用户名: 密码: 验证码:
基函数中带形状参数的几何造型理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造带形状参数的基函数是近年来计算机辅助几何设计中的一个热门研究课题,有重要的理论意义和广阔的应用前景。本文分别在新的拟三次代数函数空间和拟三次三角函数空间中运用开花方法构造带两个指数形状参数的拟三次Bernstein基和拟三次三角Bernstein基。在此基础上,分别构造两组带两个局部指数形状参数的拟三次非均匀B样条基和拟三次三角非均匀B样条基。所构造的基函数具有单位性,非负性,线性无关性和全正性等重要性质。引入的指数形状参数具有张力作用效果,对所生成的曲线曲面形状具有明确的几何调控意义。传统的样条基只能生成逼近曲线或插值曲线,本文构造了一组既可生成逼近曲线也可生成局部插值或整体插值曲线的拟四次三角非均匀B样条基。保形插值样条在工业设计和科学数据可视化中具有重要的研究价值,在过去三十年中一直受到学者的广泛关注。但在已有的c2连续保形插值样条中,有些方法只能保单调性,有些方法只能保凸性,而且为了获得c2连续的样条,大多数方法需要求解样条在节点上满足二阶连续性的线性方程组,本文构造了一类可自动达到c2连续的四次有理保形插值样条基。本文的主要研究工作及成果如下:
     (1)在拟三次代数函数空间Span{1,3t2-2t3,(1-t)α,tβ}中运用开花方法构造了一组带两个指数形状参数的拟三次Bernstein基。基于新提出的拟三次Bernstein基,构造了一类带两个局部指数形状参数的拟三次非均匀B样条基。此外,将拟三次Bernstein基推广至三角域上,构造了一类三角域上带三个指数形状参数的拟三次Bernstein-Bezier基。
     拟三次Bernstein基包含经典的三次Bernstein基和三次Said-Ball基为特例。在拟扩展切比雪夫空间理论框架下,证明了该拟三次Bernstein基构成一组最优规范全正基。为了高效和稳定地计算相应的拟三次Bezier曲线,开发了一种新的割角算法。基于包络理论与拓扑映射的方法对拟三次Bezier曲线进行了形状分析,给出了曲线上含有奇点,拐点和曲线为局部凸或全局凸的充分必要条件,这些条件完全由控制多边形和形状参数决定。证明了拟三次非均匀B样条基具有单位性,局部支撑性,线性无关性和全正性等性质。相应的拟三次非均匀B样条曲线对单节点具有c2连续性,包含经典的三次非均匀B样条曲线为特例,且对特别的形状参数取值,曲线可以达到C2∩FCk+3(k∈Z+)阶连续性。基于拟三次Bernstein-Bezier基,给出了一类三角域上的拟三次Bernstein-Bezier曲面片。开发了一种计算三角域上拟三次Bernstein-Bezier曲面片的De Casteljau-type算法,并给出了G1光滑拼接两张三角域上拟三次Bernstein-Bezier曲面片的充分条件。
     (2)在拟三次三角函数空间Span{1,sin2t,(1-sint)α,(1-cos,)β}中运用开花方法构造了一组带两个指数形状参数的拟三次三角Bernstein基。基于拟三次三角Bernstein基,构造了一类带两个局部指数形状参数的拟三次三角非均匀B样条基。利用张量积技巧,构造了一类矩形域上带四个指数形状参数的双拟三次三角Bezier基。此外,将拟三次三角Bernstein基推广至三角域上,构造了一类三角域上带三个指数形状参数的拟三次三角Bernstein-Bezier基。
     在拟扩展切比雪夫空间理论框架下,证明了该拟三次三角Bernstein基构成一组最优规范全正基。开发了一种高效和稳定计算拟三次三角Bezier曲线的割角算法。给出了拟三次三角Bezier曲线精确表示任意一段椭圆弧和抛物弧的控制点选择方案。证明了新构造的拟三次三角B样条基具有单位性,局部支撑性,线性无关性和全正性等性质。相应的拟三次三角非均匀B样条曲线对单节点具有C2∩FC3连续性,且对均匀节点曲线可以达到C3甚至C5阶连续性。给出了G1,G2,G3和G5光滑拼接两张双拟三次三角Bezier曲面片的充分条件。给出了双拟三次三角Bezier曲面片精确表示椭球面片和抛物面片的控制点选择方案。基于拟三次三角Bernstein-Bezier基,构造了一类三角域上的拟三次三角Bernstein-Bezier曲面片。该曲面片能够用于生成边界曲线为椭圆弧或抛物弧的三角曲面片。开发了一种计算拟三次三角Bernstein-Bezier曲面片的De Casteljau-type算法。此外,推导出了G1光滑拼接两张三角域上拟三次三角Bernstein-Bezier曲面片的充分条件。
     (3)在一类带有两个指数形状参数的拟四次三角函数空间Span{1,α sint(1-sint)α-1,βcost(1-cost)β-1,(1-sint).,(1-cost)β}中构造了一组与四次Bernstein基性质类似的拟四次三角Bernstein基。基于该拟四次三角Bernstein基,构造了一类带四个局部形状参数的拟四次三角非均匀B样条基。
     由拟四次三角Bernstein基定义的拟四次三角Bezier曲线能够精确表示椭圆弧和抛物弧。给出了拟四次三角非均匀B样条基具有局部支撑性和线性无关性的充分条件。相应的样条曲线具有保单调性和保凸性,且对特别的形状参数取值,曲线可以达到C2∩FC2k+3(k∈Z+)阶连续性。利用拟四次三角非均匀B样条基,无需求解线性方程组,通过改变局部形状参数取值可灵活方便地生成逼近或插值控制点的C2连续样条曲线。
     (4)构造了一类带两个局部形状参数的四次有理插值样条基。
     无需求解线性方程组,该插值样条可以达到C2连续。分析了该插值样条的收敛性并给出了插值误差公式,结果表明该插值样条具有O(h2)逼近阶。通过限制两个局部形状参数取值,给出了该插值样条保正,保单调和保凸的充分条件。
In the last years, constructing basis functions with shape parameters is a hot research topic in Computer Aided Geometric Design (CADG), which has important theoretical significance and application value. In this doctoral dissertation, we construct quasi cubic Bernstein basis functions with two exponential shape parameters and quasi cubic trigonometric Bernstein basis functions with two exponential shape parameters in two new quasi cubic algebraic function space and quasi cubic trigonometric function space, respectively. Based on the two new basis functions, two classes of quasi cubic non-uniform B-spline basis possessing two local exponential shape parameters and quasi cubic trigonometric non-uniform B-spline basis possessing two exponential shape parameters are constructed. The proposed bases have the important properties of partition of unity, non-negativity, linear independence and total positivity and so on. The provided exponential shape parameters serve as tension shape parameters and thus they have a predictable adjusting role on the shape of the corresponding curves and surfaces. The conventional spline basis functions can be only used to generate either interpolation curves or approximation curves, in order to overcome these drawbacks, we construct a kind of quasi quartic trigonometric B-spline basis which can be used to generate interpolation curves as well as approximation curves. Shape preserving interpolation spline has great potential applications in industrial design and scientific data visualization, which has attracted widespread interest during the past thirty years. In the existing shape preserving C2interpolation spline methods, however, some methods can be only used to preserve the monotonic data set, while others can be only used to preserve the convex data set, and often for C2continuity, it is requested to solve a linear system of consistency equations for the derivative values at the knots. In this doctoral dissertation, we construct a new rational quartic interpolation spline which can achieve C continuity automatically. The main research work and achievements of the doctoral dissertation are as follows:
     (1) By using the blossom approach, we construct a class of quasi cubic Bernstein basis functions with two exponential shape parameters in the new quasi cubic algebraic function space Span{1,3t2-2t3,(1-t)α,lβ}. Based on the new proposed quasi cubic Bernstein basis, we construct a class of quasi cubic non-uniform B-spline basis with two local exponential shape parameters. Moreover, we also extend the quasi cubic Bernstein basis functions to the triangular domain, and thus we give a new class of quasi cubic Bernstein-Bezier basis functions with three exponential shape parameters over triangular domain.
     The quasi cubic Bernstein basis functions include the classical cubic Bernstein basis functions and cubic Said-Ball basis funxtions as special cases. Within the general framework of Quasi Extended Chebyshev space, we prove that the quasi cubic Bernstein basis forms a normalized optimal totally positive basis. In order to compute the corresponding quasi cubic Bezier curves stably and efficiently, a new corner cutting algorithm is developed. Based on the theory of envelop and topological mapping, shape analysis for the quasi cubic Bezier curves is given. Necessary and sufficient conditions are derived for the quasi cubic Bezier curves with one or two inflection points, a loop or a cusp, and be locally or globally convex, which are completely determined by the vertexes of the control polygon and the shape parameters. We prove that the quasi cubic non-uniform B-spline basis has the important properties of partition of unity, local supportive, linear independence and total positivity and so on. The associated quasi cubic B-spline curves have C2continuity at single knots and include the cubic non-uniform B-spline curves as a special case, and can be C2∩FCk+3(k∈Z+) continuous for particular choice of shape parameters. Based on quasi cubic Bernstein-Bezier basis functions, a class of quasi cubic Bernstein-Bezier patches are construted. A De Casteljau-type algorithm for computing the associated quasi cubic Bernstein-Bezier patches is developed. And the conditions for G1continuous joining two quasi cubic Bernstein-Bezier patches over triangular domain are also deduced.
     (2) A class of quasi cubic trigonometric Bernstein basis functions with two exponential shape parameters are constructed by using the blossom approach in the new functions space Span{1,sin2t,(1-sint)α,(1-cost)β}. Based on the new proposed quasi cubic trigonometric Bernstein basis, a class of quasi cubic trigonometric non-uniform B-spline basis with two local exponential shape parameters is constructed. By using the method of tensor product, a kind of rectangular trigonometric Bezier basis with four exponential shape parameters is constructed. Moreover, a class of trigonometric Bernstein-Bezier basis functions over triangular domain with three exponential shape parameters is also constructed.
     Within the general framework of Quasi Extended Chebyshev space, we prove that the quasi cubic trigonometric Bernstein basis forms a normalized optimal totally positive basis. In order to compute the corresponding quasi cubic trigonometric Bezier curves stably and efficiently, a new corner cutting algorithm is developed. The control points selection schemes for exactly representing any arc of an ellipse or parabola by using the quasi cubic trigonometric Bernstein basis are developed. Partition of unity, local supportive, linear independence and total positivity of the quasi cubic trigonometric non-uniform B-spline basis are proved. For different values of the shape parameters, the associated trigonometric B-spline-like curves can be C2∩FC3continuous for non-uniform knot vector, and C3or C5continuous for uniform knot vector. The G1,G2,G3and G5continuous conditions for joining two rectangular trigonometric Bezier patches are given. Ellipsoid or paraboloid patches can be represented exactly by using the rectangular trigonometric Bezier patch. The corresponding trigonometric Bernstein-Bezier patch over triangular domain can be used to construct some surfaces whose boundaries are arcs of ellipse or parabola. The sufficient conditions for G1continuous joining two trigonometric Bernstein-Bezier patches over triangular domain are deduced.
     (3) Five new quasi quartic trigonometric Bernstein basis functions analogous to the classical quartic Bernstein basis function are constructed in the space Span{1, α sint(1-sin t)α-1,βcost(1-cos t)β-1,(1-sin t)α,(1-cost)β}. Based on the quasi quartic trigonometric Bernstein basis functions, a class of quasi quartic trigonometric B-spline basis with four local shape parameters are also constructed.
     The ellipses and parabolas can be represented exactly by using the corresponding quasi quartic trigonometric Bezier curves. The sufficient conditions for the quasi quartic trigonometric B-spline basis having local supportive and linear independence are derived. The corresponding quasi quartic trigonometric B-spline curves have monotonic preserving property as well as convexity preserving property. And for particular choice of the shape parameters, the spline curves can be C2∩FC2k+3(k∈Z+) continuous. Without solving a linear system, the spline curves can be also used to approximate or interpolate sets of points with C2continuity partly or entirely.
     (4) A new rational quartic interpolation spline with two local tension parameters is developed.
     Without solving a liner system, the spline can be C2continuous. A convergence analysis establishes an error bound and shows that the order of approximation is O(h2) accuracy. By constraining the shape parameters, we derive the sufficient conditions for the proposed interpolation spline to preserve the shape of positive, monotonic, and convex set of data.
引文
[1]苏步青,刘鼎元.计算几何[M].上海科技出版社,1981.
    [2]王国瑾,汪国昭,郑建民.计算机辅助几何设计[M].高等教育出版社,北京,2001.
    [3]G. Farin. Curves and Surfaces for Computer Aided Geometric Design[M]. Fifth Edition, Elsevier Inc.,2002.
    [4]施法中.计算机辅助几何设计与非均匀有理B样条[M].高等教育出版社,北京,2001.
    [5]P. Bezier. Mathematical and practical possibilities of UNISURF [J]. In:Barnhill, R.E. and Riesenfield, R.E.eds., Computer Aided Geometric Design, Academic Press, New York, 1974,127-152.
    [6]J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design [M]. A.K. Peters, Wellesley, MA,1993.
    [7]L. Piegl and W. Tiller. The NURBS Book [M]. Springer, New York,1995.
    [8]G. Farin. Algorithms for rational Bezier curves [J]. Computer-Aided Design,1983, 15:73-77.
    [9]G. Farin. Designing C1 surfaces consisting of triangular cubic patches[J]. Computer-Aided Design,1982,14:253-256.
    [10]G.Z. Chang and Y.Y. Feng. An improved condition for the convexity of Bernstein-Bezier surfaces over triangles [J]. Computer Aided Geometric Design,1984,1: 279-283.
    [11]G. Farin. Triangular Bernstein-Bezier patches[J]. Computer Aided Geometric Design, 1986,3:83-127.
    [12]华宣积,邝志全.B e zier曲面的凸性定理.浙江大学学报[J].计算几何论文集,1982,182-189.
    [13]许伟.矩形域上Bernstein-Bezier:多项式曲面的凸性[J].应用数学学报,1990,13:176-184.
    [14]朱功勤,殷明.张量积上参数Bezier曲面保凸的充分条件[J].计算数学,1995,3:273-277.
    [15]陈发来,冯玉瑜.矩形域上Bezier曲面的凸性[J].高等学校计算数学学报(计算几何专辑),1993,7-13.
    [16]陈发来.双二次Bezier曲面的正性和凸性[J].高校应用数学学报,1996,11:467-476.
    [17]刘鼎元.Bezier曲面片光滑连接的几何条件[J].应用数学学报,1986,9:432-442.
    [18]胡康生,刘鼎元.汽车车身外形的数学模型[J].上海拖拉机汽车研究所,1983.
    [19]A.A. Ball. CONSURF, Part 1:Introduction to the conic lofting tile[J].Computer-Aided Design,1974,6:243-249.
    [20]A.A. Ball. CONSURF, Part 2:Description of the algorithms [J]. Computer-Aided Design,1975,7:237-242.
    [21]A.A. Ball. CONSURF, Part 3:How the program is used [J]. Computer-Aided Design, 1977,9:9-12.
    [22]GJ. Wang. Ball curve of high degree and its geometric properties [J]. Applied Mathematics-A Journal of Chinese Universities,1987,2:126-140.
    [23]H.B. Said. Generalized Ball curve and its recursive algorithm [J]. ACM Transactions on Graphics,1989,8:360-371.
    [24]T.N.T. Goodman and H.B. Said. Properties of generalized Ball curves and surfaces [J]. Computer-Aided Design,1991,23:554-560.
    [25]T.N.T. Goodman and H.B. Said. Shape preserving properties of the generalized Ball basis[J]. Computer Aided Geometric Design,1991,8:115-121.
    [26]S.M. Hu, G.Z. Wang, and T.G. Jin. Properties of two types of generalized Ball curves[J]. Computer-Aided Design,1996,28:125-133.
    [27]J. Delgado and J.M. Pena. On the generalized Ball bases[J]. Advances in Computational Mathematics,2006,24:263-280.
    [28]S.M. Hu, G.Z. Wang, and J.G. Sun. A type of triangular Ball surface and its properties [J]. Journal of Computer Science and Technology,1998,13:63-72.
    [29]I.J. Sehoenberg. On spline function [M]. In:Shisha, Oeds. Inequalities, Aeademic Press, NewYork,1967.
    [30]C. De Boor. On calculating with B-splines [J]. Joural of Approximation Theory,1972, 6:50-62.
    [31]W.J. Gordon and R.F. Riesenfeld. Bernstein Bezier methods for the Computer Aided Geometric Design of free-form curves and surfaces [J]. Journal of ACM,1974, 21:293-310.
    [32]W.J.Gordon and R.F.Riesenfeld. B-spline and surfaces [M]. in:Computer Aided Geometric Design,R.E.Barmhill and R.F.Riesenfeld eds.,Academic Press,New York, 1974,95-126.
    [33]E. Cohen, T. Lyche, and R.F. Riesenfeld. Discrete B-spline and subdivision techniques in computer aided geometric design and computer graphics [J]. Computer graphics and Image Processing,1980,14:87-111.
    [34]W. Boehm. Inserting new knots into B-spline curve [J]. Computer Aided Design,1980, 12:199-201.
    [35]K.J. Versprille. Computer aided design application of rational B-spline approximation form[D]. Ph.D thesis,1975, Syracuse University.
    [36]W. Tiller. Rational B-splines for curve and surface representation [J]. IEEE Computer Graphics and its Application,1983,3:61-69.
    [37]W. Tiller. Geometric modeling using non-uniform rational B-splines [M]. Mathematical techniques, SIGGRAH tutorial notes, ACM, NewYork,1986.
    [38]W. Tiller. Knot-remove algorithms for NURBS curves and surfaces [J]. Computer-Aided Design,1992,24:445-453.
    [39]L. Piegl. Curve fitting algorithm for rough cutting [J]. Computer-Aided Design,1986, 18:79-82.
    [40]L. Piegl and W. Tiller. Curve and Surface construction using B-splines [J]. Computer-Aided Design,1987,19:487-498.
    [41]L. Piegl. Modifying the shape of rational B-splines, partl:curves [J]. Computer-Aided Design,1989,21:509-518.
    [42]L. Piegl. Modifying the shape of rational B-splines, part2:surfaces [J]. Computer-Aided Design,1989,21:538-546.
    [43]L. Piegl and W. Tiller. A menagerie of rational B-spline circle [J]. IEEE Computer Graphics and Application,1989,9:48-56.
    [44]韩旭里,刘圣军.二次Bezier曲线的扩展[J].中南工业大学学报(自然科学版),2003,34:214-217.
    [45]吴晓勤,韩旭里.三次Bezier曲线的扩展[J].工程图学学报,2005,26:98-102.
    [46]谢进,洪素珍.一类带两个形状参数的三次Bezier曲线[J].计算机工程与设计,2007,28:1361-1363.
    [47]吴晓勤,韩旭里,罗善明.四次Bezier曲线的两种不同扩展[J].工程图学学报,2006,5,59-64.
    [48]潘庆云,陈素根.五次Bezier曲线的三种不同扩展[J].安庆师范学院学报(自然科学版),2008,14:69-73.
    [49]邬弘毅,夏成林.带多个形状参数的Bezier曲线与曲面的扩展[J].计算机辅助设计与图形学学报,2005,17:2607-2612.
    [50]L.Q. Yang and X.M. Zeng. Bezier curves and surfaces with shape parameters[J]. International Journal of Computer Mathematics,2009,86:1253-1263.
    [51]刘植.Bezier曲线的扩展[J].合肥工业大学学报(自然科学版).2004,27:976-979.
    [52]刘植,陈晓彦,江平.带多形状参数的广义Bezier曲线曲面[J].计算机辅助设计与 图形学学报,2010,22:838-844.
    [53]X.A. Han, Y.C. Ma, and X.L. Huang. A novel generalization of Bezier curve and surface [J]. Journal of Computational and Applied Mathematics,2008,217:180-193.
    [54]C. Jie and G.J. Wang. A new type of the generalized B6zier curves [J]. Applied Mathematics-A Journal of Chinese Universities,2011,26:47-56.
    [55]严兰兰,梁炯丰,黄涛.带形状参数的Bezier曲线[J].合肥工业大学学报(自然科学版),2009,32:1783-1788.
    [56]L.L. Yan and J.F. Liang. An extension of the Bezier model [J]. Applied Mathematics and Computation,2011,218:2863-2879.
    [57]刘植.CAGD中基于Bezier方法的曲线曲面表示与逼近[D].博士学位论文,2009,合肥工业大学.
    [58]T.N. Xiang, Z. Liu, W.F Wang, and P. Jiang. A novel extension of Bezier curves and surfaces of the same degree [J]. Journal of Information & Computational Science,2010,7: 2080-2089.
    [59]X.Q. Q, G. Hu, N.J. Zhang, X.L. Shen, and Y. Yang. A novel extension to the polynomial basis functions describing Bezier curves and surfaces of degree n with multiple shape parameters [J]. Applied Mathematics and Computation,2013,223:1-16.
    [60]P. Costantini. Curve and surface construction using variable degree polynomial splines [J]. Computer Aided Geometric Design,2000,17:419-466.
    [61]M.L. Mazure. Quasi-Chebychev splines with connection matrices:application to variable degree polynomial splines [J]. Computer Aided Geometric Design,2001, 18:287-298.
    [62]M.L. Mazure. On dimension elevation in quasi extended Chebyshev spaces [J]. Numerische Mathematik,2008,109:459-475.
    [63]M.L. Mazure. Which spaces for design [J]. Numerische Mathematik,2008,110: 357-392.
    [64]M.L. Mazure. On a general new class of quasi Chebyshevian splines [J]. Numerical Algorithms,2011,8:399-438.
    [65]M.L. Mazure. Quasi Extended Chebyshev spaces and weight functions [J]. Numerische Mathematik,2011,118:79-108.
    [66]T. Bosner and M. Rogina. Variable degree polynomial splines are Chebyshev splines [J]. Advances in Computational Mathematics,2013,38:383-400.
    [67]王仁宏,李崇君,朱春钢.计算几何教程[M].科学出版社,2008.
    [68]B.A. Barsky. The Beta-spline:A local representation based on shape parameters and fundamental geometric measure [D]. Ph.D. thesis,1981, University of Utah.
    [69]B.A. Basky and J.C.Beatty. Local control of bias and tension in Beta-spline [J]. ACM Transaction on Graphics,1983,2:109-134.
    [70]B.A. Barsky. Computer Graphics and Geometric Modeling Using Beta-splines [M]. Springer Verlag,1988.
    [71]J. Barry. Discrete Beta-Splines [J]. Computer Graphics,1987,21(4),137-144.
    [72]J. Barry. Multiple-knot and Rational Cubic Beta-Splines[J]. ACM Transac tionson Graphies,1989,8:100-120.
    [73]J. Barry. Knot Insertion for Beta-spline Curves and Surfaces [J]. ACM Transactions on Graphics,1990,9:41-65.
    [74]J. Barry. Quartic Beta-splines [J]. ACM Transactions on Graphics,1990,9:301-337.
    [75]韩旭里,刘圣军.三次均匀B样条曲线的扩展[J].计算机辅助设计与图形学学报,2003,15:576-578.
    [76]X.L. Han. Piecewise quartic polynomial curves with a local shape parameter [J]. Journal of Computational and Applied Mathematics,2006,195:34-45.
    [77]I. Juhasz, M. Hoffmann. On the quartic curve of Han [J]. Journal of Computational and Applied Mathematics,2009,223:124-132.
    [78]张贵仓,耿紫星.三次均匀B样条曲线的α--扩展[J].计算机辅助设计与图形学学报,2007,19:884-887.
    [79]胡刚,刘哲,秦新强,戴芳.带多局部形状参数的三次拓展均匀B样条曲线[J].西安交通大学学报,2008,42:1245-1249.
    [80]徐岗,汪国昭.带局部形状参数的三次均匀B样条曲线的扩展[J].计算机研究与发展,2007,44:1032-1037.
    [81]左传桂.一种多形状参数四阶均匀B样条的研究[D].硕士学位论文,2006,浙江大学.[82]胡钢,刘哲,秦新强,戴芳.带多局部形状参数的三次扩展均匀B样条曲线[J].西安交通大学学报,2008,42:1245-1249.
    [83]X. Gang, G.Z. Wang. Extended Cubic Uniform B-spline and a-B-spline [J]. Acta Automatica Sinca,2008,34:980-983.
    [84]王树勋,叶正麟,陈作平.带最多独立形状参数的三阶三次均匀B样条曲线[J].计算机工程与应用,2010,46:142-145.
    [85]夏成林,邬弘毅,郑兴国,彭凯军.带多个形状参数的三次均匀B样条曲线的扩展[J].工程图学学报,201 1,2:73-79.
    [86]韦泉华.一类双参数拟均匀三次B样条曲线[J].广西工学院学报,2011,22:57-60.
    [87]夏成林,邬弘毅,郑兴国,彭凯军.带多个形状参数的三次均匀B样条的扩展[J]. 工程图学学报,2011,2:71-77.
    [88]梁锡坤.基于曲线线性组合的3次均匀B样条曲线的拓展[J].中国图象图形学报,2011,16:118-123.
    [89]谢进,刘植.三次均匀B样条曲线的同次扩展[J]. Scientific Journal of Mathematics Research,2013,3:1-5.
    [90]施晓燕.低阶的带形状参数的均匀B样条[D].硕士学位论文,2003,浙江大学.
    [91]P. Costantini and C. Manni. Geometric construction of spline curves with tension properties [J]. Computer Aided Geometric Design,2003,20:579-599.
    [92]X.L. Han. A class of general quartic spline curves with shape parameters [J]. Computer Aided Geometric Design,2011,28:151-163.
    [93]P. Costantini and F. Pelosi. Shape preserving approximation by space curves [J]. Numerical Algorithms,2001,27:219-316.
    [94]P. Costantini and C. Manni. Shape-preserving C3 interpolation:the curve case [J]. Advances in Computational Mathematics,2003,18:41-63.
    [95]P. Costantini, F. Pelosi. Shape preserving approximation of spatial data [J]. Advances in Computational Mathematics,2004,20:25-51.
    [96]P. Costantini, F. Pelosi. Data approximation using shape preserving parametric surface [J]. SIAM Journal on Numerical Analysis,2008,47:20-47.
    [97]W.Q. Shen, G.Z. Wang. Changeable degree spline basis functions [J]. Journal of Computational and Applied Mathematics,2010,234:2516-2529.
    [98]W.Q. Shen, G.Z. Wang, P. Yin. Explicit representations of changeable degree spline basis functions [J]. Journal of Computational and Applied Mathematics,2013,238:39-50.
    [99]M.L. Mazure. Blossoms and optimal bases [J]. Advances in Computational Mathematics,2004,20:177-203.
    [100]P. Costantini, F. Pelosi, M. Sampoli. New spline spaces with generalized tension properties [J]. BIT Numerical Mathematics,2008,48:665-688.
    [101]王文涛.CAD中带形状参数曲线曲面的研究[D].博士学位论文,2005,浙江大学.
    [102]张莉,邬弘毅.多形状参数的均匀B样条曲线[J].合肥工业大学学报(自然科学版),2007,30:252-256.
    [103]曹娟.CAGD中曲线曲面形状的调整与分析[D].博士学位论文,2009,浙江大学.
    [104]J. Cao and G.Z. Wang. Non-uniform B-spline curves with multiple shape parameters [J]. Journals of Zhejiang University-Science C (Computers & Electronics),2011,12: 800-808.
    [105]I. Juhasz and R. Agoston. A class of generalized B-spline curves [J]. Computer Aided Geometric Design,2013,30:85-115.
    [106]H. Pottmann. The geometry of Tchebycheffian spines [J]. Computer Aided Geometric Design,1993,10:181-210.
    [107]J.W. Zhang. C-curves:An extension of cubic curves [J]. Computer Aided Geometric Design,1996,13:199-217.
    [108]J.W. Zhang, F.L. Krause, and H.Y. Zhang. Unifying C-curves and H-curves by extending the calculation to complex numbers [J]. Computer Aided Geometric Design, 2005,22:865-883.
    [109]E. Mainar, J.M. Pena, and J. Sanchez-Reyes. Shape preserving alternatives to the rational Bezier model [J]. Computer Aided Geometric Design,2001,18:37-60.
    [110]Y.G. Lu, G.Z. Wang, and X.N. Yang. Uniform hyperbolic polynomial B-spline curves [J]. Computer Aided Geometric Design,2001,19:379-393.
    [111]Q.Y. Chen, G.Z. Wang. A class of Bezier-like curves[J]. Computer Aided Geometric Design,2003,20:29-39.
    [112]J. M. Carnicer, E. Mainar, and J. M. Pena. Critical length for design purposes and extended chebyshev spaces[J]. Constructive Approximation,2004,20:55-71.
    [113]G.Z. Wang and M.E. Fang. Unified and extended form of three types of splines [J]. Journal of Computational and Applied Mathematics,2008,216:498-508.
    [114]方美娥.代数曲面混合-切分结合S曲面片补洞方法[D].博士学位论文,2007,浙江大学.
    [115]J.M. Pena. Shape preserving representations for trigonometric polynomial Curves [J]. Computer Aided Geometric Design,1997,14:5-11.
    [116]G. Walz. Trigonometric-and Stancu polynomials over intervals and triangles [J]. Computer Aided Geometric Design,1997,14:393-397.
    [117]J. Sanchez-Reyes. Harmonic rational B6zier curves, p-Bezier curves and trigonometric polynomials[J]. Computer Aided Geometric Design,1998,15:909-923.
    [118]X.L. Han. Cubic trigonometric polynomial curves with a shape parameter [J]. Computer Aided Geometric Design,2004,21:535-548.
    [119]X.A. Han, Y.C. Ma, and X.L. Huang. The cubic trigonometric Bezier curve with two shape parameters [J]. Applied Mathematics Letters,2009,22:226-231.
    [120]X.A. Han, X.L. Huang, and Y.C. Ma. Shape analysis of cubic trigonometric Bezier curves with a shape parameter [J]. Applied Mathematics and Computation,2010, 217:27-2533.
    [121]R.J. Wu and G.H. Peng. Shape analysis of planar trigonometric bezier curves with two shape parameters [J]. International Journal of Computer Science,2013,10:1694-0784.
    [122]吴晓勤.基于形状参数的曲线曲面几何造型理论与方法的研究[D].博士学位论文,2008,中南大学.
    [123]苏本跃.基于三角多项式曲线曲面的几何造型理论与方法研究[D].博士学位论文,2007,合肥工业大学.
    [124]杨炼,李军成.一类带两个形状参数的类四次三角Bezier曲线[J],工程图学学报.2011(6):9-15.
    [125]U. Bashir, M. Abba, and J. MdAli.The G2 and C2 rational quadratic trigonometric Bezier curve with two shape parameters with applications [J]. Applied Mathematics and Computation,2013,219:10183-10197.
    [126]I.J. Schoenberg. On trigonometric spline interpolation [J]. Journal of Mathematics and Mechanics,1964,13:795-825.
    [127]T. Lyche and R. Winther. A stable recurrence relation for trigonometric B-splines [J]. Journal of Approximation Theory 1979,25:266-279.
    [128]G. Walz. Some identities for trigonometric B-splines with application to curve design [J]. BIT Numerical Mathematics,1997,37:189-201.
    [129]X.L. Han. Quadratic trigonometric polynomial curves with a shape parameter [J]. Computer Aided Geometric Design,2002,19:503-512.
    [130]X.L. Han. C2 quadratic trigonometric polynomial curves with local bias [J]. Journal of Computational and Applied Mathematics,2005,180:161-172.
    [131]X.L. Han. Quadratic trigonometric polynomial curves concerning local control [J]. Applied Numerical Mathematics,2006,56:105-115.
    [132]N. Choubey and A. Ojha. Constrained curve drawing using trigonometric splines having shape parameters [J]. Computer-Aided Design,2007,39:1058-1064.
    [133]杨锡宝,张有正.一类具有形状参数的二次三角多项式曲线[J].浙江工业大学学报,2004,3:354-357.
    [134]X.Q. W, X.L. Han, and S.M. Luo. Quadratic Trigonometric Spline curves with multiple shape parameters [J]. Proceedings of 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics, xEEEPress,413-416.
    [135]谢进,邬弘毅,邓四清,张霞.多形状参数的二次非均匀三角多项式曲线[J].工程图学学,2007,5:49-55.
    [136]N. Choubey and A. Ojha.Trigonometric spline with variable shape parameter [J]. Rocky Mountain Journal of Mathematics,2008,38:91-105.
    [137]X.L. Han. Cubic trigonometric polynomial curves with a shape parameter [J]. Computer Aided Geometric Design,2004,21:535-548.
    [138]邬弘毅,陈晓彦.多形状参数的三次非均匀三角多项式曲线[J].计算机辅助设计与图形学学报,2006,18:1599-1606.
    [139]韩旭里.基于四点分段的一类三角多项式曲线[J].中国图象图形学报,2002,7:1063-1066.
    [140]王成伟.带有参数的三次三角多项式样条曲线[J].北京服装学院学报,2007,28:50-55.
    [141]严兰兰,梁炯丰.一种带形状参数的三角样条曲线[J]计算机工程与科学,201 1,33:69-73.
    [142]李军成.一种构造任意类三次三角曲线的方法[J].小型微型计算机系统,2011,7:1441-1445.
    [143]余俊.带多个形状参数的三次三角多项式样条曲线曲面[D].硕士学位论文,2010,合肥工业大学.
    [144]王文涛,汪国昭.带形状参数的三角多项式均匀B样条[J].计算机学报,2005,28:1192-1198.
    [145]尹池江,檀结庆.带多形状参数的三角多项式均匀B样条曲线曲面[J].计算机辅助几何设计与图形学学报,2011,23:1131-1138.
    [146]J. Cao and G.Z. Wang. An extension of Bernstein-Bezier surface over the triangular domain[J]. Progress in Natrual Science,2007,17:352-357.
    [147]曹娟,汪国昭.三角域上三次Bernstein Bezier参数曲面的扩展[J].计算机辅助设计与图形学学报,2006,18:1403-1407.
    [148]吴晓勤,韩旭里.带有形状参数的Bezier三角曲面片[J].计算机辅助设计与图形学学报,2006,18:1735-1740.
    [149]于立萍.三角域上带两个形状参数的B6zier曲面的扩展[J].大学数学,2008,24:58-62.
    [150]韩西安,黄希利.三角域上带多个形状参数的二次Bezier曲面片[J].装甲兵工程学
    院学报,2011,25:99-102.
    [151]W.Q. Shen and G.Z. Wang. Triangular domain extension of linear Bernstein-like trigonometric polynomial basis [J]. Journal Zhejiang University-Science C (Computers & Electronics),2010,11:356-364.
    [152]沈莞蔷,汪国昭.5阶三角多项式空间中的拟Bezier基在三角域上的推广[J].计算机辅助设计与图形学学报,2010,22:1099-1103.
    [153]Y.W. Wei, W.Q. Shen, and G.Z. Wang. Triangular domain extension of algebraic trigonometric Bezier-like basis[J]. Applied Mathematics:A Journal of Chinese University,2011,26:151-160.
    [154]陈素根,苏本跃,汪志华.4阶三角多项式空间中的T-Bezier基在三角域上的推广[J].山东大学学报,2013,48:31-36.
    [155]苏本跃,黄有度.一类Bezier型三角多项式曲线[J].高等学校计算数学学报,2005,27:202-208.
    [156]B.I. Kvasov. Mathods of shape-preserving spline approximation [M].World Scientific Publishing,London,2000.
    [157]H. Akima. A new method of interpolation and smoth curve fitting based on local procedures [J]. Journal of the ACM,1970,17:598-602.
    [158]L. L. Schumaker. On shape preserving quadratic spline interpolation [J]. SIAM Journal on Numerical Analysis,1983,20:854-864.
    [159]R. Delbourgo and J.A. Gregory. Shape preserving piecewise rational interpolation [J]. SIAM Journal on Scientific and Statistical Computing,1985,6:967-976.
    [160]R. Delbourgo. Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator [J]. IMA Journal on Numerical Analysis, 1989,9:123-136.
    [161]R. Dougherty, L. A. Edelman, and J. M. Hyman. Nonnegativity-, monotonicity-, convexity preserving cubic and quintic Hermite interpolation [J]. Mathematics of Computation,1989,52:471-494.
    [162]R. Delbourgo. Accurate C2 rational interpolants in tension [J]. SIAM Journal on Numerical Analysis,1993,30:595-607.
    [163]J. C. Fiorot and J. Tabka. Shape-preserving C2 cubic polynomial interpolating splines [J]. Mathematics of Computation,1991,57:291-298.
    [164]W. Burmeister, W. Heβ, and J.W. Schmidt. Convex spline interpolants with minimal curvature[J]. Computing,1985,35,219-229.
    [165]J.W. Schmidt and W. HeB. Positive interpolation with rational quadratic splines [J].Computing,1987,38:261-267.
    [166]J.W. Schmidt and W. HeB. Positivity of cubic polynomials on intervals and positive spline interpolation [J]. BIT Numerical Mathematics,1988,28:340-352.
    [167]M. Sakai and J.W. Schmidt. Positive interpolation with rational splines [J]. BIT Numerical Mathematics,1989,29:140-147.
    [168]B. Mulansky and J.W. Schmidt. Constructive methods in convex C2 interpolation using quartic splines [J]. Numerical Algorithms,1996,12:111-124.
    [169]T.N.T. Goodman and K. Unsworth. Shape-preserving interpolation by parametrically defined curves [J]. SIAM Journal on Numerical Analysis,1988,25:1453-1465.
    [170JP.D. Kaklis and N.S. Sapidis. Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree [J]. Computer Aided Geometric Design,1995,12,1-26.
    [171]C. Manni and P. Sablonniere. Monotone interpolation of order 3 by C2 cubic splines [J]. MA Journal of Numerical Analysis,1997,17:305-320.
    [172]P. Lamberti and C. Manni. Shape-preserving C2 functional interpolation via parametric cubics [J]. Numerical Algorithms,2001,28:229-254.
    [173]I. Cravero and C. Manni. Shape-preserving interpolants with high smoothnessm [J]. Journal of Computational and Applied Mathematics,2003,157:383-405.
    [174]潘永娟.参数曲线造型中保形理论与算法的研究[D].博士学位论文,2007,浙江大学.
    [175]X.L. Han. Convexity-preserving piecewise rational quartic interpolation [J]. SIAM Journal on Numerical Analysis,2008,46:920-929.
    [176]G. Wolberg and I. Alfy. An energy-minimization framework for monotonic cubic spline interpolation [J]. Journal of Computational and Applied Mathematics,2002,143: 145-188.
    [177]B.I. Kvasov. Monotone and convex interpolation by weighted quadratic splines[J]. Advance in Computational Mathematics,2014,40:91-116.
    [178]M. Sarfraz. Visualization of positive and convex data by a rational cubic spline interpolation [J]. Information Sciences,2002,146:239-254.
    [179]M.Z. Hussain and M. Sarfraz. Positivity-preserving interpolation of positive data by rational cubics [J]. Journal of Computatinonal and Applied Mathematics,2008,218: 446-458.
    [180]M. Sarfraz, M.Z. Hussain, and A. Nisar. Positive data modeling using spline function [J]. Applied Mathematics and Computation,2010,216:2036-2049.
    [181]M. Abbas, A.A. Majida, M.N.H. Awangb, and J.M. Alia. Positivity-preserving C2 rational cubic spline interpolation [J]. ScienceAsia,2013,39:208-213.
    [182]M. Sarfraz. A rational cubic spline for the visualization of monotonic data [J]. Computers & Graphics,2000,24:509-516.
    [183]M. Sarfraz. A rational cubic spline for the visualization of monotonic data:an alternate approach [J]. Computers & Graphics,2003,27:107-121.
    [184]M.Z. Hussain and M. Hussain. Visualization of data preserving monotonicity [J]. Applied Mathematics and Computation,2007,190:1353-1364.
    [185]M.Z. Hussain and M. Sarfraz. Monotone piecewise rational cubic interpolation [J]. International Journal of Computer Mathematics,2009,86:423-430.
    [186]M. Abbas, A. A. Majid, and J.M. Ali. Monotonicity-preserving C2 rational cubic spline for monotone data [J]. Applied Mathematics and Computation,2012, 219:2885-2895.
    [187]M.Z. Hussain, M. Sarfraz, and T.S. Shaikh. Shape preserving rational cubic spline for positive and convex data[J]. Egyptian Informatics Journal,2011,12:231-236.
    [188]M. Sarfraz, M.Z. Hussain, T.S. Shaikh, and R. Iqbal. Data visualization using shape preserving C2 rational spline[J]. Proceedings of the IEEE 15th International Conference on Information Visualization, London, UK, July 13-15,2011,528-533.
    [189]M. Sarfraza, and M.Z. Hussain. Shape-preserving curve interpolation [J]. International Journal of Computation Mathematics,2012,89:35-53.
    [190]Q. Duan, F.X. Bao, S.T. Du, and E.H. Twizell. Local control of interpolating rational cubic spline curves [J]. Computer-Aided Design,2009,41:825-829.
    [191]I.I. Verlan. An explicit method of C2 interpolation using splines [J].Computing,1993, 50:327-335.
    [192]T.N.T. Goodman. Shape preserving interpolation by curves[J]. In:J. Leversity, I. Anderson, J. Mason (Eds.), Algorithms for Approximation, IV. University of Huddersfield, UK,2002,24-35.
    [193]L.L. Schumaker. Spline Functions:Basic Theory[M]. Third edition, Cambridge University Press,2007.
    [194]J.M. Carnicer and J.M. Pena. Shape preserving representations and optimality of the Bernstein basis[J]. Advances in Computational Mathematics,1993,1:173-196.
    [195]J.M. Carnicer and J.M. Pena. Total positive bases for shape preserving curve design and optimality of B-splines [J]. Computer Aided Geometric Design,1994,11:635-656.
    [196]Ron Goldman著,吴宗敏,刘剑平,曹沅等译.金子塔算法-曲线曲面几何模型的动态编程处理[M].北京:电子工业出版社,2004,152-157.
    [197]杨玉婷.基于开花的非均匀B样条曲线细分[D].硕士学位论文,2010,河北师范大学.
    [198]钱婷,ECT-B样条的开花研究[D].硕士学位论文,2011,南京航空航天大学.
    [199]P. J., Barry. R. N., Goldman, and C. A. Micchelli. Knot insertion algorithms for piecewise polynomial spaces determined by connection matrices [J]. Advance in Computational Mathematics,1993,1:139-171.
    [200]M.L. Mazure. Blossoming:a genometrical approach.Construrctive [J].Consructive Approximation,1999,15:33-68.
    [201]M.L. Mazure. Blossoming stories [J]. Numerical Algorithms,2005,39:257-288.
    [202]M.L. Mazure. On a new criterion to decide whether a spline space can be used for design [J]. BIT Numerical Mathematics,2012,52:1009-1034.
    [203]M. Hoffmann, I. Juhasz, and G. Karolyi. A control point based curve with two exponential shape parameters [J].BIT Numerical Mathematics,2013, DOI10.1007/s 10543-014-0468-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700