用户名: 密码: 验证码:
小麦根中盐胁迫响应基因FBPA的克隆及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐分是影响植物生长和产量的主要环境因子之一。在分子水平上,盐胁迫可以使植物中一些基因的表达状况发生改变,促进或抑制某些蛋白质的合成,提高其耐盐性。克隆植物耐盐相关基因并利用转基因技术培育植物耐盐品种为抗盐育种的研究开辟了广阔的应用前景。但由于植物耐盐性是一个受多基因控制的复杂的数量性状,其耐盐机制十分复杂,因此,有必要利用基因组学的方法分离并深入研究一些盐胁迫应答基因,并对这些基因进行植物转基因研究,以期培育出耐盐的转基因植物,从而更好地指导农业生产。
     小麦是世界上分布最广、种植面积最大的粮食作物。耐盐小麦品种山融3号(SR3)是小麦品种济南177(Triticum aestivum L.2n=42)与其近缘野生种长穗偃麦草(Thinopyrum ponticum 2n=70)经过不对称体细胞杂交技术获得的体细胞杂种渐渗系。遗传及生理生化的分析表明,该品种含有长穗偃麦草染色体小片段,耐盐指数及各项生理生化指标均明显优于亲本小麦。山融3号不同于其它耐盐相关研究所利用的单一遗传背景的材料,其耐盐性由主效基因和微效基因共同控制。本实验室以山融3号小麦和济南177小麦为材料,利用抑制性差减杂交技术(suppressive subtractivehybridization,SSH)技术构建了山融3号和济南177盐胁迫响应的SSH cDNA文库。本研究根据小麦SSH cDNA文库中的相关信息,克隆得到一个在小麦根中对盐胁迫条件产生应答的果糖1,6-二磷酸醛缩酶基因(TaFBPA),并对其进行了初步鉴定和研究。
     果糖1,6-二磷酸醛缩酶是生物体内碳代谢及糖代谢途径中的关键酶之一,它催化果糖1,6-二磷酸分解为磷酸二羟基丙酮和3-磷酸甘油醛及其逆反应。本研究利用嵌套PCR技术从小麦中克隆得到果糖1,6-二磷酸醛缩酶基因的全长cDNA序列,将其命名为TaFBPA。生物信息学分析表明该基因属于果糖1,6-二磷酸醛缩酶基因家族,该基因编码一个由358个氨基酸组成的蛋白质,该蛋白与玉米、拟南芥、水稻中同源基因的蛋白的相似性分别为88.55%、82.12%、77.99%。RT-PCR及Real-Time PCR分析结果表明,较高浓度的短期盐胁迫条件下,该基因在小麦根中发生明显的上调表达。构建植物瞬时表达载体,将该基因与绿色荧光蛋白基因融合在一起并转化拟南芥原生质体,结果表明,融合蛋白定位于细胞质中。构建原核表达载体,将该基因连入pZT32a载体并转化大肠杆菌菌株DE3进行原核表达,经IPTG诱导后,可以检测到目的蛋白大量表达,为下一步纯化融合蛋白并测定体外醛缩酶酶活性奠定基础。构建植物过量表达载体,利用农杆菌介导的花浸染方法转化拟南芥,获得转基因拟南芥后代。种子萌发实验表明,在盐胁迫条件下,与对照株系的种子相比,转基因株系的种子萌发延迟,且萌发率低,这表明过量表达TaFBPA基因的转基因拟南芥株系的种子对盐胁迫比较敏感。需要进一步的研究以期揭示TaFBPA基因参与植物盐胁迫应答的作用机理。
Salinity is one of the major environmental factors limiting plant growth and productivity. The expression of some genes will be changed by salt stress in the molecular level, which will promote or repress the synthesis of some relevant proteins to improve the ability to salt tolerance of the plant. It opens vast vistas for the plant slat-tolerance breeding research to isolate some relevant salt-tolerance genes from the plants and to develop slat-tolerance plant breeding by utilizing the technology of gene manipulation. However, the salt stress tolerance is controlled by quantitative trait loci (QTLs), and the mechanism of salt stress tolerance of plant is very sophisticated. Therefore, it is necessary to isolate and make an intensive study of some salt stress responsive genes, which could be transformed into plants for further studying. Finally, it is hoped that the salt-tolerant transgenic plants could be cultivated and be widely used for agricultural operation.
     Common wheat (Triticum asetivum L.) is one of the most important and widely planted crops in the world. A new somatic hybrid introgression line Shanrong No.3 (hereafter SR3) has been generated in our lab from hybridization of common wheat cv. Jinan 177 with wheatgrass (Thinopyrum ponticum), a salt and drought tolerant grass relative to wheat. Cytological and molecular analysis showed that some nuclear and non-nuclear DNAs and even functional genes of donor Th. ponticum were introgressed into this line. SR3 had a significantly higher yield than its parent JN177. The salt-tolerance of SR3 is controlled by the major and minor genes together. As one of the materials for salt-stress tolerance research, SR3 is different from the others with single genetic background. In our lab, the suppressive subtractive hybridization (SSH) technology was used to construct a salt-stress responsive SSH cDNA library of SR3 and JN177 wheat. According to the relevant information of the SSH cDNA library, a salt-stress responsive gene, fructose 1, 6-bisphosphate aldolase gene in wheat root (TaFBPA), was isolated and identified in this study.
     The fructose 1, 6-bisphosphate aldolase (FBPA) is one of the important enzymes in the carbon metabolism and sugar metabolism pathway of the organisms, which catalyses an aldol cleavage of fructose 1, 6-bisphophate to dihydroxyacetone-phosphate and glyceroldehyde 3-phosphate and a reversible aldol condensation. The full-length cDNA sequence of fructose 1, 6-bisphosphate aldolase gene (TaFBPA) was acquired in this study by Nested-PCR technology. According to the bio-informatic sequence analysis, TaFBPA belongs to the family FBPA. TaFBPA encodes a protein of 358 amino acids that shares high identity with the orthologs from Zea mays (88.55%), Arabidopsis thaliana (82.12%), Oryza sativa (77.99%), respectively. The obviously elevated levels of TaFBPA expression have been detected by RT-PCR and Real-Time PCR analysis when the wheat seedling roots exposed to high salinity stress. Arabidopsis transformation of construct expressing the TaFBPA fused with green fluorescent protein (GFP) reveals that the fusion protein is targeted to cytoplasm. The recombined plasmid with insertion of TaFBPA to vector pET32a was transformed into E.coli DE3 to analyze its expression. A large amount of fusion protein was expressed by the induction of IPTG and detected by SDS-PAGE, which makes a foundation for the further protein purification and aldolase assay. The plant over-expression vector of TaFBPA was constructed and then transformed Columbia (Co10) Arabidopsis lines with Agrobacterium-mediated floral-dip method. The experiment of seed germination shows that the seeds of transgenic lines have a lower germination rate and a delayed germination time comparing with the seeds of control lines, which demonstrates that the seeds of transgenic lines with the over-expression of TaFBPA are more sensitive to the salt stress condition. Further studies are needed to deeply illustrate the mechanism of the TaFBPA gene involving in the salt- stress responses in the plant.
引文
1. Agastian P., Kingsley S.J., Vivekanandan M., Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 2000. 38: p. 287-290.
    2. Ahmed H., Ettema T.J., Tjaden B., Geerling AC., van der Oost J., Siebers B., The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem. J., 2005. 390: p.529-540.
    3. Al-Helal A.A., et al., Germination Response of Cassia senna L. seeds to sodium salts and temperature. Journal of the University of Kuwait. Science, 1989. 16(2): p. 281-287.
    4. Allakhverdiev S.I., Nishiyama Y, Suzuki L, et al., Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. PNAS, 1999. 96(10): p. 5862-5867.
    5. Amtmann A., Sanders D., Mechanisms of Na~+ uptake by plant cells. Adv Bot Res, 1999. 29:p.75-110.
    6. Anderson L.E., Wang X, Gibbons J.T., Three enzymes of carbon metabolism, or their antigenic analogs, in pea nuclei. Plant Physiol., 1995. 108: p.659-667.
    7. Apse M.P., Blumwald E., Engineering salt tolerance in plants. Current Opinion in Biotechnology, 2002. 13: p. 146-150.
    8. Apse, M.P, et al., Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science, 1999. 285: p. 1256-1258.
    9. Apse, M.P., et al., Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. The Plant Journal, 2003. 36: p. 229-239.
    10. Arenas-Huetero F., Arroyo A., Zhou L., Sheen J., Leaon P., Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev., 2000. 14: p. 2085-2096.
    11. Aro, E.-M., I.Virgin, and B. Andersson, Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et biophysica acta. Bioenergetics, 1993. 1143: p. 113-134.
    12. Asada K., The water cycle in chloroplasts scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999. 50: p. 601-639.
    13. Berthomieu P., et al., Functional analysis of AtHKTl in Arabidopsis shows that Na~+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 2003. 22(9): p. 2004-2014.
    14. Bhandal IS. and C. P. Malik, Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. International review of cytology, 1988. 110: p. 205-254.
    15. Blaha P., et al., Calculations of electric field gradients in solids: How theory can complement experiment Hyperfine Interactions, 2000. 126: p. 389-395.
    16. Cheeseman J.M., Mechanisms of salinity tolerance in plants. Plant Physiology, 1988. 87: p. 547-550.
    17. Chou K.C., Shen H.B., Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008. 3: p.153-162.
    18. Chou K.C., Shen H.B., Large-scale plant protein subcellular location prediction. Journal of Cellular Biochemistry, 2007.100: p. 665-678.
    19. Davenport R.J., Tester M., A Weakly Voltage-Dependent, Nonselective Cation Channel Mediates Toxic Sodium Influx in Wheatl. Plant Physiol, 2000. 122: p. 823-834.
    20. Delauney A.J., Verma DPS., A soybean gene encoding △1-pyrro-line-5-carboxylate reductase was isolated by functional comp lamentation in E. coli and is found to be osmoregulated. Mol Gen Gendt, 1990. 221: p. 299-305.
    21. Falkenberg P., Storm A.R., Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of E. coli. Biochi BiophysActa, 1990. 1034: p. 253-259.
    22. Finkelstein R.R., Linch T.J., Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol, 2000. 122: p. 1179-1186.
    23. Finn R.D., Tate I, Mistry J., Coggill PC., Sammut J.S., Hotz H.R., Ceric G., Forslund K., Eddy S.R., Sonnhammer E.L., Bateman, The Pfam protein families database.
    24. Garraciubo A., Legaria J.P., Covarrubias A.A., Abscisic acid inhibites germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta, 1997. 203:p. 182-187.
    25. Gaxiola, R.A., et al., The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast PNAS, 1999. 96(4): p. 1480-1485.
    26. Guo Y., Halfter U., Ishitani M., Zhu J.K., Molecular characterization of functional domains in the protein kinase S0S2 that is required for plant salt tolerance. Plant Cell, 2001. 13:p.l383-1400.
    27. Hasegawa, P.M. and R. A. Bressan, Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 2000. 51: p. 463-499.
    28. Holmstrom K.O., Welin B., Mandal A., et al., Production of the Escherichia coli betain aldehyde dehydrogenase, an enzyme reguired for the synthesis of the osmoprotectant glycine betain, in transgenic plant. Plant J., 1994. 6: p. 749-758.
    29. Hone T., Schroeder J.I., Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol, 2004. 136(1): p. 2457-2462.
    30. Jithesh M.N., Prashanth S.R., Sivaprakash K.R., Parida A.K. Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet. , 2006. 85(3): p. 237-254.
    31. Khan M.A., I.A. Ungar, and A.M. Showalter, Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Communications in soil science and plant analysis, 2000. 31: p. 2763-2774.
    32. Kishitani S., et al., Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant, Cell & Environment, 2000. 23: p. 107-114.
    33. Kishor P.B., Hong Z., Miao G., et al., Over-expression of deltal-pyrroline-5-carboxylate synthase increases praline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995.108: p. 1387-1394.
    34. Kurban H., Saneoka H., Nehira K., Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi. Soil Sci. Plant Nutr., 1999. 45: p. 851-862.
    35. Laurie S., Feeney K.A., Maathuis F.J.M., Heard P.J., Brown S.J., Leigh R.A., A role for HKT1 in sodium uptake by wheat roots. Plant J, 2002. 32: p. 139-149.
    36. Lebherz H.G., Leadbetter M.M., Bradshaw R.A., Isolation and characterization of cytosolic and chloroplastic forms of spinach leaf fructose diphosphate aldolase. J. Biol. Chem., 1984. 259: p.1011-1017.
    37. Levitt, J., Responses of plants to enviromental stresses. 1980: p. 256.
    38. Li J., Lee Y.R.J., Assmann S.M., Guard cells possess a calcium-dependent protein kinase that phospholates the KAT: a potassium channel. Plant Physiol, 1998. 166: p.785-795.
    39. Liu J., Huang S., Studies on high salt tolerance of transgenic tobacco. Chin J Biotechnol, 1995. 11(4): p. 275-280.
    40. Maeshima, M., Vacuolar H+-pyrophosphatase. 2000. 1465(1-2): p. 37-51.Apse 2003
    41. Marsh J.J., Lebherz H.G., Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem. Sci., 1992. 17: p.110-113.
    42. Maser P., Eckelman B., Vaidyanathan R., Horie T., Fairbairn D.J., Kubo M., Yamagami M., Yamaguchi K., Nishimura M., Uozumi N., Robertson W., Sussman M.R., Altered shoot/root Na~+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na~+ transporter AtHKT1. FEBS Lett, 2002. 531: p.157-161.
    43. Maser P., Makkus G., Schroeder J.I., Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil, 2002. 247(1): p. 43-54.
    44. Maslenkova L.T., Zanev Y, Popova L.P., Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. Plant Physiology, 1993. 142: P. 629-634.
    45. McAinsh P.R., Brownlee A.M., Hetherington A.M., Calcium ions as second messengers in guard cell signal transduction. Physiol Plant, 1997. 100: p. 16-29.
    46. Michelet B., Boutry M., The plasma membrane H~+-ATPase. A highly regulated enzyme with multiple physiological functions. Plant Physiology, 1995. 108: p. 1-6.
    47. Munns R, Comparative physiology of salt and water stress. Plant Cell Environ., 2002. 25: p. 239-250.
    48. Munns, R. and A. Termaat, Whole-Plant Responses to Salinity. Australian Journal of Plant Physiology, 1986. 13: p. 143-160.
    49. Murashige TaS, F. A., Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 1962.15: p. 473-497.
    50. Niu X., Bressan R.A., Hasegawa P.M., Pardo J.M., Ion homeostasis in NaCl stress environments. Plant Physiol, 1995. 109: p.735-742.
    51. Ozturk Z.N., Talame' V., Deyholos M., Michalowski C.B., Galbraith D.W., Gozukirmizi N., Tuberosa R., Bohnert H.J., Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol, 2002. 48: p.551-573.Nucleic Acids Research, 2008. Database Issue 36:D281-D288.
    52. Purev M., Kim M.K., Samdan N., Yang D.C., Isolation of a novel fructose-1,6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response of this gene to abiotic stresses. Molecular Biology, 2008. 42(2): p.179-186.
    53. Qiu Q.S., Guo Y., Dietrich M.A., Schumaker K.S., Zhu J.K., Regulation of S0S1, a plasma membrane Na~+/H~+ exchanger in Arabidopsis thaliana by S0S2 and SOS3. Proc Natl Acad Sci USA, 2002. 99: p.8436-8441.
    54. Rehman. Setc., The effect of sodium chloride on the Ca~(2+)、K~+ and Na~+ concentrations of the seed coat and embryo of Acacia tortillas. Annuals of Applied Biology, 1998. 133: p.269-279.
    55. Ronai Z., Robinson R., Rutberg S., Lazarus P., Sardana M., Aldolase DNA interactions in a SEW A cell system. Biochim Biophys Acta, 1992. 1130: p.20-28.
    56. Rutter, W.J., Evolution of aldolase. Fed. Proc. Fed. Amer. Soc. Exp. Biol., 1964. 23: p.1248-257.
    57. Schachtman D.P., Kumar R., Schroeder J.I., Marsh E.L., Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci, 1997. 94: p. 11079-11084.
    58. Schaeffer G.W., Sharpe F.T., Sicher R.C., Fructose 1, 6-bisphosphate aldolase activity in leaves of a rice mutant selected for enhanced lysine. Phytochemistry, 1997. 46: p. 1335-1338.
    59. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Chen SY, Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. Acta Botanica Sinica, 2002. 44(8): p. 956-962.
    60. Shi H.Z., Quintero F.J., Pardo J.M., Zhu J.K., The putative plasma membrane Na~+/H~+ antiporter SOS1 controls long-distance Na~+ transport in plants. The Plant Cell, 2002. 14: p. 465-477.
    61. Sonia G., Peter M., Genetic interactions between ABA, ethylene and sugar signaling pathways. Current Opinion in Plant Biology, 2001. 4: p.387-391.
    62. Strogonov B.P., Structure and function of plant cells in saline habitats. Halsted Press New York, 1973: p. 57-58.
    63. Sunarpi, Horie T., Motoda J., Kubo M., et al., Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 2005. 44(6): p. 928-938.
    64. Tang X.R., Wu H., Jia M., et al., Isolation and expression analysis of cDNA encoding a dsRNA binding protein homologue OsRBP of rice. Plant Physiology and Molecular Biology, 2002. 28: p.41-45.
    65. Tsutsumi K., Kagaya Y., Hidaka S., et al., Structure analysis of the chloroplastic and cytoplasmic aldolase-encoding genes implicated the occurrence of multiple loci in rice. Gene, 1994. 141: p.215-220.
    66. Tyerman S.D., Niemietz C.M., Bramley H., Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell & Environment, 2002. 25(2): p. 173-194.
    67. Verslues, P.E., Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 2006. 45: p. 523-539.
    68. Volkmar K.M., Hu Y, Steppuhn H., Physiological responses of plants to salinity: A review. Can J Plant Science, 1998. 78: p. 19-27.
    69. Wang S.M., Zheng W.J., Ren J.Z., Zhang C.L., Selectivity of various types of salt-resistant plants for K~+ over Na~+. J Arid Environ, 2002. 52: p.457-472.
    70. White P.J., The molecular mechanism of sodium influx to root cells. Trends in Plant Science, 1999. 4(7): p. 245-246.
    71. Wyn Johns R.G., Salt tolerance. In: Johnson CB (ed). Physiological processes limiting plant productivity.London:Butter worths,1981:p.271-292.
    72.Xue G.P.,McIntyre C.L.,Glassop D.,Shorter R.,Use of expression analysis to dissect alternations in carbohydrate metabolism in wheat leaves during drought stress.Plant Mol Biol,2008.67(3):p.197-214.
    73.Yokoi,S.,et al.,Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.The Plant Journal,2002.30(5):p.529-539.
    74.Zhang F.S.,Environmental Stress and Plant Breeding.Beijing Agriculture Press,1993:p.330-335.
    75.Zhao FG,Sun C,Liu YL,Omithine pathway in proline biosynthesis activated by salt stress in barley seedlings.Acta Botanica Sinica,2001.43(1):p.36-40.
    76.Zhu J.K.,Plant salt tolerance.Trends Plant Sci,2001.6:p.66-71.
    77.Zhu X.G.,Zhang Q.D.,Advance in the research on the effects of NaCl on photosynthesis.Chinese Bulletin of Botany,1999.16(4):p.332-338.
    78.戴高兴,彭克勤,皮灿辉,钙对植物耐盐性的影响,中国农学通报.2003.19(3):p.97-101.
    79.李晓燕,宋占午,董至贤,植物的盐胁迫生理.北京师范大学学报(自然科学版),2004.140(13):p.106-111.
    80.李彦,et al.,盐分胁迫对植物的影响及植物耐盐机理研究进展.中国农学通报,2008.24(1):p.258-265.
    81.林栖凤.耐盐植物研究[M].北京:科学出版社,2004:p.58.
    82.刘俊君,彭学贤,大肠杆菌mtlD基因和gutD基因的克隆、全序列测序和高效表达.生物工程学报,1995.11(2):p.157-161.
    83.苗济文,马云瑞,罗代雄等,土壤盐分对宁夏春小麦的影响.西北农业学报,1995.4(3):p.81-84.
    84.单雷,赵双宜,陈芳,夏光敏,小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位,中国农业科学2006.39(2):p.225-230.
    85.苏永全,吕迎春,盐分胁迫对植物的影响研究简述.甘肃农业科技,2007.5(3):p.23-27.
    86.王宝山,赵可夫,邹琦,作物耐盐机理研究紧张及提高作物耐盐性的对策.植物学 通报,1997.14(增刊):p.25-30.
    87.王慧中,黄大年,鲁瑞芳,et al.,转mtlD/gutD双价基因水稻的耐盐性.科学通报,2000.45(7):p.724-729.
    88.王军,权太勇,夏光敏,盐胁迫下小麦体细胞杂种与亲本小麦幼苗的生长量和Na~+、K~+含量比较.热带亚热带植物学报,2004.12(4):p.355-358.
    89.王忠,植物生理学.北京:中国农业出版社,2000:p.287-290..p.331-335.
    90.许兴,李树华,惠红霞等,NaCl胁迫对小麦幼苗生长、叶绿素含量及Na~+、K~+吸收的影响.西北植物学报,2002.22(2):p.278-284.
    91.杨少辉,季静,王罡宋等,盐胁迫对植物影响的研究进展.分子植物育种,2006.4(3):p.139-142.
    92.杨晓慧,蒋卫杰等,植物对盐胁迫的反应及其抗盐机理研究进展.山东农业大学学报,2006.37(2):p.302-305.
    93.曾洪学,王俊,盐害生理与植物抗盐性.生物学通报,2005.40(9):p.1-3.
    94.张宏飞等,高等植物Na~+吸收、转运及细胞内Na~+稳态平衡研究进展.植物学通报,2007.24(5):p.561-571.
    95.张晓宁,曲志才,沈大棱等,受NaCl诱导的盐藻果糖1,6-二磷酸醛缩酶cDNA的克隆及其在烟草中的表达.中国科学,2002.32(5):p.392-398.
    96.赵可夫,植物抗盐生理.北京:中国科学技术出版社,1993:p.9-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700