用户名: 密码: 验证码:
聚氨酯海绵填料生物滴滤器去除挥发性有机物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,从大规模工业生产或化学药剂制造过程中排放的大量的挥发性有机物(volatile organic compounds, VOCs),不但污染环境,还危害人体健康。采用生物法处理低浓度VOCs发展迅速。其中生物滴滤技术被认为是高效、经济和环境友好的控制技术,并且不会产生二次污染。
     由于合成填料比自然填料具有更多的优点,聚氨酯海绵(25 PPI)作为填料已经在生物滴滤器和转鼓生物过滤器中得到了应用。本研究采用两个相同的实验室规模生物滴滤器装置,以甲苯为模型VOCs,以整块开孔网状聚氨酯海绵材料作为生物滴滤器中微生物依附的载体,分别考察并评价了VOCs负荷和气体停留时间对其性能的影响。对于更好设计和应用聚氨酯海绵作为工业规模生物滴滤器的填料具有重要的实际意义。
     生物滴滤器对实验室模型甲苯废气处理效果良好。气体停留时间对装置的去除效率和去除能力均有较大的影响。在甲苯平均进口浓度为483 mg/m~3时,生物滴滤器去除效率和去除能力均随气体停留时间的缩短而急剧下降。当停留时间分别为30,15和7.5 s时,去除效率分别99%,65%和50%。平均去除能力分别达到了83,37,22 g toluene/m~3·h。
     进口甲苯浓度也对装置的性能产生了较大的影响。在气体流量为280 L/h的条件下,对于甲苯气体,去除效率随进口气体浓度升高呈下降的趋势。当进口甲苯浓度低于713 mg/m~3时,去除效率超过99%;继续增加进口甲苯浓度到1130和2710 mg/m~3时,去除效率下降至74%和44%。同样条件下,对甲苯的去除能力的规律均表现为:随进口浓度的升高EC值逐渐变大,升高到一定程度趋势变缓。当有机负荷为分别为85,135,3225 g toluene/m~3·h时,平均去除能力分别达到了845,98,142 g toluene/m~3·h;当进口有机负荷增加到最大值494 g toluene/m~3·h,甲苯去除能力达最大值237 g toluene/m~3·h。
     以城市污水处理厂的活性污泥混合菌种作为甲苯的降解实验的接种污泥,经驯化以后,不仅对甲苯具有较好的降解性能,而且活性污泥中混合菌群的生物多样性有助于生物滴滤器实现快速启动。
     实验结果还表明:采用整块网状聚氨酯海绵填料生物滴滤器,当停留时间和进气浓度一定时,生物滴滤器去除甲苯的效率或去除能力,随着填料高度的增加而增加;压力损失随着进口气体流量和甲苯浓度的增加而增加;并且在进口甲苯负荷有较大的波动时,由于分布在填料上的生物膜,能够提供很大的缓冲能力,使其具有很好的抵制冲击负荷的能力。
     总之,用本生物滴滤器进行甲苯废气的处理,具有填料使用寿命长,易于管理,去除率高,去除能力大等优点,因此,具有广阔的应用前景。
Recently, volatile organic compounds (VOCs) present in waste gas streams emitted from large-scale industrial operations or chemicals process were able to result in environment pollution and jeopardize people health. Biological treatment is an emerging rapidly technology for treatment of the low concentration VOCs. In particularly, biofiltration is known as an efficient, economical and environmental friendly technology, and having no second pollutions.
     Synthetic media have advantages over many natural media, and polyurethane sponges have been applied in biotrickling filters (BTFs) and rotating drum biofilters. In this study, toluene was chosen as the model VOC, open-pore reticulated polyurethane sponges (10 pores per cm) were used as structured packing media in two identical bench-scale BTFs which were separately evaluated at various volatile organic compound loading rates and gas empty bed contact time (EBCT). These investigations are helpful for proper design of full-scale biofilters packed with polyurethane sponges.
     The BTFs packed with polyurethane sponges have a good performance for treating waste gas containing toluene. Both influent toluene concentration and EBCT have a great effect on performance of BTFs. Toluene removal efficiencies were over 99%, 65% and 50%, and the average elimimation capacity (EC) were 83, 37 and 22 g toluene/m~3·h when the EBCT were 30, 15, and 7.5 s, respectively, at a constant influent toluene concentration of 483 mg/m~3.
     The influent toluene concentration also influenced the performance of BTFs in a great extend. When the VOC average feed concentration were 713, 1130 and 2710 mg/m~3, correspondingly the organic loading rate of the BTF were 85, 135 and 322 g toluene/m~3·h, the EC increased rapidly to 84 g toluene/m~3·h during the first 15 days, then increased slowly and reached up to 98, 142 g toluene/m~3·h, and removal efficiency were over 99%, 74% and 44% respectively at an EBCT of 30 s.
     The activated sludge, from municipal wastewater treatment plant, has a good degradation performace for toluene after acclimated by toluene. Effect of inoculation of activated sludge on startup performance of a BTFs after backwashing was also investigated. Result showed that the BTF added activated sludge had a shorter startup period.
     The results indicated also that the removal efficiency or EC of the BTFs packed with structured polyurethane sponges will enhance with a incresing height of media at a certain infulent toluene concentration and EBCT. The pressure drop will increase with increasing influent gas flow rate and toluene concentration. Moreover, the BTF has a strong capacity of resisting shock loading when the influent organic loading had a wide fluctuation range as the biofilm on the media provide a great buffer capacity.
     In short, the biotrikling filter is reliabe, highly removal efficient and EC, and easy to be maintained. And meanwhile, the media in the biotrikling filter has a long service life. Therefore, it has a potential application area.
引文
[1] Smith C M, Brown W E. Elimination of VOC Emissions from surface coating operations. J. Air&Waste Manage. Assoc., 1993, 43: 1015–1019
    [2] McMinn B W, Newman C R, McCrillis R C, et al. VOC prevention options for surface coating. EPA/600/A–92/146. 1992
    [3] Webster T S, Tongna A P, Guarini W J, et al. Treatment of volatile organic compound emissions from a paint spray booth application using biological trickling filtration. presented at the USC-TRG Conf. on Biofiltration, Los Angeles CA, Oct. 1998
    [4] Kazenski S L, Kinney K A. Biofiltration of paint spray booth emissions: packing media considerations and VOC interactions. Proc. 2000 Annual Meeting and Exposition of the Air & Waste Management Association, Salt Lake City, UT, 2000
    [5] Deshusses M A. Biodegradation of mixures of ketones vapours in biofilters for the treatment of waste air. Dissertation submitted to the Swiss Federal Institut of Technology Zurich, March 1994
    [6] USEPA. Compendium of methods for the determination of toxic organic compounds in ambient air. Second Edition. EPA/625/R–96/010b. 1999
    [7] USEPA. Generic verification protocol for bioreaction system control technologies for volatile organic compound emissions. EPA Cooperative Agreement No. CR826152–01–3 RTI Project No. 08281.001.006. 2003
    [8] USEPA. Control techniques for volatile organic compound emissions from stationay sources. Emission Standards Division. EPA/453/R–92–018. 1992
    [9] 郝吉明, 马广大. 大气污染控制工程. 第二版. 北京: 高等教育出版社, 2002, 378–130
    [10] Leson G, Arthur M W. Biofiltration: an innovative air pollution control technology for VOCs emissions. Air Waste Manage. Assoc., 1991, 41 (8): 1045–1054
    [11] 李国文, 胡洪营, 郝吉明等. 生物滴滤塔中挥发性有机物降解模型及应用. 中国环境科学, 2001, 21(1): 81–84
    [12] 周中平, 赵寿堂, 朱立等. 室内污染检测与控制. 北京: 化学工业出版社, 2002
    [13] USEPA. The plain English guide to the Clean Air Act. EPA–400–K–93–001. 1993
    [14] 中国国家环保总局, 国家技术监督局. 中华人民共和国国家标准环境空气质量标准. GB/T 3095–1996
    [15] 中国国家环保总局. 中华人民共和国国家标准大气污染物综合排放标准. GB 16297–1996
    [16] Devinny J S, Deshusses M A, Webster T S. Biofiltration for air pollution control. Boca Raton, FL, USA: Lewis. Publishers, 1999: 1–40, 111–183, 211–250
    [17] USEPA. EPA air pollution control cost manual. Sixth edition. EPA/452/B–02–001. 2002
    [18] Khan F I, Ghoshal A K. Removal of volatile organic compounds from polluted air. J. Loss Prevent. Proc. 2000, 13(6): 527–529
    [19] Engleman V S. Updates on choices of appropriate technology for control of VOC emissions. Metal Finishing, 2000, 98(6): 433–445
    [20] 徐峰. 生物法净化低浓度甲苯废气的研究: [硕士学位论文]. 南京: 南京理工大学, 2003, 1–40
    [21] Wang C, Lin S, Chen C, et al. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons. Chemosphere, 2006, 64(3): 503–509
    [22] 欧海峰. 活性碳纤维吸附—催化燃烧装置处理有机废气. 环境污染与防治, 2002, 24(2): 85–87
    [23] 钟秦. 燃煤烟气脱硫脱硝技术及工程实例. 北京: 化学工业出版社, 2002
    [24] Giraudet S, Pré P, Tezel H, et al. Estimation of adsorption energies using the physical characteristics of activated carbons and the molecular properties of volatile organic compounds. Carbon, 2006, 44(12): 2413–2421
    [25] Parthasarathy G, El-Halwagi M M. Optimum mass integration strategies for condensation and allocation of multicomponent VOCs. Chem. Eng. Sci., 2000, 55(5): 881–895
    [26] Spadavecchia J, Ciccarella G, Rella R. Optical characterization and analysis of the gas/surface adsorption phenomena on phthalocyanines thin films for gas sensing application. Sensors Actuat. B. Chemical., 2005, 106(1): 212–220
    [27] Metcalf & Eddy. Wastewater engineering treatment and reuse. Forth edition. McGraw–Hill, New York. 2003, 887–969
    [28] 张彭义, 余刚, 蒋展鹏. 挥发性有机物和臭味的生物过滤处理. 环境污染治理技术与设备, 2000, (1): 1–5
    [29] Pomeroy R D. De-odorizing of gas stream by the use of microbial growth. U. S. Patent 2793096, 1957
    [30] Deshusses M A. Biological waste air treatment in biofilters. Curr. Opin. Biotech., 1997, 8(3): 335–339
    [31] Cox H H J, Deshusses M A. The effect of starvation on the performance and the re-acclimation of biotrickling filters for air pollution control. Environ. Sci. Technol., 2002, 36: 3069–3073
    [32] Cox H H J, Deshusses M A. Co-treatment of H2S and toluene in a biotrickling filter. Chem. Eng. J., 2002, 87(1): 101–110
    [33] Sakuma T, Hattori T, Deshusses M A. Comparison of different packing materials for the biofiltration of air toxics. J. Air Waste Manage., 2006, 56(11): 1567–1575
    [34] Chang D P Y, Devinny J S, Bohn H. Foreword. Chem. Eng. J., 2005, 113(2–3): 83–84
    [35] Wright W F, Schroeder E D, Chang D P Y. Regular transient loading response in a vapor-phase flow-direction-switching biofilter. J. Environ. Eng., 2005, 131(12): 1649–1658
    [36] Wright W F, Schroeder E D, Chang D P Y. Transient response of flow-direction-switching vapor-phase biofilters. J. Environ. Eng., 2005, 131(7): 999–1009
    [37] Nukunya T, Devinny J S, Tsotsis T T. Application of a pore network model to a biofilter treating ethanol vapor. Chem. Eng. Sci., 2005, 60(3): 665–675
    [38] Schwarz B C E, Devinny J S, Tsotsis T T. A biofilter network model-importance of the pore structure and other large-scale heterogeneities. Chem. Eng. Sci., 2001, 56(2): 475–483
    [39] Cai Z, Kim D, Sorial G A. A comparative study in treating two VOC mixtures in trickle bed air biofilters. Chemosphere, 2007, in Press
    [40] Kim D, Sorial G A. Role of biological activity and biomass distribution in air biofilter performance. Chemosphere, 2007, 66(9): 1758–1764
    [41] Kim D, Cai Z, Sorial G A, et al. Integrated treatment scheme of a biofilter preceded by a two-bed cyclic adsorption unit treating dynamic toluene loading. Chem. Eng. J., 2007, In Press
    [42] Qi B, Moe W M, Kinney K A. Biodegradation of volatile organic compounds by five fungal species. Appl. Microbiol. Biot., 2002, 58(5): 684–689
    [43] Song J, Kinney K A. A model to predict long-term performance of vapor-phasebioreactors: A cellular automaton approach. Environ. Sci. Technol., 2002, 36(11): 2498–2507
    [44] Song J, Ramirez J, Kinney K A. Nitrogen utilization in a vapor-phase biofilter. Water Res., 2003, 37(18): 4497–4505
    [45] Moe W M, Li C. A design methodology for activated carbon load equalization systems applied to biofilters treating intermittent toluene loading. Chem. Eng. J., 2005, 113(2–3): 175–185
    [46] Li C, Moe W M. Assesment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis. Appl. Microbiol. Biot., 2004, 64(4): 568–575
    [47] Li C, Moe W M. Sequencing batch operated biofilters for treatment of methyl ethyl ketone (MEK) contaminated air. Environ. Technol., 2003, 24(5): 531–544
    [48] Moe W M, Qi B. Performance of a fungal biofilter treating gas-phase solvent mixtures during intermittent loading. Water Res., 2004, 38(9): 2259–2268
    [49] Moe W M, Li C. Comparison of continuous and sequencing batch operated biofilters for treatment of gas-phase methyl ethyl ketone, J. Environ. Eng., 2004, 130(3): 300–314
    [50] Qi B, Moe W M. Performance of low pH biofilters treating a paint solvent mixture: Continuous and intermittent loading. J. Hazard. Mater., 2006, 135(1–3): 303–310
    [51] Moe W M, Irvine R L. Effect of nitrogen limitation on performance of toluene degrading biofilters. Water Res., 2001, 35(6): 1407–1414
    [52] Miller M J, Allen D G. Biodegradation of α-pinene in model biofilms in biofilters. Environ. Sci. Technol., 2005, 39(15): 5856–5863
    [53] Zhang Y, Liss S N, Allen D G. Enhancing and modeling the biofiltration of dimethyl sulfide under dynamic methanol addition. Chem. Eng. Sci., 2007, 62(9): 2474–2481
    [54] Miller M J, Allen D G. Modelling transport and degradation of hydrophobic pollutants in biofilter biofilms. Chem. Eng. J., 2005, 113(2–3): 197–204
    [55] Miller M J, Allen D G. Transport of hydrophobic pollutants through biofilms in biofilters. Chem. Eng. Sci., 2004, 59(17): 3515–3525
    [56] Mohseni M, Allen D G. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem. Eng. Sci., 2000, 55(9): 1545–1558
    [57] Vinage P R. Biological waste gas treatment with a modified rotating biological contactor. I. Control of biofilm growth and long-term performance. Bioprocessand Biosystems Engineering, 2003a, 26(1): 69–74
    [58] Vinage P R. Biological waste gas treatment with a modified rotating biological contactor. II Effect of operating parameters on process performance and mathematical modeling. Bioprocess and Biosystems Engineering, 2003b, 26(1): 75–82
    [59] 李琳, 刘俊新. 真菌降解挥发性有机污染物的特性与影响因素. 环境污染治理技术与设备, 2003, 4(3): 1–5
    [60] 朱国营, 刘俊新. 处理乙硫醇废气生物滤池中微生物的初步鉴定. 环境科学学报, 2004, 24(2): 333–337
    [61] Li G W, Hu H Y, Hao J M, et al. Use of biological activated carbon to treat mixed gas of toluene and benzene in biofilter. Environ. Technol., 2002, 23 (4): 467–477
    [62] Xi JY, Hu HY, Qian Y. Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: Biomass accumulation and stable-run time estimation. Biochem. Eng. J., 2006, 31(2): 165–172
    [63] 李国文, 胡洪营, 郝吉明等. 生物炭降解苯和甲苯混合废气性能研究. 环境科学, 2002, 23(5): 13–18
    [64] Liu Y H, Quan X, Sun Y M, et al. Simultaneous removal of ethyl acetate and toluene in air streams using compost-based biofilters. J. Hazard. Mater., 2002, 95(1–2): 199–213
    [65] Quan X, Zhao Y Z, Chen S. Removal of p-xylene from an air stream in a hybrid biofilter. J. Hazard. Mater., 2006, 136(2): 288–295
    [66] Wu D, Quan X, Zhang Y B, et al. Long-term operation of a compost-based biofilter for biological removal of n-butyl acetate, p-xylene and ammonia gas from an air stream. Biochem. Eng. J., 2006, 32(2): 84–92
    [67] 孙玉梅, 全燮, 陈景文等. 填料初始湿度对气态乙酸乙酯过滤的影响. 环境科学学报, 2002, 22(5): 576–580
    [68] 刘波, 姜安玺, 程养学等. 两级滴滤去除硫化氢和甲硫醇混合恶臭气体. 中国环境科学, 2003, 23(6): 618–621
    [69] 谢维民, 张兰河, 汪群慧等. 高效填料塔生物反应器处理制药废水处理厂含硫臭气. 环境科学, 2003, 24(6): 74–78
    [70] 徐桂芹, 姜安玺, 闫波等. 低温生物处理含硫含氮气体效能和机理研究. 哈尔滨工业大学学报, 2005, 37(2): 167–169
    [71] Zhou Q, Huang Y L, Tseng D H, et al. Trickling fibrous-bed bioreactor for biofiltration of benzene in air. Journal of Chemical Technology andBiotechnology, 2000, 73(4): 359–368
    [72] 羌宁, 吴志超, 麦穗海. 生物法去除 H2S 恶臭设备的现场工业化试验研究. 同济大学学报(自然科学版), 2005, 33(5): 640–643
    [73] 李国文, 樊青娟, 刘强等. 挥发性有机废气(VOCs)的污染控制技术. 西安建筑科技大学学报, 1998, 30(4): 399–402
    [74] 王宝庆, 马广大, 王莉等. 生物过滤床净化含乙苯废气的实验研究. 西安建筑科技大学学报(自然科学版), 2005, 37(1): 64–68
    [75] 雷艳梅, 孙佩石, 吴献花等. 生物膜填料塔净化低浓度苯乙烯废气的实验研究. 环境污染治理技术与设备, 2006, 7(3): 36–39
    [76] 孙佩石, 黄兵, 黄若华等. 生物法净化挥发性有机废气的吸附—生物膜理论模型与模拟研究. 环境科学, 2002, 23(3): 14–17
    [77] Chen Y X, Yin J, Fang S. Biological removal of air loaded with a hydrogen sulfide and ammonia mixture. J. Environ. Sci., 2004, 16(4): 656–661
    [78] Chen Y X, Yin J, Wang K X, et al. Effects of periods of nonuse and fluctuating ammonia concentration on biofilter performance. J. Environ. Sci. Healt. A, 2004, 39(9): 2447–2463
    [79] Chen J M, Ma J F. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters. J. Air Waste Manage. Assoc., 2006, 56(1): 32–36
    [80] Chen J M, Wang J D, Ma J F. Effects of gas flow-rate and inlet concentration on nitric oxide removal in an autotrophic biofilter. J. Chem. Technol. Biot., 2006, 81(5): 812–816
    [81] Chen J M, Wu C Q, Wang J D, et al. Performance evaluation of biofilters packed with carbon foam and lava for nitric oxide removal. J. Hazard. Mater., 2006, 137(1): 172–177
    [82] 陈建孟, Hershman L, 陈浚等. 自养型生物过滤器硝化氧化一氧化氮. 环境科学, 2003, 24(2): 1–6
    [83] 张海杰, 罗阳春, 王家德等. 生物转鼓反硝化净化一氧化氮废气. 中国环境科学, 2006, 26(3): 262–265
    [84] 王家德, 高增粱, 褚淑祎等. 填料湿度、pH 值对 BF 系统处理 H2S 废气的影响. 环境科学学报, 2006, 26(4): 589–594
    [85] 张晓辉. 国外生物过滤器处理化工有机废气进展. 化工环保, 1999: 19(2): 84–88
    [86] Fouhy K. Cleaning waste gas naturally. Chemical engineering, 1992, 16: 41–46
    [87] 陈坚. 环境生物技术. 北京: 中国轻工业出版社, 2002
    [88] 夏北成. 环境污染物生物降解. 北京: 化学工业出版社, 2002
    [89] Jones W L, Mirpuri R G, Villaverde S. The effect of bacterial injury on toluene degradation and respiration rates in vapor phase bioreactors. Wat Sci Tech, 1997, 36(1): 85–92
    [90] Shim H, Shang T Y. Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J. Biotechnol., 1999, 67: 99–112
    [91] Banerjee I, Jayant M M, Bandopadhyay K, et al. Mathematical model for evalution of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida. J. Biotechnol, 2001, 87: 211–223
    [92] 伦世仪等. 环境生物工程. 北京: 化学工业出版社, 2002
    [93] Kitagawa M. Studies on the oxidation mechanism of methyl group. J Biochem, 1956, 43: 553–558
    [94] Brian D W, Stephen W. Cellular growth in biofilms. Biotechnol. Bioeng., 1999, 64(6): 656–670
    [95] Brian D W, Stephen W. Diffusion and reactor in biofilms. Chem. Eng. Sci., 1998, 53(3): 397–425
    [96] Mark W F, Natalie P, Gene R. Biological fixed-film systems. Water Environ. Res., 1998, 70(4): 495509
    [97] 王文军, 王文华, 黄亚冰等. 生物膜的研究进展. 环境科学进展, 1999, 7(5): 43–51
    [98] 王文军, 王文华, 张学林等. 水环境中生物膜对污染物环境化学行为的影响. 环境科学进展, 1999, 7(6): 58–65
    [99] Devinny J S, Ramesh J A. Phenomenological review of biofilter models. Chem. Eng. J., 2005, 113(2–3): 187–196
    [100] Okkerse W J H, Ottengraf S P P. Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a Dynamic Model Pollutant. Biotechnol. Bioeng., 1999, 64(6): 656–670
    [101] Okkerse W J H, Ottengraf S P P. Biofilm thickness variability investigated with a laser triangulation sensor. Biotechnol. Bioeng., 2000, 70: 619–629
    [102] 李国文, 马广大等. 生物过滤塔降解 VOCS 动力学模型. 第六届海峡两岸环境保护研讨会, 1999: 693–698
    [103] 孙佩石, 杨显万等. 生物法净化低浓度挥发性有机物的动力学问题探讨, 环境科学学报, 1999, 19 (2): 153–158
    [104] Zuber L, Dunn I J, Deshusses M A. Comparative scale-up and cost estimation ofa biological trickling filter and a three phase airlift bioreactor for the removal of methylene chloride from polluted air. J Air&Waste Manage Assoc, 1997, 47: 969–975
    [105] Brauer H. Biological purification of waste gases. International Chemical Engineering, 1986, 26(3), 387–395
    [106] Wu G, Conti B, Leroux A, et al. A high performance biofilter for VOC emission control. Air&Waste Manage. Assoc., 1999, 49: 185–192
    [107] 周少奇. 环境生物技术. 北京: 科学出版社, 2003
    [108] 陈建孟. 生物技术在有机废气处理中的研究进展. 环境科学进展, 1998, 6(3): 30–36
    [109] 羌宁. 气态污染物的生物净化技术及应用. 环境科学, 1996, 17 (3): 87–90
    [110] Zill M, Converti A, Lodi A, et al. Phenol removal from waste gases with a biological filter by pseudomonas putida. Biotechnol. Bioeng., 1993, 41(7): 693–699
    [111] Chou M S, Cheng W H. Screening of biofiltering material for VOC treatment. Air&Waste Manage. Assoc., 1997, 47(6): 674–681
    [112] Quinlan C, Strevett K, Ketcham M. VOCs elimination in a compost biofilter using a previously acclimated bacterial inoculum. J Air&Waste Manage Assoc, 1999, 49: 544–553
    [113] Reij M W, Keurentjes J T F, Hartman S. Membrane bioreactors for waste gas treatment. J Biotechnol, 1998, 59: 155–167
    [114] Gibson M J, Trevors J T, Otten L. Population estimates of thiobacillus thioparus in composting biofilters by PCR analysis. J. Microbiological Methods, 2006, 65(2): 346–349
    [115] 张华, 赵由才. 矿化垃圾反应床反硝化处理 NO 废气的初步研究. 环境工程, 2005, 23(2): 4, 39–42
    [116] Seignez C, Atti A, Adler N, et al. Effect of biotrickling filter operating parameters on chlorobenzenes degradation. J. Environ. Eng., 2002, 128 (4): 360–366
    [117] Morgenroth E, Wilderer P A. Influence of detachment mechanisms on competition in biofilms. Wat. Res., 2000, 34(2): 417–426
    [118] Okkerse W J H, Ottengraf S P P, Osinga-Kuipers B, et al. Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a dynamic model using dichloromethane as a model pollutant. Biotechnol. Bioeng., 1999, 63(4): 418–430
    [119] Bhat T R, Divya V, Ravic V, et al. An improved differential evolution method for efficient parameter estimation in biofilter modeling. Biochem. Eng. J., 2006, 28(2): 167–176
    [120] Den W, Huang C, Li C. Biotrickling filtration for control of volatile organic compounds from microelectronics industry. J. Environ. Eng., 2003, 129(7): 610–619
    [121] 王家德, 陈建孟等. 有机废气的生物处理概述. 上海环境科学, 1998, 17(4): 21–24
    [122] Leson G Winer A M. Biofiltation: an innovative air pollution control technology for VOC emission. J. Air&Waste Manage. Assoc., 1991, 41(8), 1045–1054
    [123] Ottengraf S P. Biological systems for waste gas elimination. TIBTECH, 1987, 5: 1045–1054
    [124] Ottengraf S P P, Van Den, Oever A H C. Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng., 1983, 25(12): 3089–3092
    [125] Shareefdeen Z, Baltzis B C. Biofiltration of toluene vapor under steady-state and transient conditions: theory and experimental results. Chem. Eng. Sci., 1994, 49: 4347–4360
    [126] Quinlan C, Strevett K, Ketcham M. VOCS elimination in a compost biofilter usinga previously acclimated bacterial inoculum. J Air&Waste Manage Assoc, 1999, 49: 544–553
    [127] Hodge D S, Devinny J S. Biofilter treatment of ethanol vapors. Environ. Prog., 1994, 13(3): 167
    [128] Deshusses M A, Geoffrey H. Behavior of biofilters for waste air biotreatment 1. dynamic model development. Environ. Sci. Technol., 1995, 29: 1048–1058
    [129] Deshusses M A, Geoffrey H. Behavior of biofilters for waste air biotreatment 2. experimental evaluation of a dynamic model. Environ Sci Technol, 1995, 29: 1059–1068
    [130] Chen H, Yang C P, Zeng G M, Yu K L, Qu W, Yu G L, Meng L. Numerical methods for volatile organic compound removal in rotating drum biofilter. Chinese Sci Bull, 2007, 52(16): 2184–2189
    [131] Yang C P, Chen H, Zeng G M, Qu W, Zhong Y Y, Zhu X Q, Suidan M T. Modeling biodegradation of toluene in rotating drum biofilter. Water Sci Technol, 2006, 54(9): 137–144. Proceedings of 5th IWA World Water Congress, Beijing: September 10–14, 2006 (SCI EI 070110348041 ISTP)
    [132] 陈宏, 杨春平, 曾光明, 余孔梁, 瞿畏, 余关龙, 孟蕾. 转鼓生物过滤器的甲苯降解模型与数值解法. 科学通报, 2007, 52(15): 1743–1747
    [133] Baltzis B C, Mpanias C J, Bhattacharya S. Modeling the removal of VOC mixtures in biotrickling filters. Biotechnol. Bioeng., 2001, 72: 389–401
    [134] 孙佩石, 杨显万, 黄若华等. 生物法净化废气中低浓度挥发性有机物的过程机理研究. 中国环境科学, 1997, 17(6): 545549
    [135] 魏在山, 徐晓军, 黄若华等. 生物法处理低浓度有机废气的填料选择研. 重庆环境科学, 2001, 23(2):40–45
    [136] 羌宁, 季学李, 顾国维. 气体生物滴滤池载体性能比较实验研究. 环境科学, 2000, 21(1): 45–48
    [137] Smith F L, Sorial G A, Suida MT. Development of two biomass control strateg extended, stable operation of highly efficient biofilters with high toluene loadings. Environ Sci Technol, 1996, 30(5): 1744–1751
    [138] Alonso C, Suidan M T. Gas treatment in trickle-bed biofilters: biomass, how much is enough? Biotechnol. Bioeng., 1997, 54(6): 583–594
    [139] Chou M S. Treatment of 1,3-butadiene in an air stream by a biotricking filter and a biofilter. Air Waste Manag Assoc, 1998, 48(8): 711–720
    [140] Cox H H J, Deshusses M A. Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol. Bioeng., 1999, 62(2): 216–220
    [141] Sorial G A, Smith F L, Suidan M T. Removal of ammonia from contaminated trickle bed air biofilters. J Air&Waste Manage Assoc, 2001, 51: 756–765
    [142] Deshusses M A, Johnson C T, Leson G. Biofiltration of high loads of ethyl acetate in the presence of toluene. J. Air & Waste Management Assoc., 1999, 49(8): 973–979
    [143] 李惠娟, 李季眉等. 生物滤床中甲苯及乙酸乙醋基质抑制效应之研究. 21 世纪可持续发展之环境保护 (上卷): 640–646
    [144] Collins L D, Dangulis A J. Benzene/toluene/p-xylene degradation: Part Ⅱof substracte interactions and feeding strategies in toluene/benzene toluene/p-xylene fermentations in a partitioning bioreactor. Appl. Microbiol. Biotechnol., 1999, 52: 360–365
    [145] 王鹏飞, 王艺, 宫曼丽等. 生物滴滤塔处理“三苯”废气的影响因素研究. 哈尔滨工业大学学报, 2003, 35(1): 73–75
    [146] 刘波, 姜安玺, 程养学等. 两级滴滤去除硫化氢和甲硫醇混合恶臭气体. 中国环境科学, 2003, 23(6): 618–621
    [147] 张兰河. 高效生物滴滤器去除硫化氢的基础及应用研究.[博士学位论文]. 哈尔滨: 哈尔滨工业大学,2006, 1–90
    [148] Garcia-Pena E I, Hernandez S. Toluene biofiltration by the fungus scedosporium apiospermum TB1. Biotechnol. Bioeng., 2001, 76: 61–68
    [149] Kenneth F R, Douglas C M, Julia D B R. Biodegradation kinetics of benzene, toluene and phenol as single and mixed substrates for pseudomonas putida Fl. Biotechnol. Bioeng., 2000, 69(4): 385–400
    [150] 郑连英, 邓献存. 生物法降解低浓度含甲苯废气的研究. 环境污染与防治, 2002, 24(5): 277–278
    [151] 甘平, 樊耀波, 王健敏. 氯苯类化合物的生物降解. 环境科学, 2001, 22(3): 93–96
    [152] 赵丽辉, 贾智萍, 陈梅雪等. 不同来源菌种对苯系化合物生物降解性的比较, 环境科学, 1996, 17(3): 15–18
    [153] Cenek N, Pavla E. Biodegradation, 1999, 10: 159–168
    [154] Yang C P., Suidan M T., Zhu X Q, et al. Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters. Water Sci. Technol., 2003, 48(8):89–96
    [155] Morgan-Sagastume F, Sleep B E, Allen D G. Effects of biomass growth on gas pressure drop in biofilters. J. Environ. Eng., 2001,127(5),388–396
    [156] Bohn H L.Consider biofiltration for decontaminating gases. Chem. Eng. Prog., 1992, 88: 34–40
    [157] Pomeroy R D. Biological treatment of odorous air. J. Water Pollut. Control. Fed., 1982, 54: 1541–1545
    [158] Kampbell D H, Wilson J T, Read H W, et al. Removal of volatile aliphatic hydrocarbons in a soil bioreactor. J. Air Pollut. Control. Assoc., 1987, 37: 1236–1240
    [159] Li C, Moe W M. Activated carbon load equalization of discontinuously generated acetone and toluene mixtures treated by biofiltration. Environ. Sci. Technol., 2005, 39: 2349–2356
    [160] Leslous A, Delebarre A, Pre P, et al. Characterization and selection of materials for air biofiltration in fluidized beds. Int. J. Chem. React. Eng., 2004, 2: 1145–1162
    [161] Sorial G A, Smith F L, Suidan M T, et al. Evaluation of trickle bed air biofilter performance for BTEX removal. J. Environ. Eng., 1997a, 123: 530–537
    [162] Moe W M, Irvine R L. Polyurethane foam medium for biofiltration. II: operation and performanec. J. Environ. Eng-ASCE., 2000a, 126: 826–832
    [163] Shareefdeen Z, Baltzis B C, Oh Y-S, et al. Biofiltration of methanol vapor. Biotechnol. Bioeng., 1993, 41: 512–514
    [164] Misiaczek O, Paca J, Halecky M, et al. Start-up and performance characteristics of a trickle bed reactor degrading toluene. Braz. Arch. Biol. Technol., 2007, 50: 871–877
    [165] 陈建孟, 王家德, 庄利等. 生物滴滤池净化二氯甲烷废气的实验研究. 环境科学, 2002, 23(4): 8–12
    [166] Chen J M, Chen J, Lance H, et al. Autotrophic biofilters for oxidation of nitric oxide. Chinese J. Chem. Eng., 2004, 12(1): 113–117
    [167] 杨虹, 徐晓军, 史本章. 生物滴滤器处理味精厂挥发性恶臭废气的试验研究. 环境污染治理技术与设备, 2005, 6(6): 72–75
    [168] DeFilippi L J, Lupton F S, Mashayekhi M. Apparatus for biologcal remediation of vaporous pollutants. United State Patent No. 5,503,738; April 2,1996
    [169] Moe W M, Irvine R L. Polyurethane foam medium for biofiltration. I: characterization. J. Environ. Eng-ASCE, 2000b, 126: 815–825
    [170] Loy J, Flauger M. Investigations in the elimination of odors in the tobacco and food industry using the zander biotrickling technology. Emerging Technologies in Hazardous Waste Management IX, 1997
    [171] Qi B, Moe W M, Kinney K A. Treatment of paint spray booth off-gases in a fungal biofilter. J. Environ. Eng., 2005, 131: 180–189
    [172] Lee T H, Kim J, Kim M J, et al. Degradation characteristics of methyl ethyl ketone by Pseudomonas sp. KT-3 in liquid culture and biofilter. Chemosphere, 2006, 63: 315–322
    [173] Shim E H, Kim J, Cho K S, et al. Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether. Environ. Sci. Technol., 2006, 40: 3089–3094
    [174] Yang C P, Suidan M T, Zhu X Q, et al. Comparison of single-layer and multi-layer rotating drum biofilters for VOC removal. Environ. Prog., 2003, 22: 87–94
    [175] Gabriel D, Deshusses M A. Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds. Environ. Prog., 2003, 22: 111–118
    [176] Schroeder E D. Trends in application of gas-phase bioreactors. Environ. Sci.&Bio/Technol., 2002, 1: 65–74
    [177] Sorial G A, Smith F L, Suidan M T, et al. Performance of peat biofilter: impactof the empty bed residence time, temperature and toluene loading. J. Hazard. Mater., 1997b, 53: 19–33
    [178] Otten L, Afzal M T. Mainville DM. Biofiltration of odours: laboratory studies using butyric acid. Advances in Environmental Research. 2004, 8: 397–409
    [179] Iliuta I, Larachi F. Transient biofilter aerodynamics and clogging for VOC degradation. Chem. Eng. Sci., 2004, 59: 3293–3302
    [180] Estévez E, Veiga M C, Kennes C. Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Appl. Microbiol. Biotechnol., 2005, 67: 563–568
    [181] Cox H H J, Nguyen T T, Deshusses M A. Toluene degradation in the recycle liquid of biotrickling filters for air pollution control. Appl. Microbiol. Biotechnol., 2000, 54: 133–137
    [182] 李青雪, 王冬云, 冯如彬. 生物滤池处理二甲苯废气研究. 环境导报, 2003, (9): 54–58
    [183] Kirchner K, Hauk G, Rehm H J. Mircobiol&Biotechnol., 1987, 26(6): 579–587
    [184] Kim S, Deshusses MA. Determination of mass transfer coefcients for packing materials used in biolters and biotrickling filters for air pollution control.1.Experimental results. Chem. Eng. Sci., 2007, 63: 841–855
    [185] Kennes C, Veiga M C. Inert filter media for the biofiltration of waste gases– characteristics and biomass control. Rev. Environ. Sci. Biotechnol., 2002, 1: 201–214
    [186] Chou M S, Wu F L. Treatment of toluene in an air stream by a biotrickling filter packed with slags. J. Air&Waste Manage. Assoc., 1999, 49: 386–398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700