出版社,1988
    [101]张浦洋.山区高桥墩墩顶水平位移计算分析.[D].西安:长安大学.2012
    [102]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004
    [103]陈剑锋,张川,白绍良.基于割线刚度迭代的钢筋混凝土结构非线性分析的位移控制法[J].铁道工程与科学学报.2010.8,184-187
    [104]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科技出版社,1994
    [105]徐伟良,潘立本.钢框架弹塑性大位移分析的单元刚度矩阵[J].重庆建筑大学学报.1998.8,27-35
    [106]吕毅刚.高墩大跨桥梁几何非线性及稳定性有限元分析[D].长沙:长沙理工大学硕士毕业论文,2006.06
    [107]吕西林,金国芳,吴效涵.钢筋混凝土结构非线性有限元理论与分析[M].上海:同济大学出版社,1996
    [108]张和.桥墩形式对高墩曲线连续刚构桥结构影响分析[D].西安:长安大学,2007
    [109] McGuire,W.,Computers and steel design[J],Modern Steel Constr.,32(7),39,1992
    [110]崔恩勇.高墩大跨连续刚构桥成桥稳定系数计算方法.[D].西安:长安大学,
    [111]郭梅.高墩大跨连续刚构桥稳定性分析[J].西安公路交通大学学报,1999,19(3):31-38
    [112]陈群.高墩大跨径桥梁稳定性仿真分析[J].西安:长安大学,2003
    [113]陈务军,关富玲,强士中.桥梁结构稳定分析的一种新方法[J].桥梁建设,1996(4).
    [114]高小妮,贺拴海,齐宏学.装配式梁桥高墩计算长度系数探讨[J].武汉理工大学学报,2011,33(7):51-56
    [115]高小妮,贺拴海,齐宏学.考虑桩基柔度的多跨梁桥高墩计算长度系数分析[J].武汉理工大学学报,201133(7)
    [116] Station,J.F.,Roeder,C.W.,and Campbell,T.I.,High Load Multi-Rotational BridgeBearings,NCHRP Report10-20A,Transpotation Research Board,National ResearchCouncil,Washington,D.C.,1993
    [117] AISI,Steel bridge bearing selection and design guide[M],Highway Structures DesignHandbook,Vol. Ⅱ,American Iron and Steel Insitute,Washington, D.C.,1994.chap.4
    [118]华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997
    [119]李廉锟.结构力学[M].北京:高等教育出版社,2004
    [120]李黎、廖萍、龙晓鸿、彭元诚.薄壁高墩大跨连续刚构桥的非线性稳定分析.工程力学.2006.5(23):119-124,88
    [121]李永志.桥梁结构缩尺模型的设计制作与试验[J].建材技术与应用,2007
    [122]交通部.公路桥涵设计通用规范(JTG D60-2004)北京:人民交通出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700