用户名: 密码: 验证码:
浮石及其载羟基化锌催化臭氧氧化对氯硝基苯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随工业迅猛发展和人类物质生活水平的提高,水环境污染已成为目前普遍关注的问题。水中的一些难降解有毒有害污染物,虽然浓度低,但危害大、去除难,传统给水处理工艺不能有效地去除这些有毒有害微污染物,直接威胁城镇供水水质安全。非均相催化臭氧氧化技术,因其高效氧化性能、催化剂易分离、处理成本低、工艺简单等特点,已成为当前研究热点。
     本文即是从提高浮石催化活性这一关键环节入手,制备浮石基过渡金属羟基化物催化剂的基础上,研究浮石和所制备的复合催化剂催化臭氧氧化去除水中难降解有机物,获得新型催化臭氧氧化技术。探讨催化剂微观结构、表面特性与催化活性之间的内在规律。该类催化剂具有来源易得、生产成本低和制备简单等优点,具有良好市场应用前景。
     浮石作为催化剂催化臭氧氧化水中对氯硝基苯(pCNB)表现了较强的催化活性,与单独臭氧氧化工艺比较,浮石催化臭氧氧化工艺对水中pCNB和总有机碳(TOC)去除率明显提高,浮石与臭氧降解水中pCNB具有协同作用,浮石吸附pCNB能力很弱。
     实验中成功制备了浮石基羟基化锌(ZnOOH/浮石)催化剂,材料对气体具有一定的吸附能力和吸附容量,检测发现,表面含有丰富的表面羟基。ZnOOH/浮石具有明显的催化能力,催化臭氧氧化pCNB的去除率由臭氧氧化时的55.7%提高至93.4%,比浮石催化臭氧氧化pCNB去除率提高21个百分点。ZnOOH/浮石对pCNB的吸附能力比浮石有所增强。
     考察了ZnOOH/浮石催化臭氧氧化水中pCNB的效能和影响参数,结果表明,pCNB的去除率与臭氧浓度、催化剂投量、反应温度和pCNB初始浓度呈正相关;随着水纯净度的降低,pCNB的去除率升高;水体中Ca2+、Mg2+、Cl-、NO-3、K+和Na+对ZnOOH/浮石催化臭氧氧化pCNB的去除率影响可以忽略不计,SO2-具有一定的表面络合能力,使浮石的催化活性下降,4ZnOOH/PO3-4可以显著抑制ZnOOH/浮石的催化活性;CO2-3/HCO-3碱度对催化臭氧氧化pCNB的去除率有明显影响,高碱度明显降低了pCNB的去除率;随着反应体系中腐殖酸浓度的增加,催化臭氧化pCNB的去除率先增后降;ZnOOH/浮石随着焙烧温度的升高其催化活性降低;催化剂重复使用后,pCNB的去除率稳定,保持良好的催化活性。反应过程中体系有微量的离子溶出,但均低于国标限值。
     浮石和ZnOOH/浮石的引入均可明显加快臭氧的分解速度,分别使水中臭氧的分解速率常数提高了1.19和2.84倍,在2种催化反应体系中均检测到了·OH的产生。叔丁醇可以大幅度的抑制催化反应中pCNB的降解,证明催化臭氧氧化工艺中pCNB的氧化是以·OH为主、O3为辅的氧化反应。催化剂在溶液pH≈pHpzc时催化活性最强,表明-OH状态的表面可以引发臭氧分解生成·OH。
     催化剂表面羟基是分解水中臭氧的活性位,具有较高催化活性的催化剂通常有较大的表面羟基密度。催化剂表面活性羟基吸附水中的臭氧进而发生链式分解反应,反应过程中有高氧化性的·OH生成。
Industrial development and the improvement of living conditions have resulted in the extensive pollution of the water environment. Despite having low concentrations in water, some refractory organic pollutantshave serious harmful effects.However, conventional processes have beenshown to achieve very limited mineralization of organic micropollutants indrinking water treatment. Heterogeneous catalytic ozonation, asa promising advanced oxidation process, has recently receivedconsiderable attention in the field of water treatment for its high oxidationpotential.
     To provide active sites on catalystsand to improve ozone decomposition, pumice and ZnOOH/pumice were prepared in a laboratory and used as catalysts in this paper. Catalysts were applied in the catalytic oxidation of race concentrationsof p-chloronitrobenzene (pCNB). The relationshipamong the catalyst structure,surface hydroxyl, and catalytic activity in catalytic ozonationwas then determined. The catalysts, whichwere readily available, inexpensive, and easy to prepare, exhibit promising application potential for drinking water treatment.
     The use of pumice for heterogeneous catalytic ozonation significantly enhancesthe degradation efficiency and total organic carbon(TOC) removal of pCNB in an aqueous solution compared with ozonation alone because of the synergistic effect between ozone and the catalyst. The pCNB adsorption was insufficient to contribute significantly to the pCNB degradation during pumice-catalyzed ozonation.
     The catalyst prepared in the laboratory was pumice-supportedzinchydroxide(ZnOOH-pumice). Materials havea certain capability for the adsorption of gas.Experimental results show that the main functional group on the catalyst surface was hydroxyl.All hydroxidespossess abundant surface hydroxyl groups. At a reactiontime of20min during the catalytic removal of pCNB by ozonation alone, pumice/ozonation and ZnOOH-pumice/ozonation in distilled water increase from55.7%to72%and93%, respectively. In contrast to the experimental results of ozonation aloneand of catalytic ozonation processes, the adsorption of pCNB ontoZnOOH-pumice is insufficient to make a significant contribution to degradation efficiency and can therefore be neglected.
     The affecting factors of the catalytic ozonation of pCNB by ZnOOH-pumice were investigated. Results show that the removal of pCNB increased with the reaction temperature, ozone concentration,and initial concentration ofthe pCNB and catalyst, along with decreasing water purity. The effects of NO-3, Na+, and K+on the catalytic ozonation of pCNB can be ignored. Degradationefficiencywas slightly promoted in the presence of Ca2+and Mg2+. The ozonation of pCNBwas slightly inhibited by the high concentration of Cl-. Theremoval efficiency of pCNBdecreased in the presence of SO2-4, given that the hydroxyl inhibitors PO3-4and HCO-3can significantlyinhibit the catalytic degradation ofpCNB.The removal of pCNB decreased with increasing humic acidconcentration.The catalytic capability of the catalyst weakened with increasing calcinationtemperature. After10successive recycles, the catalyst remainedstable during the catalytic ozonation of pCNB.Ion dissolution was observed after catalyzed ozonation. How ver, the concentration of the residual ions was negligible. The concentrationof residual ionswas lower than the drinkingwater criterion in China.
     Pumice and ZnOOH-pumice significantly accelerate the decomposition of ozone in water.The rate constant of ozone decomposition increased by1.19times and2.84times when using pumice and ZnOOH-pumice, respectively.When pumiceand ZnOOH-pumice catalyzed ozone, higher·OH concentrations were generated under the same experimental conditions compared with those obtained from ozonealone. Tert-butanol significantly inhibited the degradation of pCNB in these three catalytic reaction systems.Enhancements of hydroxyl free radicals were achieved during catalyzed ozone decompositionusing pumice and ZnOOH-pumice. Thus,the catalytic oxidation of pCNB can be divided into two parts: main reaction withhydroxyl radicals and accessorial oxidation by ozone molecules. High pH also positively affected pumice-catalyzed ozonation,given that nearly uncharged surfaces (solution pH was close to the point of zero charge) are favorable for catalytic pCNB ozonation.The results of this study indicatethat hydrous oxide sites present on catalyst surface (S-OH) serve a key function in the catalytic ozonation mechanism.
     Surface hydroxyl groups were revealed to be important ctive sites onthe catalyst. Hydroxides, which show high catalytic activityduring ozone decomposition, possess abundant surface hydroxyl groups. Structuralhydroxyls or hydroxylsformed through the adsorption of hydrogen ions in waterare capable of catalyzing ozone decomposition. Ozone molecules in water can be adsorbed on these active hydroxyls, consequently promoting ozone decomposition with the production of·OH.
引文
[1]2011年中国环境公报.国家环保总局.2011
    [2]王占生,刘文君.微污染水源饮用水处理[M].中国建筑工业出版社.1999:15-27.
    [3]王维哲.大骨节病的有机物病因及其作用机理[J].中国环境科学.1989,9(3):191-196.
    [4]Zhang GC, Wang Z S. Mechanism study of the coagulant impact on themutugenic activity in water[J]. Water Research.2000,34(6):1781-1790.
    [5]Pirbazari M, Borow H S, Craig s, et al. Physical chemical characterizationfive earthy-musty-smelling compounds[J]. Water Science Technology.1992,25(2):177-184.
    [6]许建华,万英,汤利华,等.微污染原水的生物接触氧化法预处理技术研究[J].同济大学学报.1995,23(4):376-381.
    [7]徐根良,徐秀珠.环境中痕量特殊有机污染物的高效液相色谱测定.浙江大学学报(自然科学版)[J],1999,33(3):323-327.
    [8]孙润泰,陈敏,于波,等.气相色谱法测定水源水中硝基氯苯类化合物结果分析[J].中国卫生工程学.2002,1(3):149-153.
    [9]申献辰,冯惠华,王凤荣,等.黄河中游对硝基氯苯传输迁移转化模拟[J].水科学进展.1997,8(3):264-269.
    [10]Li Q, Minami M, Inagaki H. Acute and subchronic immunotoxicity ofp-Nitrochlorobenzene in mice. I. effect on natural killer, cytotoxicT-lymphocyte activities and mitogen-stimulated lymphocyte proliferation[J].Toxicology.1998,127(1):223-232.
    [11]Rook J J. Formatin of haloforms during chlorination of natural water. WaterTreatment Exam[J].1974,23(2):234-243.
    [12]Bellar T A, Lichtenberg J J, Kroner R C. The occurrence of organohalides inchlorinated drinking waters[J]. Journal of the American Water WorksAssociation.1974,66(12):703-707.
    [13]Freuze I, Brosillon S, Laplanche A, et al. Effect of chlorination on theformation of odorous disinfection by-products[J]. Water Research.2005,39(12):2636-2642.
    [14]Zhang X R, Minear R A. Formation, adsorption and separation of highmolecular weight disinfection byproducts resulting from chlorination ofaquatic humic substances[J]. Water Research.2006,40(2):221-230.
    [15]Brosillon S, Lemasle M, Renault E, et al. Analysis and occurrence of odorousdisinfection by-products from chlorination of amino acids in three differentdrinking water treatment plants and corresponding distribution networks[J].Chemosphere.2009,77(8):1035-1042.
    [16]Lu J, Zhang T, Ma J, et al. Evaluation of disinfection by-products Formationduring chlorination and chloramination of dissolved natural organic matterfractions isolated from a filtered river water[J]. Journal of HazardousMaterials.2009,162(1):140-145.
    [17]Kristiana I, Gallard H, Joll C, et al. The Formation of halogen-specific TOXfrom chlorination and chloramination of natural organic matter isolates[J].Water Research.2009,43(17):4177-4186.
    [18]Bougeard C M, Goslan E H, Jefferson B, et al. Comparison of the disinfectionby-product formation potential of treated waters exposed to chlorine andmonochloramine[J]. Water Research.2010,44(3):729-740.
    [19]Ates N, Kitis M, Yetis U. Formation of chlorination by-products in waterswith low SUVA correlations with SUVA and differential UV spectroscopy[J].Water Research.2007,41(18):4139-4148.
    [20]Chu W H, N. Gao Y, Deng Y, et al. Formation of chloroform duringchlorination of alanine in drinking water[J]. Chemosphere.2009,77(10):1346-1351.
    [21]Agus E, Sedlak D L. Formation and fate of chlorination by-products inreverse osmosis desalination systems[J]. Water Research.2010,44(5):1616-1626.
    [22]Chen W H, Young T M. Influence of nitrogen source on NDMA formationduring chlorination of diuron[J]. Water Research.2009,43(12):3047-3056.
    [23]Kim J, Clevenger T E. Prediction of N-nitrosodimethylamine (NDMA)formation as a disinfection by-product[J].Journal of Hazardous Materials2007,145(1-2):270-276.
    [24]Mitch W A, SEdlak D L. Formation of N-nitrosodimethylamine (NDMA)from dimethylamine during chlorination[J]. Environment Science andTechnology.2002,36(4):588-595.
    [25]Choi J, Valentine R L. Formation of N-nitrosodimethylamine (NDMA) fromreaction of monochloramine: a new disinfection by-product[J]. WaterResearch.2002,36(4):817-824.
    [26]贲岳.污水处理过程中两种硝基含氮有机物的生物降解实验研究.哈尔滨工业大学博士论文[D].2009,32-35.
    [27]Ayanaba A, Alexander M. Transformations of methylamines and formation ofa hazardous product, dimethylnitrosamine, in samples of treated sewage andLake water[J]. Journal of Environmental Quality.1974,3(1):83-89.
    [28]Tate R L, Alexander M. Resistance of Nitrosamines to Microbial Attack[J].Journal of Environmental Quality.1976,5(2):131-133.
    [29]Brillas E, Calpe J C, Cabot PL. Degradation of the heribicide2,4-Dichlorophenoxyacetic acid by ozonation catalyzed with Fe2+and UVlight[J].Applied Catalysis B:Environmental.2003,46:381-391.
    [30]Zhang T, Li C J, J. Ma, et al.Surface hydroxyl groups of synthetic a-FeOOHin promoting·OH generation from aqueous ozone: Property and activirelationship[J]. Applied Catalysis B:Environmental.2008,82(1-2):131-137.
    [31]Katsoyiannis I A, Canonica S, Gunten U V. Efficiency and energyrequirements for the transformation of organic micropo lutants by ozone,O3/H2O2and UV/H2O2.[J]Water Research.2011,45(13):3811-3822.
    [32]Bauman M, Lobnik A, Hribernik A. Decolorization and modeling of syntheticwastewater using O3and H2O2/O3processes[J]. Ozone: Science andEngineering.2011,33(1):23-30.
    [33]Lucas M S, Peres A, Puma G. Treatment of winery wastewater by ozone-basedadvanced oxidation processes (O3,O3/UV and O3/UV/H2O2) in a pilot-scalebubble column reactor and process economics[J]. Separation and PurificationTechnology.2011,72(3):235-241.
    [34]Legube B, Karpel N, Leitner V. Catalytic ozonation:a promising advancedoxidation technology for water treatment[J]. Catalysis Today,1999,53(1),61-72.
    [35]Hewes C G, Davinson R R. Renovation of wastewater by ozonation[J]. WaterAIChE Symposium Series.1972,69:71.
    [36]Abdo M S E., Shaban H, M. Bader S H. Decolorization by ozone of directdyes in presence of some catalysts[J]. Journal of Environmental Science andHealth, Part A: Environmental Science and Engineering.1988,23(7):697-710.
    [37]Gracia R, Araguss J L, Ovelleiro J L.Study of catalytic ozonation of humicsubstances in water and their ozonation byproducts[J]. Ozone Science andEngineering.1996,18(3):195-208.
    [38]Ma J, N. Graham J D. Preliminary investigation of manganese-catalyzedozonation for the destruction of atrazine[J]. Ozone Science and Engineering.1997,19(3):227-240.
    [39]Arslan. Treatability of a simulated disperse dye-bath byferrous ironcoagulation, ozonation, and ferrous iron-catalyzed ozonation[J]. Journal ofHazardous Materials.2001,85(3):229-241.
    [40]Ni CH,Chen J,Yang PY.Catalytic ozonation of2-Dichlorophenol bymetallic ions[J]. Water Science and Technology.2003,47:77-81.
    [41]Beltran FJ,Rivas FJ,Montero-de-Espinosa R.Iron Type Catalysts for theOzonation of Oxalic Acid in water[J]. Water Research.2005,39(15):3553-3564.
    [42]Pines D S, Reckhow D A. Effect of dissolved Co(Ⅱ) on the ozonation ofoxalic acid[J]. Environmental Science and Technology.2002,36(19):4046-4051.
    [43]Tong S P, Liu W P, Leng W H, et al. Characteristics of MnO2catalyticozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere.2003,50(10):1359-1364.
    [44]Alsheyab M A, Munoz A H. Comparative study of ozone and MnO2/O3effectson the elimination of TOC and COD of raw water at the valmayor station[J].Desalination.2007,207(1-3):179-183.
    [45]Dong Y M, Yang H X, He K, et al. Beta-MnO2nanowires: a novel ozonationcatalyst for water treatment[J].Applied Catalysis B:Environmental.2009,85(3-4):155-161.
    [46]Villasenor J, Reyes P, Pecchi G. Catalytic and photocatalytic ozonation ofphenol on MnO2supported catalysts[J]. Catalysis Today.2002,76(2-4):121-131.
    [47]Jung H, Kim J W, Choi H, et al. Synthesis of nanosized biogenic magnetiteand comparison of its catalytic activity in ozonation[J]. Applied Catalysis B:Environmental.2008,83(3-4):208-213.
    [48]Park J S, Choi H, Cho J. Kinetic decomposition of ozone andPara-chlorobenzoic acid (pCBA) during catalytic ozonation[J]. WaterResearch.2004,38(9):2285-2292.
    [49]Zhang T, Ma J. Catalytic ozonation of trace Nitrobenzene in water withsynthetic goethite[J]. Journal Molecular Catalysis A: Chemical.2008,279(1):82-89.
    [50]Lee J E, Jin B S, Cho S H, et al. Catalytic ozonation of humic aAcids withFe/MgO react. kinet[J]. Catalysis Letters.2005,85(1):65-71.
    [51]Cooper C, Burch R. An investigation of catalytic ozonation for the oxidationof halocarbons in drinking water preparation[J]. Water Research.1999,33(18):3695-3700.
    [52]Ni C H, Chen J N. Heterogeneous catalytic ozonation of2-chlorophenolaqueous solution with alumina as a Catalyst[J]. Water Science and Technology.2001,43(2):213-220.
    [53]Ernst M, Lurot F, Schrotter J C. Catalytic ozonation of refractory organicmodel compounds in aqueous solution by aluminum oxide[J]. AppliedCatalysis B:Environmental.2004,47(1):15-25.
    [54]Beltran F J, Rivas F J, Montero-De-Espinosa R. Ozone-enhanced oxidation ofoxalic acid in water with cobalt catalysts.2. heterogeneous catalyticozonation[J]. Industrial and Engineering. Chemistry Research.2003,42(14):3218-3224.
    [55]Hu C, Xing S T, Qu J H, et al. Catalytic ozonation of herbicide2,4-d overcobalt oxide supported on mesoporous zirconia[J]. Journal of PhysicalChemistry. C.2008,112(15):5978-5983.
    [56]Xu Z Z, Chen Z L, Joll C, et al.Catalytic efficiency and stability of cobalthydroxide for decomposition of ozone and p-Chloronitrobenzene in water[J].Catalysis Communication.2009,10(8):1221-1225.
    [57]Xu ZZ, Chen ZL, Ben Y, et al. Synthesis of hexagonal-Co(OH)2nano-platelets with high catalytic activity via a low-temperature precipitationmethod[J]. Material Letters.2009,63(13-14):1210-1212.
    [58]Zhai X, Chen ZL, Zhao SQ, et al. Enhanced ozonation of dichloroacetic acidin aqueous solution using nanometer ZnO powders[J]. Journal Environmentand Science.2010,22(10):1527-1533.
    [59]Allemane H, Delouane B, Paillard H, et al. Comparative efficiency of threesystems (O3, O3/H2O2and O3/TiO2) for the oxidation of natural organic matterin water[J]. Ozone Science and Engineering.1993,15(5):419-432.
    [60]Volk C, Roche P, Joret J C, et al. Comparison of the effect of ozone,ozone-hydrogen peroxide system and catalytic ozone on the biodegradableorganic matter of a fulvic acid solution[J]. Water Research.1997,31(3):650-656.
    [61]Gracia R, Cortes S, Sarasa J, et al. Heterogeneous catalytic ozonation withsupported titanium dioxide in model and natural waters. Ozone Science andEngineering[J].2000,22(5):461-471.
    [62]Gracia R, Cortes S, Sarasa J, et al. Catalytic ozonation with supportedtitanium dioxide. the stability of catalyst in water. Ozone Science andEngineering[J].2000,22(2):185-193.
    [63]Beltran F J, Rivas F J. Catalytic ozonation of oxalic acid in an aqueous TiO2slurry reactor[J]. Applied Catalysis B:Environmental.2002,39(3):221-231.
    [64]Rosal R, Rodriguez A, Gonzalo M S, et al. Catalytic ozonation of naproxenand carbamazepine on titanium dioxide[J]. Applied Catalysis B:Environmental.2008,84(1-2):48-57.
    [65]Gracia R, Cortes S, Sarasa J, et al. TiO2-catalysed ozonation of raw ebro riverwater[J]. Water Research.2000,34(5):1525-1532.
    [66]Zhao L,Ma J,Sun Z Z,Liu ZQ,et al, Experimental study on oxidativedecomposition of nitrobenzene in aqueoussolution by honeycombceramic-catalyzed ozonation[J]. Frontiers ofEnvironment Science andEngineering in China.2008,2(1):44-50.
    [67]赵雷,马军,孙志忠,等.蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究[J].环境科学.2007,28(2):335-341.
    [68]孙志忠,马军,赵雷,等.水中内分泌干扰物二苯甲酮的臭氧/蜂窝陶瓷氧化降解效能的研究[J].黑龙江大学自然科学学报,2005,22(4):428-432.
    [69]赵雷,孙志忠,马军.蜂窝陶瓷催化臭氧化降解水中草酸研究[J].环境科学,2007,28(11):2533-2538.
    [70]Rivas FJ,Carbajo M,Beltrán FJ, et al. Perovskite catalytic ozonationofpyruvic acid in water operating conditions influence and kinetics[J].AppliedCatalysis B:Environmental.2006,62(1-2):93-103.
    [71]Park J, Choi H, Ahn K, et al, Removal mechanism of natural organic matterand organic acid by ozone in the presence of goethite[J], Ozone Science andEngineering[J].2004,26(2):141-152.
    [72]Wang SJ, Ma J, Yang YX, et al. Degradation and transformation of organiccompounds in Songhua river water by catalytic ozonation the presence ofTiO2/zeolite. Ozone Science and Engineering[J].2011,33(3):236-242.
    [73]赵雷,孙志忠,马军.堇青石催化臭氧化降解饮用水中二甲苯酮.中国有色金属学报[J].2007,17(1):298-304.
    [74]Valdés H, Tardón RF, Zaror CA,Effect of zeolite chemical surfaceproperties on catalytic ozonation of methylene blue contaminated waters.Ozone Science and Engineering[J].2010,32(5):344-348.
    [75]Choi H, Kim Y, Lim H, et al. Oxidation of polycyclic aromatic hydrocarbonsby ozone in presence of sand[J]. Water Science and Technology.2001,43:349-356.
    [76]Qi F, Xu B B, Chen Z L, et al.Ozonation catalyzed by the raw bauxite for thedegradation of2,4,6-trichloroanisole in drinking water[J],Journal ofHazardous Materials.2009,168(1):246-252.
    [77]赵波,尹琳,卢保奇,等.Cu-丝光沸石/臭氧催化-坡缕石联用工艺降解染料污水的初步研究[J].中国非金属矿工业导刊.2004,(5):48-65.
    [78]赵波,尹琳,李真,等.丝光沸石岩/水镁石在臭氧化染料废水体系中的增效作用机理研究[J].岩石矿物学杂志.2005,24(6):573-577.
    [79]Dong Y,He K,Zhao B,etal.Catalytic ozonation of azo dye active brilliantred X-3Bin water with natural mineral brucite[J].Catalysis Communications.2007,8(11):1599-1603.
    [80]Huang RH, Yan HH, Li LS, et al. Catalytic activity of Fe/SBA-15forozonation of dimethyl phthalate in aqueous solution[J] Applied Catalysis B:Environmental.2011,106(1-2):264-271.
    [81]Kasprzyk H B, Ziólek M, Nawrocki J. Catalytic ozonation and methods ofenhancing molecular ozone reactions in water treatment[J]. Applied CatalysisB: Environmental.2003,46(4):639-669.
    [82]李晓斌,呼世斌,陆晓华. TiO2/浮石的制备及其光催化性能的研究.水处理技术2006,32(5):23-25.
    [83]郑勋超,赵玲,尹平河,等.负载TiO2浮石对污水厂二沉池出水的矿化与灭菌研究.环境工程学报2009,3(1):62-66.
    [84]周铁海,赵玲,尹平河. La3+和Fe3+共掺杂TiO2/浮石的制备及光催化矿化二级出水效果.生态环境学报2009,18(5):1721-1726.
    [85]赵玲,郑勋超,周铁海,等.载Ag-TiO2/浮石光催化性能及耐用性考察.工业水处理2011,31(1):26-29.
    [86]潘永璋,朱峰.磷在涂铁浮石上吸附性能.过程工程学报2011,11(2):227-232.
    [87]KaplanBekaroglu SS, Yigit NO, Karanfil T,et al. The adsorptive removal ofdisinfection by-product precursors in a high-SUVA water using ironoxide-coated pumice and volcanic slag particles[J]. Journal of HazardousMaterials.2010,183(1-3):389-394.
    [88]Yavuz M, Gode F, Pehlivan E, et al. An economic removal of Cu2+andCr3+on the new adsorbents: Pumice and polyacrylonitrile/pumicecomposite[J]. ChemicalEngineering Joural.2008,137(3):453-461.
    [89]Rao K V S, Rachel A,Subrahmanyam M,et al. Immobilization of TiO2onpumice stone for the photocatalytic degradation of dyes and dye industrypollutants[J]. Applied CatalysisB: Environmental.2003,46(1):77-85.
    [90]Shen JM, Chen ZL, Xu ZZ, et al. Kinetics and mechanism of degradation ofp-chloronitrobenzene in water by ozonation[J]. Journal of HazardousMaterials.2008,152(3):1325-1331.
    [91]Bader H, HoignéJ. Determination of ozone in water by the indigo method[J].Water Research.1981,15(4):449-456.
    [92]Han YH, Ichikawa K, Utsumi H.A kinetic study of enhancing effect byphenolic compounds on the hydroxyl radical generation during ozonation[J].Water Science and Technology.2004,50(8):97-102.
    [93]Munch J W, Winslow D J M., Wendelken SD, et al. EPA Method556:Determination of Carbonyl Compounds in Drinking Water byPentafluorobenzyblydroxylamine Derivatisation and Capillary GasChromatography with Electron Capture Detection.1998:1-37
    [94]Tamura H, Tanaka A, Mita K, et al. Surface hydroxyl site densities on metaloxides as a measure for the ion-exchange capacity. Journal of Colloid andInterfaceScience.1999,209(1):225-231.
    [95]Valdés H,Farfán V J, Manoli J A, et al. Catalytic ozone aqueousdecomposition promoted by natural zeoliteand volcanic sand. Journal ofHazardous Materials.2009,165(1-3):915-922.
    [96]Park J, Choi H, Ahn K, et al.Removal mechanism of natural organic matterand organic acid by ozone in the presence of goethite[J], Ozone Science andEngineering[J].2004,26(2):141-152.
    [97]Lim H, Choi H, Hwang T, et al.Characterization of ozone decompositionin asoil slurry: kinetics and mechanism[J].Water Research.2002,36(1):219–229.
    [98]Qi F, Xu B B, Zhao L, et al.Comparison of the efficiency and mechanism ofcatalyticozonationof2,4,6-trichloroanisole by iron and manganese modifiedbauxite[J].Applied CatalysisB: Environmental.2012,121-122:171-181.
    [99]Yang YX, Ma J, Qin QD,et al. Degradation ofnitrobenzene by nano-TiO2catalyzed ozonation[J].Journal MolecularCatalysis A.2007,267(1-2):41-48.
    [100]Ma J, Sui MH, Chen ZL,et al. Degradation ofrefractory organic pollutantsby catalyticozonation-activatedcarbon and Mn-loaded activated carbon ascatalysts[J]. Ozone Science and Engineering[J].2004,26(1):3-10.
    [101]Ma J, Sui MH, Zhang T,et al. Effect of pH on MnOx/GACcatalyzedozonation for degradation of nitrobenzene[J]. Water Research.2005,39(5):779-786.
    [102]Sun ZZ, Ma J, Wang LB,et al. Degradation ofnitrobenzene in aqueoussolution by ozone-ceramic honeycomb[J].Journal of Environmental Science.2005,17:716-721.
    [103]Zhao L, Ma J, Sun ZZ. Oxidation products and pathway ofceramichoneycomb-catalyzed ozonation for the degradation of nitrobenzen inaqueous solution[J]. Applied CatalysisB: Environmental.2008,79(3):244-253.
    [104]Ikhlaq A, Brown D R, Kasprzyk-Hordern B. Mechanisms of catalyticozonation on alumina and zeolites in water: Formation of hydroxyl radicals[J].Applied CatalysisB: Environmental.2004,123-124:94-106.
    [105]Dong Y, Yang H X, He K, et al.-MnO2nanowires: A novel ozonationcatalyst for water treatment[J]. Applied CatalysisB: Environmental.2009,85(3-4):155-161.
    [106]Faria PCC, órf o JJM, M.F. Pereira R. Activated carbon and ceriacatalysts applied to the catalytic ozonation of dyes and textile effluents[J].Applied CatalysisB: Environmental.2009,88(3-4):341-350.
    [107]Faria PCC, Monteiro DCM, órf o JJM, et al. Cerium, manganese andcobalt oxides as catalysts for the ozonation of select organic compounds[J].Chemosphere.2009,74(6):818-824.
    [108]Yang L, Hu C, Nie Y,et al. Catalytic ozonation of selected pharmaceuticalsover mesoporous alumina-supported manganese oxide[J]. EnvironmentalScience and Technology.2009,43(7), pp2525–2529
    [109]Li X K, Zhang Q Y, Tang L L, et al. Catalytic ozonation of p-chlorobenzoicacid by activated carbon and nickel supported activated carbon prepared frompetroleum coke[J]. Journal of Hazardous Materials.2009,163(1):115-120.
    [110]Zhao L, Ma J, Sun Z Z, et al. Mechanism of heterogeneous catalyticozonation of nitrobenzene in aqueous solution with mod fied ceramichoneycomb[J]. Applied CatalysisB: Environmental.2009,89(3-4):326-334.
    [111]Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms ofcatalytic ozonation[J]. Applied CatalysisB: Environmental.2010,99(1-2):27-42.
    [112]Yalfani M S, Contreras S, Llorca J, et al. Enhanced Cu activity in catalyticozonation of clofibric acid by incorporation into ammonium dawsonite[J].Applied CatalysisB: Environmental.2011,107(1-2):9-17.
    [113]Chetty E C, Dasireddy V B, Maddila S, et al. Efficient conversion of1,2-dichlorobenzene to mucochloric acid with ozonation catalyzed by V2O5loaded metal oxides[J]. Applied CatalysisB: Environmental.2012,117-118:18-28.
    [114]Zhang T, Ma J. Catalytic ozonation of trace nitrobenzene in water withsynthetic goethite[J]. Journal of Molecular Catalysis A: Chemical.2008,279(1):82-89.
    [115]Sui M H, Sheng L, Lu K X, et al. FeOOH catalytic ozonation of oxalic acidand the effect of phosphate binding on its catalytic a ivity[J]. AppliedCatalysisB: Environmental.2010,96(1-2):94-100.
    [116]Li L S,Ye W Y, Zhang Q Y, et al. Catalytic ozonation of dimethyl phthalateover cerium supported on activated carbon[J]. Journal of Hazardous Materials.2009,170(1):411-416.
    [117]Rosal R, Rodríguez A, Gonzalo MS, et al. Catalytic ozonation of naproxenand carbamazepine on titanium dioxide[J]. Applied CatalysisB:Environmental.2008,84(1-2):48-57.
    [118]Song S, Liu Z W, He Z Q, et al. Impacts of morphology and crystallitephases of titanium oxide on the catalytic ozonation of phenol[J].Environmental Science and Technology.2010,44(10), pp3913–3918
    [119]Orge CA, órf o JJM, Pereira MFR. Composites of manganese oxidewith carbon materials as catalysts for the ozonation o oxalic acid[J]. Journalof Hazardous Materials.2012,213-214:133-139.
    [120]Lv A H, Hu C, Nie Y L, et al. Catalytic ozonation of toxic pollutants overmagnetic cobalt-doped Fe3O4suspensions[J]. Applied CatalysisB:Environmental.2012,117-118:246-252.
    [121]Liu ZQ, Ma J, Cui YH, et al. Effect of ozonation pretreatment on thesurface properties and catalytic activity of multi-walled carbon nanotube[J].Applied CatalysisB: Environmental.2009,3-4:301-306.
    [122]Lv A H, Hu C, Nie Y L, et al. Catalytic ozonation of toxic pollutants overmagnetic cobalt and manganese co-doped?-Fe2O3[J]. Applied CatalysisB:Environmental.2010,100(1-2):62-67.
    [123]徐贞贞,陈忠林,贲岳,等.羟基化锌催化臭氧化水中痕量pCNB的动力学和机理[J].化工学报.2009,60(7):1687-1692.
    [124]Beltrán F J, Aguinaco A, García-Araya J F.. Kinetic modelling of TOCremoval in the photocatalytic ozonation of diclofenac s solutions[J].Applied CatalysisB: Environmental.2010,100(1-2):289-298.
    [125]Beltrán F J, Pocostales J. P, Alvarez P M., et al. Mechanism and kineticconsiderations of TOC removal from the powdered activated carbon ozonationof diclofenac aqueous solutions[J]. Journal of Hazardous Materials.2009,169(1-3):532-538.
    [126]Liu ZQ, Ma J, Cui YH, et al. Influence of different heat treatments on thesurface properties and catalytic performance of carbon nanotube inozonation[J]. Applied CatalysisB: Environmental.2010,101(1-2):74-80.
    [127]Chen YH, Shang NC, Hsieh DC. Decomposition of dimethyl phthalate inan aqueous solution by ozonation with high silica zeolites and UV radiation[J].Journal of Hazardous Materials.2008,157(2-3):260-268.
    [128]Bing J H, Li L S, Lan B Y, et al. Synthesis of cerium-doped MCM-41forozonationofp-chlorobenzoic acid in aqueous solution[J]. AppliedCatalysisB: Environmental.2012,115-116:16-24.
    [129]Liu Y, Shen JM, ChenZ L,et al. Effects of amorphous-zinc-silicate-catalyzedozonationon the degradation ofp-chloronitrobenzene in drinkingwater[J]. Applied CatalysisA: Environmental.2011,403(1-2):112-118.
    [130]Zhang T, Li W W, Croue J P. A non-acid-assisted and non-hydroxyl-radical-related catalyticozonationwith ceria supported copper oxide inefficient oxalate degradation in water[J]. Applied CatalysisB: Environmental.2012,121-122:88-94.
    [131]Sing K S W, Everett D H, Haul R A W, et al. Reporting Physisorption Datafor Gas/Solid Systems with Special Reference to the Determination of SurfaceArea and Porosity. Pure Appl. Chem.1985,57(4):603-619.
    [132]Mullet M, Fievet P, Szymczyk A, et al. A simple and accurate determinationof the point of zero charge of ceramic membranes[J]. D alination.1999,121(1):41-48.
    [133]zhao L, Ma J, Sun Z Z, et al.Enhancement mechanism of heterogeneouscatalytic ozonationby cordierite-supported copper forthe degradation ofnitrobenzene in aqueous solution[J]. EnvironmentalScience and Technology.2009,43:2047-2053.
    [134]Stumm W, Morgan J (著),汤鸿霄,等(译).水化学[M].北京:科学出版社,1987,460-465.
    [135]Valdés H, Tardón R F, Zaror C A.Effect of zeolite chemical surfaceproperties oncatalyticozonation of methylene blue contaminated waters.Ozone Science and Engineering[J].2010,32:344-348.
    [136]Ma J, Graham N JD.Degradation of atrazine by manganese-catalysedozonation: Influence of humic substances[J]. Water Research.1999,33(3):785-793.
    [137]Gunten U V Ozonation of drinking water: part. oxidation kinetics andproduct formation[J]. Water Research.2003,37(7):1443-1467.
    [138]Langlais B, Reckhow D A, Deborah R Brink. Ozone in water treatment:application and engineering[M]. Michigan, USA:Lewis Publishers,1991,18-19.
    [139]马军,张涛,等.水中羟基化铁催化臭氧分解和氧化痕量硝基苯的机理探讨[J].环境科学.2005,26(2):78-82.
    [140]沈吉敏,陈忠林,李学艳,等. O3/H2O2去除水中硝基苯效果与机理[J].环境科学.2006,27(9):1791-1797.
    [141]Ernst M, Lurot F, Schrotter J C. Catalytic Ozonation of RefractoryOrganicModel Compounds in Aqueous Solution by Aluminum Oxide[J]. AppliedCatalysisB: Environmental.2004,47(1):15-25.
    [142]Gracia R, Cortes S, Sarasal J, et al. TiO2-catalysed ozonation of rawebroriver water[J]. Water Research.2000,34(5):1525-1532.
    [143]Andreozzi R, Marotta R, Sanchirico R. Manganese-catalysed ozonation ofglyoxalic acid in aqueous solutions[J]. Journal of Chemical Technology andBiotechnology.2000,75(1):59-65.
    [144]赵雷,孙志忠,马军.蜂窝陶瓷催化臭氧化降解水中草酸的研究[J].环境科学.2007,28(11):2533-2538
    [145]张涛,陈忠林,马军,等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学学报[J].2004,25(4):43-47
    [146]HoigneJ, Bader H. Rate constants of reactions of ozone with organic andinorganic compounds in water III: inorganic compounds and radicals[J].Water Research.1995,19(8):993-1004.
    [147]Goslan E H, Fearing D A, Banks J, et al. Seasonal variations in thedisinfection by-product precursor profile of a reservoir water[J]. Journal ofWater Supply Research and Technology AQUA.2002,51(8):475-482.
    [148]Staehelin J, HoigneJ. Decomposition of ozone in water in the presence oforganic solutes acting as promoters and inhibitors of radical chain reactions[J].Environmental Science and Technology.1985,19(12):1206-1213.
    [149]Xiong F N, Graham J D. Removal of atrazine through ozonation in thepresence of humic substances[J]. Ozone Science and Engineering.1992,14(3):263-268.
    [150]陈忠林,沈吉敏,李学艳,等.臭氧化去除水中对硝基氯苯动力学及机理[J].化工学报.2006,57(10):2439-2444.
    [151]Elizarova G L, Zhidomirov G M, Parmon V N. Hydroxides of transitionmetals as artificial catalysts for oxidation of water dioxygen[J]. CatalysisToday.2000,58(2):71-88.
    [152]Staehelin J, HoigneJ. Decomposition of ozone in water in the presence oforganic solutes acting as promoters and inhibitors of radical chain reactions[J].Environmental Science and Technology.1985,19(12):1206-1213.
    [153]Pi Y Z, Mathisa E, Jean C S. Effect of phosphate buffer upon CuO/Al2O3and Cu(II) catalyzed ozonation of oxalic acid solution[J]. Ozone Science andEngineering.2003,25(5):393-397.
    [154]Parfitt R L., Russell J D. Adsorption on hydrous oxides. IV mechanisms ofadsorption of various ions on goethite[J]. Journal of Soil Science.1977,28:297-305.
    [155]Sunada F, Heller A. Effects of water, salt water, and silicone overcoati g ofthe TiO2photocatalyst on the rates and products of photocatalytic oxidation ofliquid3-octanol and3-octanone[J]. Environmental Science and Technology.1998,32(2):282-286.
    [156]Mateus M, Silva A, Burrows H D. Kinetics of photodegradation of thefungicide fenarimol in natural waters and in various s lt solutions: salinityeffects and mechanistic considerations[J]. Water Research.2000,34(4):1119-1126.
    [157]杨忆新,马军,秦庆东,等.过渡金属氧化物催化臭氧化在水处理中的应用.现代化工[J].2006,26(增刊):310-315.
    [158]徐贞贞.过渡金属羟基氧化物催化臭氧氧化水中痕量pCNB的研究.哈尔滨工业大学博士论文[D].2009,113-114.
    [159]Kasprzyk-Hordern B, Ziólek M, Nawrocki J. Catalytic ozonation andmethods of enhancing molecular ozone reactions in watertreatment[J].Applied Catalysis B: Environmental,2003,46(4):639-669.
    [160]Bulanin K M, Alexeev A V, Bystrov D S, et al. Infrared study of ozoneadsorption on SiO2[J]. Journal of Physical Chemistry.1994,98(19):5100-5103.
    [161]Bulanin K M, Lavalley J C, Tsyganenko A A. Infrared study of ozoneadsorption on TiO2(Anatase)[J]. Journal of Physical Chemistry B.1995,99:10294-10298.
    [162]Bulanin K M, Lavalley J C, Lamotte J, et al. Infrared study of ozoneadsorption on CeO2[J]. Journal of Physical Chemistry B.1998,102:6809-6816.
    [163]Bulanin K M, Lavalley J C, Tsyganenko A A. Infrared study of ozoneadsorption on CaO[J]. Journal of Physical Chemistry B.1997,101:2917-2922.
    [164]杨庆良,谢家理,许正,等.高湿度条件下O3在MnOx/?-Al2O3催化剂上
    的分解[J].四川大学学报.2001,38(2):226-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700