用户名: 密码: 验证码:
阴阳极同时作用电化学法降解有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电催化高级氧化技术因其具有处理效率高、操作简便、与环境友好等优点于近年来引起了研究者的广泛注意。从20世纪90年代开始,利用氧在阴极还原生成H_2O_2降解有机污染物是研究的焦点。大多数研究是控制在酸性条件下,外加铁盐或采用铁阳极提供铁离子,由此产生羟自由基(HO·)的“电芬顿”工艺。而本文采用Ti/IrO_2/RuO_2阳极、C/PTFE氧还原阴极,无须外加金属催化剂,充分发挥阳极氧化和阴极还原产物的氧化同时作用处理有机废水。
     本文采用一种新型电化学体系阴阳极同时作用降解甲基橙,以电还原氧气产生H_2O_2的炭/聚四氟乙烯(C/PTFE)气体扩散电极为阴极,Ti/IrO_2/RuO_2电极为阳极,廉价的涤纶滤膜作为隔膜。研究结果表明:适当的曝气有利于甲基橙的降解;甲基橙脱色率随电流密度的增加而升高;初始pH对甲基橙的脱色效果有一定的影响。在电流密度46 mA/cm~2,曝气速度30 mL/s,电解时间60 min时,脱色率可以达到100%,COD平均去除率可达到80%。
     本研究针对高级氧化技术处理氯酚类污染物有含氯中间产物存在的问题,采用阴极还原脱氯和阴阳极同时氧化相结合的方法对氯酚类污染物进行降解研究。对氯酚类污染物先通过阴极还原脱氯,再通过阳极氧化和阴极还原产物的氧化作用共同处理脱氯后产物使其降解到有机酸阶段,后续生物处理。这一结合充分发挥电化学氧化、还原的优势,既避免了脱氯去毒不完全的问题,又实现了有机物彻底矿化的最终目标。
     本研究分别采用氢气还原法和甲醛还原法制备了Pd/C催化剂,利用XRD、TEM、XPS及CV对催化剂进行表征,并由催化剂制备成Pd/C气体扩散阴极,在隔膜电解体系中对氯酚类污染物(4-氯酚、2,4-二氯酚和五氯酚钠)进行降解,比较了不同电极体系及不同通气方式下氯酚类污染物的去除效果。结果表明,所制备的Pd/C气体扩散阴极既对氯酚类污染物具有还原脱氯作用(通入H_2时),又促进O_2还原生成H_2O_2(通入O_2时)。采用先通氢气后通空气的方式对氯酚类污染物有很好的去除效果,氯酚类污染物的转化率和脱氯率均接近100%。因此,Pd/C气体扩散阴极利用电化学还原脱氯和阴阳极同时氧化相结合对氯酚类有机物的降解是可行的。
     本研究还借助高效液相色谱等现代分析技术,考察了氯酚类污染物的电化学降解行为,从微观和宏观角度探索氯代有机污染物的电化学阴极还原脱氯以及随后的氧化降解机理,为提出一条简单、高效的氯酚类污染物处理工艺建立科学基础。
The advanced electrocatalysis oxidation process has attracted a great deal of attention recently, mainly because of its ease of control, amenability to automation, high efficiency and environmental compatibility. Since 1990s, the processes of indirect electrooxidation of organic compounds by hydrogen peroxide (H_2O_2) generated by the reduction of oxygen on the cathode have much promise for treating organic toxicants. Generally, the electro-Fenton process can be realized in the no-diaphragm electrolysis system, where H_2O_2 is produced on the cathode in an acid medium and Fe~(2+) is added or offered by Fe anode. In this thesis, a new electrochemical oxidation system was used to treat the aqueous organic pollutant. It was constructed by a Ti/IrO_2/RuO_2 anode, a self-made carbon/ polytetrafluoroethylene (C/PTFE) O_2-fed cathode and an organic synthetic diaphragm between the anode and the cathode. In this electrolysis system, the degradation of organic pollutants is realized by the simultaneous oxidation of active anode and oxidant species electrogenerated on the cathode. It is expected to increase notably the degradation rate of organic pollutants without adding metal catalyst.
     Electrochemical oxidation of methyl orange wastewater was studied using Ti/IrO_2/RuO_2 anode and a self-made carbon/polytetrafluoroethylene (C/PTFE) O_2-fed cathode in the divided cell with a terylene diaphragm. The result indicated that appropriate aeration rate was favorable of improving the methyl orange removal efficiency. The decolorizing efficiency of methyl orange in the divided cell increased with increasing in current density, and it was slightly affected by initial pH. When the current density was 46 mA/cm~2 and aeration rate was 30 mL/s, after 60 min, the color removal efficiency was 100%, the average COD removal efficiency was 80%.
     Chlorophenol pollutants, having high toxicity biorefractory, bioaccumulation and carcinogenic potential are widely found in the environment and are significant contaminants at many sites selected for cleanup on the USEPA top priority toxic pollutants list. There is need to treat such contaminants in concerning of environmental protection. In present work, we present a detailed study on the degradation of chlorophenol pollutants in the diaphragm cell with an organic synthesized diaphragm, a Ti/IrO_2/RuO_2 anode, and home-made gas-diffusion cathodes, and developing an effective and friendly method to treat chlorophenol pollutants by using a combination process of reduction and oxidation. In the cathodic compartment, the chlorine atoms of chlorophenol pollutants are removed from the aromatic structure and chlorophenol pollutants are reduced to non-chlorinated intermediates. Then, the non-chlorinated intermediates are oxidized and degraded in the anodic compartment and the cathodic compartment.
     Pd/C catalyst used for the Pd/C gas diffusion cathodes is prepared by hydrogen reduction method and formaldehyde reduction method, and characterized by X-ray diffraction (XRD), transmission electrode microcopy (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) techniques. The electrochemical degradation of chlorophenol pollutants (4-chlorophenol, 2,4-dichlorophenol, and sodium pentachlorophate) is investigated in the diaphragm electrolysis system through three kinds of gas types, using three different kinds of gas diffusion cathode. The results indicated that the self-made Pd/C gas diffusion cathode can not only reductively dechlorinate chlorophenol pollutants by aerating hydrogen gas, but also accelerate the two-electron reduction of O_2 to hydrogen peroxide (H_2O_2) by aerating air. Furthermore, the type of aeration, that is, first air, then hydrogen, is in favor of improving chlorophenol pollutants removal efficiency. Therefore, both the removal efficiency and the dechlorination degree of chlorophenol pollutants reach about 100% after 100 min.
     By high-performance liquid chromatography (HPLC), the main intermediates of 2,4-dichlorophenol dechlorination in the cathodic compartment are determined as 4-chlorophenol and 2-chlorophenol, which further dechlorinate to phenol. Benzoquinone is the first product formed from the oxidation of phenol. The further oxidation of benzoquinone, after ring opening, leads to the formation of aliphatic carboxylic acids such as maleic acid, fumaric acid and oxalic acid. A reaction scheme involving all these intermediates is proposed.
     Therefore, it is feasible to degrade chlorophenol pollutants by electrochemical reduction to phenol, which is further degraded on the cathode and anode by electrochemical oxidation in the diaphragm electrolysis.
引文
[1]K.Rajeshwar,J.G.Ibanex,G.M.Swain.Electrochemistry and Enviroment.Journal of Applied Electrochemistry.1994,24:1077
    [2]岳舜琳.我国城市给水氯化消毒的现状及存在的问题.给水与废水处理国际会议论文集.北京,1994:202-205
    [3]杨福才,瞿砚章.膜技术处理饮用水.中国给水排水.1997,13(4):20-24
    [4]黄君礼,张乃东.HU/Fe(C_2O_4)_3~(3-)/H_2O_2法处理苯胺类废水的研究.哈尔滨建筑大学学报.1999,32(3):48-51
    [5]赵国方,赵宏斌.有机废液湿式氧化处理的现状与进展.江苏化工.2000,28(5):23-25
    [6]孙晓君,冯玉杰,蔡伟民等.废水中难降解有机物的高级氧化技术.化工环保.2001,21(5):264-269
    [7]G.Saracco,L.Solarino,R.Aigotti et al.Electrochemical Oxidation of Organic Pollutants at Low Electrolyte Concentrations.Electrochimica Acta.2000,46:373-380
    [8]C.Comninellis.Electrocatalysis in the Electrochemical Conversion/Combustion of Organic Pollutants for Waste Water Treatment.Electrochimica Acta.1994,39(11/12):1857-1862
    [9]P.Canizares,J.A.Domingues,M.A.Rodrigo et al.Effect of the Current Intensity in the Electrochemical Oxidation of Aqueous Phenol Wastes at an Activated Carbon and Steel Anode.Industrial & Engineering Chemistry Research.1999,38:3779-3785
    [10]周明华,吴祖成,汪大晕.电化学高级氧化工艺降解有毒难生化有机废水.化学反应工程与工艺.2001,17(3):263-271
    [11]B.C.Lozano,C.Comninellis,A.D.Battisti.Preparation of SnO_2-Sb_2O_5 Films by the Spray Surpluses Technique.Journal of Applied Electrochemistry.1996,26:83-89
    [12]S.Do,W.C.Yeh.In Situ Degradation of Formaldehyde with Electrogenerated Hypochlorite Ion.Journal of Applied Electrochemistry.1994,25:483
    [13]C.Comninellis,A.Nerini.Anodic Oxidation of Phenol in the Presence of NaCl for Wastewater Treatment.Journal of Applied Electrochemistry.1995,25:23-28
    [14]U.Leffrang,K.Ebert,K.Flory et al.Organic Waste Destruction by Indirect Electrooxidation. Separation Science and Technology. 1995, 30(7-9): 1883- 1899
    [15] A. M. Yousef, N. S. Abuzaid. Electrochemical Oxidation of Phenol Using Graphite Anodes. Separation Science and Technology. 1999, 34(4): 699-708
    [16] M. Panizza, P. A. Michaud, G. Cerisola et al. Electrochemical Treatment of Wastewaters Containing Organic Pollutants on Boron-Doped Diamond Electrodes: Prediction of Specific Energy Consumption and Required Electrode Area. Electrochemistry Communications. 2001, 3: 336-339
    [17] E. Ayranci, B. E. Conway. Removal of Phenol, Phenoxide and Chlorophenols from Waste-Waters by Adsorption and Electrosorption at High-Area Carbon Felt Electrodes. Journal of Electroanalytical Chemistry. 2001, 513: 100-110 4
    
    [18] J. Iniesta, J. G. Garcia, E. Exposito et al. Influence of Chloride Ion on Electrochemical Degradation of Phenol in Alkaline Medium Using Bismuth Doped and Pure PbO_2 Anodes. Water Research. 2001, 35(14): 3291-3300
    
    [19] Y. Xiong, C. He, H. T. Karlsson et al. Performance of Three-Phase Three- Dimensional Electrode Reactor for the Reduction of COD in Simulated Wastewater-Containing Phenol. Chemosphere. 2003, 50: 131-136
    
    [20] B. K. Korbahti, A. Tanyolac. Continuous Electrochemical Treatment of Phenolic Wastewater in a Tubular Reactor. Water Research. 2003, 37: 1505- 1514
    
    [21] Y. J. Feng, X. Y. Li. Electro-Catalytic Oxidation of Phenol on Several Metal- Oxide Electrodes in Aqueous Solution. Water Research. 2003, 37: 2399- 2407
    
    [22] C. Pulgarin, N. Adler, P. Peringer et al. Electrochemical Detoxification of a 1,4-Benzoquinone Solution in Wastewater Treatment. Water Research. 1994, 28(4): 887-893
    
    [23] J. R. Feng, L. L. Houk, D. C. Johnson et al. Electrocatalysis of Anode Oxygen-Transfer Reactions: the Electrochemical Incineration of Benzoquinone. Journal of The Electrochemistry Society. 1995, 142(11): 3626-3631
    
    [24] L. L. Houk, S. K. Johnson, J. R. Feng et al. Electrochemical Incineration of Benzoquinone in Aqueous Media Using a Quaternary Metal Oxide Electrode in the Absence of a Soluble Supporting Electrolyte. Journal of Applied Electrochemistry. 1998, 28: 1167-1177
    
    [25] C. Bock, B. M. Dougall. The Anode Oxidation of p-Benzoquinone and Maleic Acid. Journal of The Electrochemical Society. 1999, 146(8): 2925- 2932
    
    [26] B. J. Hwang, K. L. Lee. Electrocatalytic Oxidation of 2-Chlorophenol on a Composite PbO_2/Polypyrrole Electrode in Aqueous Solution. Journal of Applied Electrochemistry. 1996, 26: 153-159
    [27] A. M. Polcaro, S. Palmas. Electrochemical Oxidation of Chlorophenols. Industral & Engineering Chemistry Research. 1997, 36: 1791-1798
    [28] J. D. Rodgers, W. Jedral, N. J. Bunce. Electrochemical Oxidation of Chlorinated Phenols. Environmental Science & Technology. 1999, 33: 1453- 1457
    [29] B. Skadberg, S. L. Horn, V. Sangamalli et al. Influence of pH, Current and Copper on the Biological Dechlorination of 2, 6-Dichlorophenol in an Electrochemical Cell. Water Research. 1999, 33(9): 1997-2010
    [30] A. M. Polcaro, S. Palmas, F. Renoldi et al. On the Performance of Ti/SnO_2 and Ti/PbO_2 Anodes in Electrochemical Degradation of 2-Chlorophenol for Wastewater Treatment. Journal of Applied Electrochemistry. 1999, 29: 147-151
    [31] M. Gattrell, B. M. Dougall. The Anodic Electrochemistry of Pentachlorophenol. Journal of The Electrochemical Society. 1999, 146(9): 3335-3348
    [32] J. L. Boudenne, O. Cerclier. Performance of Carbon Black-Slurry Electrodes for 4-Chlorophenol Oxidation. Water Research. 1999, 33(2): 494-504
    [33] O.A. Mohammed, A. T. Mousa, T. Yahya. Anodic Destruction of 4-Chlorophenol Solution. Journal of Hazardous Materials B. 2000, 75: 99-113
    [34] A. M. Polcaro, S. Palmas, F. Renoldi et al. Three-Dimensional Electrodes for the Electrochemical Combustion of Organic Pollutants. Electrochimica Acta. 2000, 46: 389-394
    [35] M. S. Ureta, P. Bustos, M. C. Diez et al. Electro-Oxidation of Chlorophenols at a Gold Electrode. Electrochimica Acta. 2001, 46: 2545-2551
    [36] M. S. Ureta, P. Bustos, C. Berrios et al. Electrooxidation of 2, 4-Dichlorophenol and Other Polychkmnated Phenols at a Glassy Carbon Electrode. Electrochimica Acta. 2002, 47: 2399-2406
    [37] C. Borras, T. Laredo, B. R. Scharifker. Competitive Electrochemical Oxidati-on of p-Chlorophenol and p-Nitrophenol on Bi-Doped PbO_2. Electrochimica Acta. 2003, 48: 2775-2780
    [38] G. Waldner, M. Pourmodjib, R. Bauer et al. Photoelectrocatalytic Degradation of 4-Chlorophenol and Oxalic Acid on Titanium Dioxide Electrodes. Chemosphere. 2003, 50: 989-998
    [39] R. A. Torres, W. Torres, P. Peringer et al. Electrochemical Degradation Of p- Substituted Phenols of Industrial Interest on Pt Electrode. Attempt of a Structure-Reactivity Relationship Assessment. Chemosphere. 2003, 50: 97- 104
    [40] D. W. Kirk, H. Sharifian, F. R. Foulkes. Anodic Oxidation of Aniline for Waste Water Treatment.Journal of Applied Electrochemistry.1985,15:285-292
    [41]G.Waldemar,A.C.James.Oxidation of N-Nitrosamines at a Ruthenium-Based Modified Electrode in Aqueous Solutions.Journal of Electroanalytical Chemistry.1995,389:123-128
    [42]S.M.Golabi,A.Nozad.Electrocatalytic Oxidation of Methanol on Electrodes Modified by Platinum Microparticles Dispersed into Poly(o-Phenylenediamine)Film.Journal of Electroanalytical Chemistry.2002,521:161-167
    [43]王海燕,蒋展鹏,余刚等.光电协同催化氧化苯甲酸的试验研究.环境科学.2004,25(1):25-29
    [44]M.Arienzo,J.Chiarenzelli,R.Scrudato et al.Iron-Mediated Reactions of Polychlorinated Biphenyls in Electrochemical Peroxidation Process(ECP).Chemosphere.2001,44:1339-1346
    [45]W.Jedral,S.G.Merica,N.J.Bunce.Electrochemical Oxidation of Chlorinated Benzenes.Electrochemistry Communications.1999,1:108-110
    [46]K.W.Kim,M.Kuppuswamy,R.F.Savinell.Electrochemical Oxidation of Benzene at a Glassy Carbon Electrode.Journal of Applied Electrochemistry.2000,30:543-549
    [47]T.Matsue,M.Fujihira,T.Osa.Oxidation of Alkylbenzenes by Electrogenerated Hydroxyl Radical.Journal of The Electrochemical Society.1981,128(12):2565-2569
    [48]Q.Q.Wang,A.T.Lemley.Kinetic Model and Optimization of 2,4-D Degradation by Anodic Fenton Treatment.Environmental Science &Technology.2001,35:4509-4514
    [49]D.A.Saltmiras,A.T.Lemley.Atrazine Degradation by Anodic Fenton Treatment.Water Research.2002,36:5113-5119
    [50]A.Vlyssides,E.M.Barampouti,S.Mai.Degradation of Methylparathion in Aqueous Solution by Electrochemical Oxidation.Environmental Science &Technology.2004,38:6125-6131
    [51]P.Canizares,C.Saez,J.Lobato et al.Electrochemical Treatment of 2,4-Dinitrophenol Aqueous Wastes Using Boron-Doped Diamond Anodes.Electrochimica Acta.2004,49:4641-4650
    [52]Y.H.Huang,S.S.Chou,M.G.Perng et al.Case Study on the Bioeffluent of Petrochemical Wastewater by Electro-Fenton Method.Water Science and Technology.1999,39(10/11):145-149
    [53]S.Chou,Y.H.Huang,S.N.Lee et al.Treatment of High Strength Texamine- Containing Wastewater by Electro-Fenton Method. Water Research. 1999, 33(3): 751-759
    [54] Q. Q. Wang, A.T. Lemley. Oxidation of Diazinon by Anodic Fenton Treatment. Water Research. 2002, 36: 3237-3244
    [55] G. Lissens, J. Pieters, M. Verhaege et al. Electrochemical Degradation of Surfactants by Intermediates of Water Discharge at Carbon-Based Electrodes. Electrochimica Acta. 2003, 48: 1655-1663
    [56] G. Saracco, L. Solarino, R. Aigotti et al. Electrochemical Oxidation of Organic Pollutants at Low Electrolyte Concentrations. Electrochimica Acta. 2000, 46: 373-380
    [57] G. Saracco, L. Solarino, V. Specchia et al. Electrolytic Abatement of Biorefractory Organics by Combining Bulk and Electrode Oxidation Processes. Chemical Engineering Science. 2001, 56: 1571-1578
    [58] P. Parpot, A. P. Bettencourt, A. M. Carvalho et al. Biomass Conversion: Attempted Electrooxidation of Lignin for Vanillin Production. Journal of Applied Electrochemistry. 2000, 30: 727-731
    [59] L. C. Chiang, J. E. Chang, S. C. Tseng. Electrochemical Oxidation Pretreatment of Refractory Organic Pollutants. Water Science and Technology. 1997, 36(2/3): 123-130
    [60] U. B. Ogutveren, E. Toru, S. Koparal. Removal of Cyanide by Anodic Oxidation for Wastewater Treatment. Water Research. 1999, 33(8): 1851- 1856
    [61] A. G. Vlyssides, P. K. Karlis, A. A. Zorpas. Electrochemical Oxidation of Noncyanide Strippers Wastes. Environment International. 1999, 25(5): 663- 670
    [62] M. Panizza, C. Bocca, G. Cerisola. Electrochemical Treatment of Wastewater Containing Polyaromatic Organic Pollutants. Water Research. 2000, 34(9): 2601-2605
    [63] R. Pelegrini, P. P. Zamora, A. R. Andrade et al. Electrochemically Assisted Photocatalytic Degradation of Reactive Dyes. Applied Catalysis B: Environmental. 1999, 22: 83-90
    [64] Z. M. Shen, W. H. Wang, J. P. Jia et al. Degradation of Dye Solution by an Activated Carbon Fiber Electrode Electrolysis System. Journal of Hazardous Materials B. 2001, 84: 107-116
    [65] L. Szpyrkowicz, C. Juzzolino, S. N. Kaul. A Comparative Study on Oxidation of Disperse Dyes by Electrochemical Process, Ozone, Hypochlorite and Fenton Reagent. Water Research. 2001,35(9): 2129-2136
    [66] H. L. Liu, D. Zhou, X. Z. Li et al. Photoelectrocatalytic Degradation of Rose Bengal. Journal of Environmental Science. 2003, 15(5): 595-599
    [67] A. Fernandes, A. Morao, M. Magrinho et al. Electrochemical Degradation of C. I. Acid Orange 7. Dyes and Pigments. 2004, 61: 287-296
    [68] N. Daneshvar, H. A. Sorkhabi, M. B. Kasiri. Decolorization of Due Solution Containing Acid Red 14 by Electrocoagulation with a Comparative Investigation of Different Electrode Connections. Journal of Hazardous Materials B. 2004, 112: 55-62
    [69] O. Simond, V. Schaller, C. Comninellis. Theoretical Model for the Anodic Oxidation of Organics on Metal Oxide Electrodes. Electrochimica Acta. 1997, 42(13/14): 2009-2012
    [70] S. H. Lin, C. T. Shyu, M. C. Sun. Saline Wastewater Treatment by Electrochemical Method. Water Research. 1998, 32(4): 1059-1066
    [71] N. Nelson. Electrochemical Destruction of Organic Hazardous Wastes. Platinum Metals Review. 2002, 46(1): 18-23
    [72] C. A. Huitle, M. A. Quiroz, C. Comninellis et al. Electrochemical Incineration of Chloranilic Acid Using Ti/IrO_2, Pb/PbO_2 and Si/BOD Electrodes. Electrochimica Acta. 2004, 50: 949-956
    [73] C. Comninellis, C. Pulgarin. Anodic Oxidation of Phenol for Waste Water Treatment. Journal of Applied Electrochemistry. 1991, 21: 703-708
    [74] N. B. Tahar, A. Savall. Mechanistic Aspects of Phenol Electrochemical Degradation by Oxidation on a Ta/PbO_2 Anode. Journal of The Electrochemistry Society. 1998, 145: 3427
    [75] Z. C. Wu, M. H. Zhou, D. H. Wang. Electro-Catalysis Method for Wastewater Treatment Using a Novelbeta-Lead Dioxide Anode. Journal of Zhejiang University. 2001
    [76] N. B. Tahar, A. Savall. Electrochemical Degradation of Phenol in Aqueous Solution on Bismuth Doped Lead Dioxide: a Comparison of the Activities of Various Electrode Formulations. Journal of Applied Electrochemistry. 1999, 29: 277-283
    [77] C. Comninellis, C. Pulgarin. Electrochemical Oxidation of Phenol for Wastewater Treatment Using SnO2 Anodes. Journal of Applied Electrochemistry. 1993,23: 108-112
    [78] D. Rajkumar, K. Palanivelu. Electrochemical Treatment of Industrial Wastewater. Journal of Hazardous Materials B. 2004, 113: 123-129
    [79] A. G. Vlyssides, D. Papaioannou, M. Loizidoy et al. Testing an Electrochemical Method for Treatment of Textile Dye Wastewater. Waste Management. 2000, 20: 569-574
    [80] J. Naumczyk, L. Szpyrkowicz, F. Z. Grandi. Electrochemical Treatment of Textile Wastewater. Water Science and Technology. 1996, 34(11): 17-24
    [81] G. Ciardelli, N. Ranieri. The Treatment and Reuse of Wastewater in the Textile Industry by Means of Ozonation and Electroflocculation. Water Research. 2001, 35(2): 567-572
    [82] S. H. Lin, C. F. Peng. Treatment of Textile Wastewater by Electrochemical Method. Water Research. 1994, 28(2): 277-282
    [83] A. G. Vlyssides, P. K. Karlis, N. Rori et al. Electrochemical Treatment in Relation to pH of Domestic Wastewater Using Ti/Pt Electrodes. Journal of Hazardous Materials B. 2002, 95: 215-226
    [84] C. P. Feng, N. Sugiura, S. Shimada et al. Development of a High Performance Electrochemical Wastewater Treatment System. Journal of Hazardous Materials B. 2003, 103:65-78
    [85] J. T. Ge, J. H. Qu, P. J. Lei et al. New Bipolar Electrocoagulation- Electroflotation Process for the Treatment of Laudry Wastewater. Separation and Purification Technology. 2004, 36: 33-39
    [86] R. S. Bejankiwar, K. S. Lokesh, T. P. Gowda. Colour and Organic Removal of Biologically Treated Coffee Curing Wastewater by Electrochemical Oxidation Method. Journal of Environmental Sciences. 2003, 15(3): 323-327
    [87] R. S. Bejankiwar. Electrochemical Treatment of Cigarette Industry Wastewater Feasibility Study. Water Research. 2002, 36: 4386-4390
    [88] L. Szpyrkowicz, J. Naumczyk, F. Z. Grandi. Electrochemical Treatment of Tannery Wastewater Using Ti/Pt and Ti/Pt/Ir Electrodes. Water Research. 1995, 29(2): 517-524
    [89] L. Szpyrkowicz, G. H. Kelsall, S. N. Kaul et al. Performance of Electrochemical Reactor for Treatment of Tannery Wastewaters. Chemical Engineering Science. 2001, 56: 1579-1586
    [90] M. Panizza, G. Cerisola. Electrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater. Environmental Science & Technology. 2004, 38: 5470-5475
    [91] S. H. Lin, C. C. Chang. Treatment of Landfill Leachate by Combined Electro-Fenton Oxidation and Sequencing Batch Reactor Method. Water Research. 2000, 34(17): 4243-4249
    [92] A. G. Vlyssides, M. Loizidou, P. K. Karlis et al. Electrochemical Oxidation of a Textile Dye Wastewater Using a Pt/Ti Electrode. Journal of Hazardous Materials B. 1999, 70: 41-52
    [93] S. Zor, B. Yazici, M. Erbil et al. The Electrochemical Degradation of Linear Alkylbenzenesulfonate (LAS) on Platinum Electrode. Water Research. 1998, 32 (3): 579-586
    [94] E. Brillas, R. M. Bastida, E. Uosa. Electrochemical Destruction of Aniline and 4-Chloroaniline for Wastewater Treatment Using a Carbon-PTFE O_2-Fed Cathode. Journal of The Electrochemical Society. 1995, 142(6): 1733-1741
    [95] J. S. Do, C. P. Chen. In Situ Oxidative Degradation of Formaldehyde with Hydrogen Peroxide Electrogenerated on the Modified Graphites. Journal of Applied Electrochemistry. 1994, 24: 936-942
    [96] J. S. Do, C. P. Chen. Kinetics of in Situ Degradation of Formaldehyde with Electrogenerated Hydrogen Peroxide. Industral & Engineering Chemistry Research. 1994, 33: 387- 397
    [97] Z. M. Qiang, J. H. Chang, C. P. Huang. Electrochemical Generation of Hydrogen Peroxide from Dissolved Oxygen in Acidic Solution. Water Research. 2002, 36: 85-94
    [98] P. Drogui, S. Elmaleh, M. Rumeau et al. Oxidising and Disinfecting by Hydrogen Peroxide Produced in a Two-Electrode Cell. Water Research. 2001, 35(13): 3235-3241
    [99] F. Alcaide, E. Brillas, P. L. Cabot. Oxygen Reduction on Uncatalyzed Carbon-PTFE Gas Diffusion Cathode in Alkaline Medium. Journal of The Electrochemical Society. 2002, 149(2): E64-E70
    [100] P. Drogui, S. Elmaleh, M. Rumeau et al. Hybride Process, Microfiltration- Electroperoxidation, for Water Treatment. Journal of Membrane Science. 2001, 186: 123-132
    [101] P. Drogui, S. Elmaleh, M. Rumeau et al. Hydrogen Peroxide Production by Water Electrolysis: Application to Disinfection. Journal of Applied Electrochemistry. 2001, 31: 877-882
    [102] K. B. Lee, M. B. Gu, S. H. Moon. Degradation of 2,4,6-Trinitrotoluene by Immobilized Horseradish Peroxidase and Electrogenerated Peroxide. Water Research. 2003, 37: 983-992
    [103] G. A. Kolyagin, V. L. Kornienko. Kinetics of Hydrogen Peroxide Accumulation in Electrosynthesis from Oxygen in Gas-Diffusion Electrode in Acidic and Alkaline Solutions.Russian Journal of Applied Chemistry.2003,76(7):1070-1075
    [104]V.L.Kornienko,Y.V.Saltykov,I.S.Vasileva.On the Operation of a Porous Hydrophobized Electrode in an Indirect Electrosynthesis.Russian Journal of Electrochemistry.2001,37(2):222
    [105]V.L.Kornienko,G.A.Kolyagin.Indirect Oxidation of Organic Substances by Intermediates of the oxygen Reduction.Russian Journal of Electrochemistry.2003,39(12):1308-1316
    [106]Y.V.Saltykov,V.L.Kornienko.Location of Chemical Reaction of Indirect Electrochemical Synthesis in a Porous Hydrophobized Electrode.Russian Journal of Electrochemistry.2003,39(12):1317-1320
    [107]A.A.Gallegos,D.Pletcher.The Removal of Low Level Organics via Hydrogen Peroxide Formed in a Reticulated Vitreous Carbon Cathode Cell,Part 1.The Electrosynthesis of Hydrogen Peroxide in Aqueous Acidic Solution.Electrochimica Acta.1998,44:853-861
    [108]陈卫国,朱锡海.电催化产生H_2O_2和·OH及去除废水中有机污染物的应用.中国环境科学.1998,18(2):148-150
    [109]王立章,邱熔处,何义亮.三维电极法在微污染水处理中的应用研究.环境污染治理技术与设备.2003,4(2):27-28
    [110]蔡乃才,黄行九,刘娟等.新型复合电极与偶氮染料分子的氧化降解反应的研究.化学学报.2002,60(4):574-579
    [111]蔡乃才,黄行九,霍耀东等.在具有现场合成H_2O_2电极的TiO_2光催化反应体系中降解SDS.武汉大学学报(自然科学版).2000,46(6):663-666
    [112]Y.Xiong,H.T.Karlsson.An Experimental Investigation of Chemical Oxygen Demand Removal from the Wastewater Containing Oxalic Acid Using Three-Phase Three-Dimensional Electrode Reactor.Advances in Environmental Research.2002,(7):139-145
    [113]Y.Xiong,C.He,H.T.Karlsson et al.Performance of Three-Phase Three-Dimensional Electrode Reactor for the Reduction of COD in Simulated Wastewater-Containing Phenol.Chemosphere.2003,50:131-136
    [114]S.M.Kulikov,V.P.Plekhanov,A.I.Tsyganok et al.Electrochemical Reductive Dechlorination of Chlororganic Compounds on Carbon Cloth and Metal-Modified Carbon Cloth Cathodes.Electrochimica Acta.1996,41(4):527-531
    [115] E. Brillas, E. Mur. Iron (Ⅱ) Catalysis of the Mineralization of Aniline Using a Carbon-PTFE Ch-Fed Cathode. Journal of The Electrochemical Society. 1996, 143(3): L49-L53
    [116] E. Brillas, E. Mur, R. Sauleda et al. Aniline Mineralization by AOP's: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes. Applied Catalysis B: Environmental. 1998, 16: 31-42
    [117] E. Brillas, J. C. Calpe, J. Casado. Mineralization of 2,4-D by Advanced Electrochemical Oxidation Processes. Water Research. 2000, 34(8): 2253- 2262
    [118] E. Brillas, B. Boye, I. Sires et al. Electrochemical Destruction of Chlorophenoxy Herbicides by Anodic Oxidation and Electro-Fenton Using a Boron- Doped Diamond Electrode. Electrochimica Acta. 2004, 49: 4487- 4496
    [119] B.Boye,M.M.Dieng,E.Brillas. Degradation of Herbicide 4-Chlorophenoxyacetic Acid by Advanced Electrochemical Oxidation Methods. Environmental Science & Technology. 2002, 36: 3030-3035
    [120] B. Boye, M. M. Dieng, E. Brillas. Anodic Oxidation, Electro-Fenton and Photoelectro-Fenton Treatments of 2, 4, 5-Trichlorophenoxyacetic Acid. Journal of Electroanalytical Chemistry. 2003, 557: 135-146
    [121] T. Harrington, D. Pletcher. The Removal of Low Levels of Organics from Aqueous Solutions Using Fe () and Hydrogen Peroxide Formed in Situ at Ⅱ Gas Diffusion Electrodes. Journal of The Electrochemical Society. 1999, 146 (8): 2983 -2989
    [122] A. A. Gallegos, D. Pletcher. The Removal of Low Level Organics via Hydrogen Peroxide Formed in a Reticulated Vitreous Carbon Cathode Cell. Part 2: The Removal of Phenols Related Compounds from Aqueous Effluents. Electrochimica Acta. 1999, 44: 2483-2492
    [123] C. P. Leon, D. Pletcher. Removal of Formaldehyde from Aqueous Solution via Oxygen Reduction Using a Reticulated Vitreous Carbon Cathode Cell. Journal of Applied Electrochemistry. 1995, 25: 307-314
    [124] Y. L. Hsiao, K. Nobe. Hydroxylation of Chlorobenzene and Phenol in a Packed Bed Flow Reactor with Electrogenerated Fenton's Reagent. Journal of Applied Electrochemistry. 1993, 23: 943-945
    [125] M. Panizza, G. Cerisola. Removal of Organic Pollutants from Industrial Wastewater by Electrogenerated Fenton's Reagent. Water Research. 2001, 35(16): 3987-3992
    [126] E. Fockedey, A. V. Lierde. Coupling of Anodic and Cathodic Reactions for Phenol Electro-Oxidation Using Three-dimensional Electrodes.Water Research.2002,36:4169-4175
    [127]J.S.Do,C.P.Chert.In Situ Oxidative Degradation of Formaldehyde with Electrogenerated Hydrogen Peroxide.Journal of The Electrochemical Society.1993,140(6):1632-1637
    [128]Y.Xiong,P.J.Strunk,H.Y.Xia et al.Treatment of Dye Wastewater Cont-aining Acid Orange Using a Cell with Three Ⅱ-Phase Three-Dimensional Electrode.Water Research.2001,35(17):4226-4230
    [129]E.Kusvuran,O.Gulnaz,S.Irmak et al.Comparison of Several Advanced Oxidation Processes for the Decolorization of Reactive Red 120 Azo Dye in Aqueous Solution.Journal of Hazardous Materials B.2004,109:85-93
    [130]王玉玲,蔡乃才,张怀松等.降解水中有机毒物的新型反应体系研究.高等学校化学学报.2002,23(10):1969-1973
    [131]何春,安太成,熊亚.三维电极电化学反应器对有机废水的降解研究.电化学.2002,8(3):327-332
    [132]梁宏,曾抗美,杨基成等.多维电极法处理高色度活行染料模拟废水影响因素分析.环境污染治理技术与设备.2004,5(4):27-31
    [133]Z.M.Qiang,J.H.Chang,C.P.Huang.Electrochemical Regeneration of Fe~(2+)in Fenton Oxidation Processes.Water Research.2003,37:1308-1319
    [134]M.A.Oturan.An Ecologically Effective Water Treatment Technique Using Electrochemically Generated Hydroxyl Radicals for in Situ Destruction of Organic Pollutants:Application to Herbicide 2,4-D.Journal of Applied Electrochemistry.2000,30:475-482
    [135]M.A.Oturan,J.Peiroten,P.Chartrin et al.Complete Destruction of p-Nitrophenol on Aqueous Medium by Electro-Fenton Method.Environmental Science Technology.2000,34:3474-3479
    [136]M.A.Oturan,N.Oturan,C.Lahitte et al.Production of Hydroxyl Radicals by Electrochemical Assisted Fenton's Reagent.Application to the Mineralization of an Organic Micropollutant,Pentacholorphenol.Journal of Electroanalytical Chemistry.2001,507:96-102
    [137]A.Ventura,G.Jacquet,A.Bermond et al.Electrochemical Generation of the Fenton's Reagent:Application to Atrazine Degradation.Water Research.2002,36:3517-3522
    [138]M.A.Oturan,J.Pinson.Hydroxylation by Electrochemically Generated OH·Radicals.Mono-and Polyhydroxylation of Benzoic Acid:Products and Isomers' Distribution.The Journal of Physical Chemistry.1995,99:13948-13954
    [139]T.Tzedakis,A.Savall,M.J.Clifton.The Electrochemical Regeneration of Fenton's Reagent in the Hydroxylation of Aromatic Substrates:Batch and Continuous Processes.Journal of Applied Electrochemistry.1989,19:911-921
    [140]袁松虎,陆晓华.电-Fenton法对五氯酚的降解研究.化工环保.2004,24(增刊):49-52
    [141]郑曦,陈日耀,陈晓等.电化学法生成Fenton试剂及其在工业染料废水降解脱色中的应用.环境污染治理技术与设备.2001,2(4):72-76
    [142]郑曦,陈日耀,兰瑞芳等.电生成Fenton试剂及其对染料降解脱色的研究.电化学.2003,9(1):98-103
    [143]林少琴,陈玉峰,陈同耀等.电催化氧化降解工业废水的研究.工业用水与废水.2004,35(4):39-41
    [144]陈日耀,郑曦,曲跃文等.电生成羟基自由基及其对染料降解脱色的研究.环境科学研究,2002,15(1):16-19
    [145]陈震,陈晓,郑曦等.溶液pH及电流浓度对电化学法生成羟基自由基降解机制的影响.环境科学研究.2002,15(3):42-44
    [146]郑曦,陈日耀,林建民等.电生成羟基自由基在染料废水降解脱色中的应用.福建师范大学学报(自然科学版).2001,17(4):57-60
    [147]陈日耀,郑曦,陈晓等.电化学方法生成羟基自由基及其在染料降解脱色中的应用.吉林化工学院学报.2001,18(3):1-3
    [148]蒋雄,舒平.电生成氢氧自由基用做氧化剂处理有机废水.华南师范大学学报(自然科学版).2000,(3):41-48
    [149]E.Brillas,R.Sauleda,J.Casado.Use of an Acidic Fe/O_2 Cell for Wastewater Treatment:Degradation of Aniline.Journal of The Electrochemical Society.1999,146(12):4539-4543
    [150]E.Brillas,R.Sauleda,J.Casado.Degradation of 4-Chlorophenol by Anodic Oxidation,Electro-Fenton,Photoelectro-Fenton,and Peroxi-Coagulation Processes.Journal of The Electrochemical Society.1998,145(3):759-765
    [151]E.Brillas,J.Casado.Aniline Degradation by Electro-Fenton and Peroxi-Coagulation Processes Using a Flow Reactor for Wastewater Treatment.Chemosphere.2002,47:241-248
    [152]E.Brillas,B.Boye,M.A.Banos et al.Electrochemical Degradation of Chlorophenoxy and Chlorobenzoic Herbicides in Acidic Aqueous Medium by the Peroxi-Coagulation Method.Chemosphere.2003,51:227-235
    [153]E.Brillas,B.Boye,M.M.Dieng.Peroxi-Coagulation and Photoperoxi-Coagulation Treatments of the Herbicide 4-Chlorophenoxyacetic Acid in Aqueous Medium Using an Oxygen-Diffusion Cathode.Journal of The Electrochemical Society.2003,150(3):E148-E154
    [154]E.Brillas,R.Sauleda,J.Casado.Peroxi-Coagulation of Aniline in Acidic Medium Using an Oxygen Diffusion Cathode.Journal of The Electrochemical Society.1997,144(7):2374-2379
    [155]B.Boye,E.Brillas,M.M.Dieng.Electrochemical Degradation of the Herbicide 4-Chloro-2-Methylphenoxyacetic Acid in Aqueous Medium by Peroxi-Coagulation and Photoperoxi-Coagulation.Journal of Electroanalytical Chemistry.2003,540:25-34
    [156]B.Boye,M.M.Dieng,E.Brillas.Electrochemical Degradation of 2,4,5-Trichlorophenoxyacetic Acid in Aqueous Medium by Peroxi-Coagulation.Effect of pH and UV Light.Electrochimica Acta.2003,48:781-790
    [157]徐桦,黄海云.改进电Fenton法处理印染废水.常熟高专学报.2004,18(4):45-47
    [158]马旭莉,梁镇海,孙彦平.电-Fenton反应降解苯酚及中间产物的高效液相色谱分析.太原理工大学学报.2003,34(4):409-411
    [159]袁松虎,王琳玲,陆晓华.阴极电Fenton法处理硝基苯酚模拟废水的研究.工业水处理.2004,24(4):33-36
    [160]方建章,张再利,雷恒毅等.电生成强氧化剂处理染料废水试验研究.水处理技术.2004,30(3):173-175
    [161]王爱民,曲久辉,姜桂兰.电化学方法降解酸性红B研究.环境科学.2003,24(2):108-111
    [162]崔艳萍,杨昌柱.复极性三维电极处理含酚废水的研究.能源环境保护.2004,18(1):23-26
    [163]J.S.Do,W.C.Yeh.Paired Electrooxidative Degradation of Phenol with in Situ Eletrogenerated Hydrogen Peroxide and Hypochlorite.Journal of Applied Electrochemistry.1996,26:673-678
    [164]Z.C.Wu,M.H.Zhou.Partial Degradation of Phenol by Advanced Electrochemical Oxidation.Environmental Science & Technology.2001,35:2698-2703
    [165]Z.C.Wu,M.H.Zhou,D.H.Wang.Synergetic Effects of Anodic-Cathodic Electrocatalysis for Phenol Degradation in the Presence of Iron(Ⅱ).Chemo-sphere.2002,48:1089-1096
    [166]周明华,吴祖成,汪大翚.不同电催化工艺下苯酚的降解特性.高等学校化学学报.2003,24(9):1637-1641
    [167]周明华,吴祖成,汪大翚.难生化降解芳香化合物废水的电催化处理.环境科学.2003,24(2):121-124
    [168]周明华,吴祖成,丛燕青等.邻氯苯酚的电化学处理技术.中国环境科学.2003,23(3):225-229
    [169]周明华,吴祖成.含酚模拟废水的电催化降解.化工学报.2002,53(1):40-44
    [170]祝巨,曾翎,周斌斌.阴阳两极降解废水中氯酚的研究.浙江科技学院学报.2004,16(2):88-91
    [171]Y.L.Hsiao,K.Nobe.Oxidative Reactions of Phenol and Chlorobenzene with in Situ Electrogenerated Fenton's Reagent.Chemistry Engineering Communications.1993,126:97
    [172]Y.H.Liu,F.L.Yang,J.W.Chen et al.Linear Free Energy Relationships for Dechlorination of Aromatic Chlorides by Pd/Fe.Chemosphere,2003,50(10):1275-1279
    [173]Y.H.Liu,F.L.Yang,P.L.Yue et al.Catalytic Dechlorination of Chlorophenols in Water by Palladium/Iron.Water Research,2001,35:1887-1890
    [174]L.J.Graham,G.Jovanovic.Dechlorination of p-Chlorophenol on a Pd/Fe Catalyst in a Magnetically Stabilized Fluidized Bed;Implications for Sludge and Liquid Remediation.Chemical Engineering Science,1999,54:3085-3093
    [175]H.Wang,J.L.Wang,Electrochemical Degradation of 4-Chlorophenol Using a New Gas Diffusion Electrode.Applied Catalysis B:Environmental,2007,77:58-65
    [176]王辉,王建龙,Pd/C气体扩散电极电化学降解4-氯酚的比较研究,中国科学(B),2007,37(4):408-414
    [177]N.Daneshvar,H.A.Sorkhabi,M.B.Kasiri.Decolorization of Due Solution Containing Acid Red 14 by Electrocoagulation with a Comparative Investigation of Different Electrode Connections.Journal of Hazardous Materials B.2004,112:55-62
    [178]H.Wang,X.J.Yu,D.Z.Sun et al.Study on Mechanism of Electrochemical Oxidation in the Terylene Diaphragm Cell.Journal of Environmental Sciences.2006,18(1)
    [179]F.Alcaide,E.Brillas,P.L.Cabot.Oxygen Reduction on Uncatalyzed Carbon-PTFE Gas Diffusion Cathode in Alkaline Medium.Journal of The Electrochemical Society.2002,149(2):64-70
    [180]N.Daneshvar,H.A.Sorkhabi,M.B.Kasiri.Decolorization of Due Solution Containing Acid Red 14 by Electrocoagulation with a Comparative Investigation of Different Electrode Connections.Journal of Hazardous Materials B.2004,112:55-62
    [181]C.A.Huitle,M.A.Quiroz,C.Comninellis et al.Electrochemical Incineration of Chloranilic Acid Using Ti/IrO_2,Pb/PbO_2 and Si/BOD Electrodes.Electrochimica Acta.2004,50:949-956
    [182]A.G.Vlyssides,D.Papaioannou,M.Loizidoy et al.Testing an Electrochemical Method for Treatment of Textile Dye Wastewater.Waste Management.2000,20:569-574
    [183]王建龙.生物固定化技术与水污染控制.北京:科学出版社,2002.261-271
    [184]王建龙,Hegemann W.微生物群落对多氯酚的脱氯特性及机理研究.中国科学,B辑,2003,33(1):47-53
    [185]J.L.Wang,Y.Qian,N.Horan et al.Bioadsorption of Pentachlorophenol(PCP)from Aqueous Solution by Activated Sludge Biomass.Bioresour Technol,2000,75:157-161
    [186]皮运正,王建龙.臭氧氧化水中4-氯酚的机理和反应途径.中国科学:B辑,2006,36(1):87-92
    [187]胡俊,王建龙,程荣.γ-幅照-O_3氧化联合作用下4-氯酚的降解.中国科学:B 辑,2005,35(6):520-525
    [188]J.D.Rodgers,W.Jedral,N.J.Bunce.Electrochemical Oxidation of Chlorinated Phenols.Environ.Sci.Technol.,1999,33:1453-1457
    [189]S.K.Johnson,L.L.Houk,J.R.Feng et al.Electrochemical Incineration of 4-Chlorophenol and the Identification of Products and Intermediates by Mass Spectrometry.Environ.Sci.Technol.,1999,33:2638-2644
    [190]J.C.Ye,P.C.Chiu.Transport of Atomic Hydrogen through Graphite and its Reaction with Azoaromatic Compounds.Environ.Sci.Technol.,2006,40:3959-3964
    [191]P.R.Birkin,A.Evans,C.MIlhano et al.The Mediated Reduction of Lindane in DMF.Electroanalysis,2004,16(7):583-587
    [192]T.F.Connors,J.F.Rusling.Removal of Chloride from 4,4'-Dichlorobiphenyl and 4-Chlorobiphenyl by Electrocatalytic Reduction.Journal of The Electrochemical Society,1983,130:1120-1121
    [193]S.G.Merica,N.J.Bunce,W.Jedral et al.Electroreduction of Hexachlorobenzene in Protic Solvent at Hg Cathodes.Journal of Applied Electrochemistry,1998,28(6):645-651
    [194]王辉,于秀娟,孙德智.一种新型电化学体系降解苯酚的机理研究.环境科学学报,2005,25(6):901-907
    [195]P.Dabo,A.Cyr,F.Laplante et al.Electrocatalytic Dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol.Environ.Sci.Technol.,2000,34(7):1265-1268
    [196]P.Canizares,J.A.Domingues,M.A.Rodrigo et al.Effect of the Current Intensity in the Electrochemical Oxidation of Aqueous Phenol Wastes at an Activated Carbon and Steel Anode.Industrial & Engineering Chemistry Research,1999,38:3779-3785
    [197]S.Contreras,M.Rodriyguez,F.Momani.Contribution of the Ozonation Pretreatment to the Biodegradation of Aqueous Solutions of 2,4-dichlorophenol.Water Res.,2003,37:3167-3171
    [198]W.Glaze,J.Kang,D.Chapin.Priority pollutants:a prospective view.Environ.Sci.Technol.,1979,13:416-424
    [199]覃业贤,汤凤霞,黄国林.活性炭对水中2,4-二氯酚的吸附研究.林产化工通讯,2003,37(6):38-40
    [200]全向春,施汉昌,王建龙等.固定化细胞降解2,4-二氯酚的动力学及其对SBR系统强化效果研究.环境科学,2002,23(4):42-46
    [201]孙振世,杨晔,陈英旭等.纳米TiO_2薄膜光催化降解2,4二氯酚的动力学研究.环境科学学报,2003,21(6):716-718
    [202]朱燕,郁志勇,李洁等.金属离子和氧化剂对3,5-二氯酚光化学降解的影响.中国环境监测,2002,18(5):21-24
    [203]王海涛,朱琨,魏翔.UV/H_2O_2降解水中2,4-二氯酚试验研究.兰州交通大学学报,2003,22(3):31-33
    [204]鲁奕良,徐新华,汪大翠.氯酚废水的UV-Fenton氧化-生化组合处理研究.浙江大学学报(理学版),2003,30(4):439-448
    [205]P.Dabo,A.Cyr,F.Laplante et al.Electrocatalytic Dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol.Environ.Sci.Technol.,2000,34(7):1265-1268
    [206]I.F.Cheng,Q.Fernando,N.Korte.Electrochemical Dechlorination of 4-Chlorophenol to Phenol.Environ.Sci.Technol.,1997,31:1074-1078
    [207]I.Sires,J.A.Garrido,R.M.Rodriguez et al.Catalytic Behavior of the Fe~(3+)/Fe~(2+)System in the Electro-Fenton Degradation of the Antimicrobial Chlorophene.Appl.Catal.B:Environ.,2007,72:382-394
    [208]A.I.Tsyganok,I.Yamanaka,K.Otsuka.Dechlorintion of Chloroaromatics by Electrocatalytic Reduction Over Palladium-Loaded Carbon Felt at Room Temperayure.Chemsphere,1999,39(11):1819-1831
    [209]刘宇兰.五氯酚降解菌的分离及其降解特性的研究.有毒有机物环境行为和生态毒性论文集.北京:中国科学技术出版社,1990.187-191
    [210]徐颖.五氯酚钠在水体中的光解.河海大学学报,1995,23(1):74-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700