用户名: 密码: 验证码:
野生金荞麦类黄酮次生代谢分子调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金荞麦(Fagopyrum cymosum(Trev.)Meisn)是蓼科(Polygonaceae)荞麦属(Fagopyrum Mill.)多年生草本植物,是一种重要的资源植物,为国家二级保护植物。原产于我国西南,分布于陕西、江苏、浙江、江西、河南、湖北、湖南、广西、广东、四川、重庆及云南等省区。野生金荞麦中蕴涵着丰富的优异基因,金荞麦的块根活性提取物(主要为类黄酮次生代谢产物)是多种重要的抗癌药物和癌预防药物的主要成分之一。目前,由于人工栽培的金荞麦产量和品质的限制,对野生金荞麦资源造成了极大的破坏,这就使野生金荞麦生物活性物的工厂化生产显得十分迫切。国内外已经展开了资源收集、多样性、生理特性、育种、药效学以及生态环境等方面的研究,基于活性成分合成的功能基因的研究,国内外还未见报道。
     在本研究中,通过获得高黄酮含量愈伤系,建立野生金荞麦的RACE cDNA文库,从中快速分离克隆与药效成分积累相关的类黄酮次生代谢产物的关键酶基因(DFR,IFR)和转录调控因子P基因,并转化烟草超量表达进行功能的初步验证,为下一步转化野生金荞麦调控其类黄酮次生代谢,同时为实现其次生代谢产物的工厂化生产打下基础。
     1、金荞麦高黄酮含量愈伤系的获得
     以消毒金荞麦种子萌发的无菌苗的茎与叶片作为外植体,分别在MS添加2.0mg/L 6-BA和0.1mg/L NAA的培养基和MS添加1.0mg/L 6-BA和0.5mg/L NAA的固体培养基上经系统诱导并连续继代3次,获得了大量的稳定愈伤组织。采用目视法初步筛选出生长较快、不易褐化、颜色较深或稳定并且继代稳定的4个愈伤系。其中红色和褐色愈伤系主要来源于茎的诱导,而浅黄色和白色系则来源于叶的诱导用野生金荞麦无菌苗的茎和叶片作外植体。用分光光度法直接筛选出高类黄酮含量的红色系,其类黄酮含苗为6.3804mg/g,是含量最低的白色系的3.5倍。获得的来源于茎的高类黄酮含量的红色愈伤系为进一步的细胞系悬浮培养和药用次生代谢产物的规模化生产奠定了基础,同时,也为研究金荞麦类黄酮次生代谢的分子调控提供了优良的材料。
     2、金荞麦愈伤系cDNA文库的构建
     利用改良的CTAB结合LiCl沉淀方法从资源植物金荞麦愈伤组织中提取出完整性好、纯度高的总RNA。用SMART cDNA文库构建试剂盒成功构建了金荞麦红色愈伤系cDNA文库。原始文库滴度达到1.5×10~6 pfu/ml,扩增文库滴度约为7.0×10~9 pfu/ml,重组率达98%,插入片段在0.5 kb以上,平均约1.1 kb。通过PCR检测,从总文库中检测到了低丰度表达的P基因的特异片段,说明所构建的文库覆盖度高、代表性强。综合分析所构建的cDNA文库基本指标,表明已获得高质量的金荞麦愈伤系cDNA文库,可以用于进一步的基因克隆,这是第一次正式报道金荞麦cDNA文库的构建。
     3、FcDFR基因的克隆与功能初步分析
     (1)采用RACE结合cDNA文库筛选的方法,根据获得的DFR同源探针序列,我们从金荞麦cDNA文库中克隆到了DFR蛋白基因,命名为FcDFR(登录号:EF522145)。
     (2) FcDFR基因有一个长85bp的内含子,有1个78bp的5′-UTR区、1个201bp的3′-UTR区及一个1026个核苷酸的开放阅读框。通过Southern杂交分析,推测在金荞麦基因组中DFR基因是1—2个基因的小家族,FcDFR基因是单拷贝基因。
     (3)运用生物信息学手段对FcDFR编码蛋白FcDFR的结构特点与性质进行了分析,FcDFR富含疏水氨基酸,在N端存在一个NADP结合位点“VTGASGFVGSWLVMRLLEHGY”,还存在一个底物结合特异性决定的氨基酸基序“TVNVEEKQKPVYDETCWSDVDFCRRV”,推测它可能以DHQ或DHK为底物催化生成无色翠雀素和无色天竺葵素。它没有信号肽,可能定位于质膜,具有酶的典型三级结构特征。
     (4)构建金荞麦FcDFR基因植物表达载体pC2301-FcDFR,用农杆菌介导的叶盘法将FcDFR基因导入烟草超量表达。通过报告基因GUS活性组织化学染色筛选、PCR检测以及RT-PCR检测。证实FcDFR基因已经整合进烟草基因组并获表达的转基因烟草95株。
     (5)对95个转基因烟草叶片总黄酮进行测定,在所有检测的转基因烟草中,不同株系的总黄酮含量有一定差异,大部分叶片总黄酮含量都有不同程度的提高,最高可达对照的1.8倍,其中有78株显著增加,表明在这些株系中FcDFR基因得到了有效表达,促进烟草总黄酮的有效积累,这表明FcDFR基因具有生物活性,其超量表达对增加叶片中类黄酮的含量作用明显。17个株系总黄酮和对照烟草总黄酮含量没有显著差异。
     4、FcMYBP1基因的克隆与功能初步分析
     (1)用RACE方法筛选文库采用RACE结合cDNA文库筛选的方法,根据玉米P基因及Myb转录调控因子R2R3家族的R2、R3保守区域获得的同源探针,我们从金荞麦cDNA文库中克隆到了一个长1159个核苜酸R2R3类MYB蛋白基因,根据同源性比对分析,分离得到的基因可能是金荞麦类黄酮代谢途径(花色素和原花色素支路)的调控基因,命名为FcMYBP1(登录号:EF522147)。与FcMYBP1蛋白同源性最高的是AAY51377(矮牵牛PH4,61%),AAX51291(葡萄MYB5b,55%),AF336278(棉花BNLGHi233,66%),AAS68190(葡萄的MYB5a,61%)和CAJ90831(葡萄的MYBPA1,76%)。
     (2) FcMYBP1基因有一个长81bp的内含子,有1个111bp的5′-UTR区、1个250bp的3′-UTR区及一个798个核苷酸的开放阅读框,编码一个长265个氨基酸的蛋白质。通过Southern杂交分析,推测在金荞麦基因组中FcMYBP1基因可能有1—2个拷贝。
     (3)运用生物信息学手段对FcMYBP1编码蛋白FcMYBP1的结构特点与性质进行了分析。在GeneBank中对FcMYBP1蛋白质进行保守结构域搜索和同源性分析,FcMYBP1氨基酸序列在N端存在保守的R2R3结合结构域,在C-端同源性低。在FcMYBP1的R2R3区中发现了一个和bHLH(basic helix-loop-helix,bHLH,碱性螺旋-环-螺旋)转录因子相互作用的结构域;FcMYBP1、VvMYB5a、PH4和AtMYB5的C端有两段保守序列:C1(130—138AA),C2(214-229AA);系统进化分析表明FcMYBP1和葡萄的VvMYB5a、矮牵牛PH4和拟南芥AtMYB5聚为一支。推测FcMYBP1和bHLH共同作用在类黄酮甚至苯丙氨酸代谢途径中起调控作用。
     (4)构建金荞麦FcMYBP1基因植物表达载体pC2301-FcMYBP1,用农杆菌介导的叶盘法将FcMYBP1基因导入烟草超量表达。通过抗性筛选、报告基因GUS活性组织化学染色筛选、PCR检测以及RT-PCR检测,证实FcMYBP1基因已经整合进烟草基因组并获表达的转基因烟草80株。
     (5)在80个转基因单株中,随机选择32个株系用于叶片总黄酮含量的检测,不同转基因株系的叶片总黄酮含量相差较大,其中有20株显著增加,最高为对照的3.2倍,8株变化差异不显著,4株显著下降。即有75%的转基因烟草叶片总黄酮含量有明显改变,说明FcMYBP1基因参与类黄酮代谢途径的调控。
Fagopyrum cymosum (Trev.) Meisn, one of perennial herbs of the genus Polygonaceae in the Fagopyrum Mill family, origins from southwest of china, and ranges from Shanxi, Jiangsu, Zhejiang, Jiangxi, Henan, Hunan, Hubei, Guangxi, Guangdong, Sichuan, Chongqing and Yunnan ect.. It is an important resource plant with rich nutrition and great medicinal values, and contains a large number of excellent genes. As an important traditional Chinese Medicinal Materials, the active extract of earthnut (secondary metabolites) of Fagopyrum cymosum is one of main constituents of many efficient drugs, and has prominent functions in anti-cancer, controlling tumour cell affect and transfering to lung, and anti-inflammatony antibacteria ect. At present, cultivated yield of Fagopyrum cymosum is restricted and cultivated species are lesser than wild type in nutrition value, efficient constituents and quantity for medicine, which leads to requesting for Fagopyrum cymosum largely, so that wild resource is destroyed greatly. In view of the conditions, it is ranked into the second degree of national protected plants. Domestically and abroad resource collection, diversity, physiological characteristic, breeding, pharmacodynamics and ecology environment and other aspects are outspread, however, in the light of function genes research relating to active components of medicine not reported.
     In order to further explore worth of Fagopyrum cymosum and its excellent function genes, and protect wild resource, in this paper, acquisition of high flavonoids-producing red callus lines and construction cDNA Library of F. cymosum were reported. Furthermore, the cloning,structure and function analysis of the key gene(DFR) and transcription regulational gene(MYBP) in the pathway of flavoloid metabolism were performed. This research not only provided a useful tool for conserving excellent genetic resource, cloning genes and regulating research in the pathway of flavonoids biosynthesis, but laid the groundwork for future producing medicinal second metabolic products on a large scale.
     1. Acquisition of high flavonoids-producing red callus lines
     Explants of stems and leaves were from sterile seedling of F. cymosum. When the stems were cultured on MS medium supplemented with 2.0mg/L 6-BA and 0.1 mg/L NAA, the induction rate was 100% after 12 days. When the leaves were cultured on MS medium supplemented with 1.0mg/L 6-BA and 0.5 mg/L NAA, the induction rate was 100% after 13 days. After continuous thrice clutures on respective medium of stems and leaves, the callus could be distinguished by colour with naked eyes into four cell lines , a red (stem1 callus line), a brown (stem2 callus line), a bright yellow (leaf1 callus line) and a white (leaf2 callus line) , representing respectively the different colour of metabolite accumulations. A sensitive spectrophotometric method has been developed for detecting the flavonoids in cultured cells. It revealed that the red line contained 6.3804 mg/g flavonoids which was 3.5 times more than the white line .
     2. Construction of F. cymosum callus cDNA library
     By modified CTAB extraction method and the LiCl precipitation method, total RNA With higher purity and integrality were isolated from F. cymosum callus. cDNA library was constructed with SMART cDNA Library Construction Kit. The titer of the primary library was 1.5×10~6 pfu/mL , in which 98% clones were recombinant and the inserted cDNA fragments ranged from 0.5 kb to 2 kb, 66% of them more than 1 kb. The amplified library has a titer of 7.0×10~9 pfu/mL. The positive signals of P gene, belonging to Myb R2R3 family and expressed at low abundance, were detected by degenerate PCR in the amplified library. The data indicated that the cDNA Library had high quality. These meant that a high quality cDNA library of F. cymosum callus was obtained.
     3.The cloning and function analysis of FcDFR
     Dihydroflavonol-4-reductase (DFR; EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids. According to the obtained homologous probe from orther plant's DFRs, one DFR cDNA clones(FcDFR) were isolated from the F. cymosum using the RACE(rapid amplification of cDNA ends) methods to scanning cDNA library (GenBank accession No. EF522145/ EF522146).
     FcDFR contains a 201bp 3'-untranslated region and a 78bp 5'-untranslated region and a 1026-bp coding region encoding 341 amino acids with an MW and theoretical pI value of 38.60 kD and 5.91, respectively. The comparison between cDNA and genomic DNA sequences revealed that FcDFR is composed of two exons and one intron. Southern blot analysis indicated that DFR belongs to a small gene family, and FcDFR was a single copy in F. cymosum genomes.
     A NADP-binding site (VTGASGFVGSWLVMRLLEHGY) and a substrate specificity motif (TVNVEEKQKPVYDETCWSDVDFCRRV), were observed in the deduced amino acid sequence of FcDFR contained C-terminal region. So that, FcDFR was postulated to have an activity to convert DHQ or DHK to leucodelphinidin or leucopelargonidin. The bioinformation analysis indicatied that FcDFR did not have a signal peptide, was localized in the plasma membrane, and had a typical tertiary tructure of enzyme.
     FcDFR PCR products and pC2301 vector containing digestion sites were digested with Xba I and Sma I, and then FcDFR target fragments and pC2301 vector were collected and performed the ligation. This generated an recombinant expression vector plasmid pC2301-FcDFR. Using the leaf disc transformation procedure mediated by Agrobacterium tumefaciens EHA105 (including pC2301-FcDFR), recombinant plasmid were transformed into tobacco plants. 95 transgenical tobacco plantlets were obtained, in which the transgenic lines were identified by GUS GUS histochemical staining and PCR and RT-PCR analysis .
     In 95 lines of transgenic plants, it was variable of total flavonoids contents in different lines. And many of them were improved in varied degree. The content of total flavonoids in leaves of 78 transgenic tobacco plants increased significantly, the highest being up to 1.8 folds, which indicated that the synthesis of total flavonoids was promoted by overexpress of FcDFR . However, the content of total flavonoids in 17 transgeniclines decreased.
     4. The cloning and function analysis of FcMYBP1
     According to the obtained homologous probe from the R2R3 conserved region in maize P gene and orther MYB genes, Using RACE on a F. cymosum callus cDNA library, we identified one clone, named FcMYBPl, encoding a putative R2R3 MYB protein. FcMYBP1 appeared to be a full-length cDNA of 1159 bp encoding a protein of 265 amino acids and contaied a 250 bp 3'-untranslated region and a 111 bp 5'-untranslated region. The comparison between cDNA and genomic DNA sequences revealed that FcMYBP1 is composed of two exons and one 81bp intron. Southern blot analysis indicated that FcMYBP1 belongs to a single copy gene in F. cymosum genomes. The FcMYBP1 protein sequence showed highly homology to PH4(61%) , VvMYB5b(55 %), BNLGHi233(66% ) , VvMYB5a(61%), and VvMYBPA1 (76%).
     Through structure and property analysis of FcMYBP1 with bioinformational methods, We found that the amino acid sequence of FcMYBP1 showed great homology to other MYBP in the N-terminus, but not in the C-terminus. The R2R3 repeat region of FcMYBP1 is highly conserved and contains the motif [D/E]Lx2[R/K]x3Lx6Lx3R for interaction with bHLH proteins. Although the C-terminal region shows little homology to other MYBs, FcMYBP1, PH4, AtMYB5 and VvMYB5a share two conserved motifs in their C-terminal domains, C1(130—138AA) and C2 (214-229AA) . Phylogenetic analysis revealed that FcMYBP1 and VvMYB5a from Vitis vinifera formed a closely related subgroup. The putative function of FcMYBP1 may be involved in the control of different branches of the phenylpropanoid pathway in F. cymosum.
     FcMYBP1 PCR products and pC2301 vector containing digestion sites were digested with Xba I and Sma I, and then FcMYBP1 target fragments and pC2301 vector were collected and performed the ligation. This generated an recombinant expression vector plasmid pC2301- FcMYBP1. Using the leaf disc transformation procedure mediated by Agrobacterium tumefaciens EHA105 (including pC2301- FcMYBP1), recombinant plasmid were transformed into tobacco plants. 80 transgenical tobacco plantlets were obtained, in which the transgenic lines were identified by GUS GUS histochemical staining and PCR and RT-PCR analysis .
     In 32 random selective lines of transgenic plants, it was greatly variable of total flavonoid contents in different lines. The content of total flavonoids in 20 transgenic tobacco leaves increased significantly, the highest being up to 3.2 folds, and 8 lines showed similar contents with controls, and 4 tobacco leaves decreased significantly. In summary, the flavoloid contents of 75 % transgenic plants were altered greatly, which indicated that FcMYBP1 was involved in the pathway of flavonoid metabolisms.
引文
1. Acker FAA etal, 2000, Flavonoids can replace a-toopherol as antioxidant, FEBS Lett, 473: 145-148
    2. AFANAS' EVI, DOROZHKO AI, BRODSKII A V, et al., Chelatin and free radcial scavenging mechanisms of inhibitory action of turin and quercetin in lipid peroxidation[J]. Biochem Pharmacol, 1999, 38: 1763-1769
    3. Aharoni A., De Vos C.H., Wein M., et al., The strawberry FaMYBI transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco [J]. Plant, 2001, 28: 319-332
    4. Akashi T., Aoki T. and Ayabe S., Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involeved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol., 1999, 121: 821-828
    5. Almeida, J , Carpenter, R, Robbins, T, P, et al., Genetic interactions underlying flower color patterns in Antirrhinum mojus[J], Genes, 1989: 1758-1767
    6. AnC, Ichinose Y, Yamada T, et al., Structure and orangnization of the genes encoding chalcone sythase in Pisum satiuum. Plant Mol Biol, 1993, 21: 789-803
    7. Arioli T, Howles P A, Weinman J J, et al., In Trifolium subterraneu, chalcone synthase is encoded by a multigene family. Gene. 1994, 13g: 79-86
    8. Arora A, et al., Structure activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biology & Medicine. 1998, 24 (9): 1355-1363
    9. Bak.S., Olsen.C.E. and Petersen B. L., et al., Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopisis by expression of the cyanogenic CYP79A1 from Sorghum bicolor.[J] Plant., 1999, 20: 663-671
    10. Bak.S., Olsen.C.E. and Halkier B. A., et al., Tansgenic tobacco and Arabidopsis plants expressing the two multifumctional sorghum cytochrome P450 enzyme, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived form intermediates in dhurrin biosynthesis, Plant Physiol., 2000, 123: 1437-1448
    11. Barnes S , Grubbs C, Setchell K D R, et al., Soybeansinhibit mammary tumors in models of breast cancer. Inmutagens and Carcinogens in t he Diet; Pariza M, Ed. Wiley Liss: New York, 1990, 239-253
    12. Bartlett N.J.R., The Genetic control of Anthoganin Biosynthesis in Antirrh inum mojus, pho Dissertert ion (No rwich, England, University of East Anglia) [J]. Plant Cell, 1994, 2: 197-200
    13. Bartlett N.J.R., The Genetic Control of Anthocyanin Biosynthesis in Antirrhinum majus. PhD Dissertation (Norwich, England: University of East Anglia). 1989
    14. Batschauer A, Ehmann B, Schafer E., Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression. Plant Mol Biol. 1991, 16: 175-185
    15. Beate, Baderschneider. lso lation and Caracterzation of Novel Benzoates, Cinamates, F lavono ids, and L ingmans from R iesling Wine and Screening for Antioxidant Activity, J A gric Food Chem, 2001, 49 (6): 2788-2798
    16. Becard G., et al., Flavonoids are not necessary plant signals in arbuscular mycorrhizal symbiosis Mol. Plant-Microbe Interact. 1995, 8: 252-258
    17. Beld M, Martin C, Huits H, et al., Falconoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol 4-reductase genes[J], Plant Mol. Biol, 1989, 13: 491-502
    18. Bell CJ, Dixon RA, Farmer AD, et al., Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene, 1999, 226: 181-188
    19. Benavente-Garcia O, et al., Changes in neodiosmin levels during the develogpment of a Citrus auranium leaves and fruits. Postulation of neodiosmin biosynthetic pathway [J]. Agric Food Chem. 1993, 41: 1916-1919
    20. Benavente - Garcia O, et al., Uses and properties of Citrus flavonoids [J]. Agric. Food Chemo1997, 45(12): 4505-4515
    21. Beret A and Cazenave J P, The effect of flavonoids on blood vessel wall interactions In: Plant Flavonoids in Biology and Medicinell, New York, 1988, 187-200
    22. Bhyan B K., ExPt Cell Res. 1976, 97: 275
    23. Bogden A E., Proc AACR ASCO, 1978, 19: 105;
    24. Bogden A E., Proc Amer Assoc Cancer Res, 1983, 24: 861;
    25. Bogden A E., Cancer Res Cobb W R. Zepage D [J]. 1987, 28(supp): 429
    26. BOKKENHEUSER V D, WINTER J. Hydrolysis of flavonoids by human bacteria, in Plant Flavonoids in Biology and Medicine Ⅱ: Biochemical, Cellular, and Medical Properties[J]. Alan R. Liss. New York, NY USA, 1988, 143-145
    27. Bongue-Bartelsman M, O'Neill SD, Tong Y, Yoder JI, Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene 1994, 138: 153-157
    28. Booij-James I.S., Dube S. K. Jansen M.A. K., Edelman M. and. Mattoo A. K., UItraviolet-B radiation Impacts Light-Mediated Turnover of the Photosystem Ⅱ Reaction Center Heterodimer in Arabidopsis Mutants Altered in Phenolic Metabolism. Plant Physiology, 2000, 124: 1275-1283
    29. Bors W., lleller W., Michel C., et al., Flavonoids as antioxidants: rate constants for reaction with oxygen radicals. Methods. Enzymol. 1990, 186: 343-355
    30. Bovy A., de Vos R., Kemper M., et al., High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes Lc and C1. Plant Cell 2002, 14: 2509-2526
    31. Bradley J.M., Davies K M., Deroles. S.C, et al., The maize Lc regulatory gene up regulates the flavonoid biosynthetic pathway of Petunia. Plant [J]. 1998, 13 (3): 381- 392
    32. Broun P., Transcription factors as tools for metabolic engineering in plants. Current Opinion in Plant Biology 2004, 7: 202-209
    33. Brugliera F., Holton T.A., Stevenson T.W., et al., Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant[J]. 1994, 5: 81-92
    34. BRUNE M, ROSSANDER L, HALLBERG L., Iron absorption and phenolic compound: Importance of different phenolic structures[J]. Eur J Clin Nutr, 1989, 43: 547-5587
    35. Buchanan B, Gruissem W, Jones R., Biochemistry &MolecularBiology of Plants. American Society of Plant Physiology: Courier Companies, 2000, 1250-1318
    36. Burbulis IE, WinkeI-Shirley B, Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA, 1999, 96: 12929-12934
    37. Byme P. F., McMullen M.D., Snook M. E., et al., Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin a corn ear worm resistance factor in maize silks. Proc. Natl. Acad. Sci. 1996, 93: 8820-8825
    38. BYJ E, LANCASTER P F, REAYJ N, et al., Induction of flavonoids and phenolic acids in apples by UVB and temperature[J]. Journal of Horticultural Science and Biotechnology, 2000, 75(2): 142-148
    39. Caldwell M. M., Robberrecht R., Flint S.D., Internal filters prospects for UV acclimation in higher plants. Physiol Plant. 1983, 58: 445- 450
    40. Canada A T., Gianmella E, Nguyen J.D., et al., The production of reactive oxygen species by dietary fl.avonols. Free Radic Biol Med. 1990, 9(5): 441-449
    41. CAVALLNI L, BINDOL I. A, SIL IPRANDI N. Comparative evaluation of antiperoxidative action fo silymarin and other flavonoids[J]. Pharmacol Res Commun, 1978, 10: 133-136
    42. Cheng Z H, Yu H X, Zhu L H., B chromosome in a rice aneuploid variation. Theor Appl Genet, 2000, 101: 564-568
    43. Chen M, SanMiguel P, Bennetzen JL, Sequence organization and conservation in sh2/al-homologous regions of sorghum and rice. Genetics, 1998, 148: 435-443
    44. CHOLBI M R, PAYA M, ALCARAZ M J., Inhibitory effects of phenolic compounds on CC14-induced microsomal lipid peroxidation[J]. Experientia, 1991, 47: 195-199
    45. Christiansen K.N, Rohde W, Structure of the Hordeum vulgate gene encoding dihydroflavonom 4-reductase and molecular analysis of ant18 mutants blocked in falconoid synthesis [J]. Mol, Gen Genet, 1991, 230(122): 49-59
    46. Christie P.J, Alfenito M.R, Waibot V., Low temperature effects on anthocyanin biosynthesis. Planta 1994, 194: 541-549
    47. CHRISTINE E, JOHN R L, WAL KER J E., Light regulation of anthocyanin, flavonoid and phnolic acid biosynthesis in potato minitubers in vitro[J]. Australia Journal of Plant Physiol, 1998, 25: 915-922
    48. Clarke H.R.G., Leigh J.A, Douglas C. J., Molecular signals in the interactions between plants and microbes. Cell. 1992, 71:191-199
    49. Claus Schwechheimer and Michael Bevan., The regulation of transcription factor activity in plants. Trends in Plant Science. 1998, 3:378-382
    50. Cobb W R., Bogdeb A E., Lnvest New Drugs, 1983, 1: 5
    51. Coe E.H., McCormick S. and Modena S.A., White pollen in maize. J. Hered. 1981, 72: 318-320
    52. Coe. E. H., Hoisington, d, a, Nenffer, M. G.Sprsgue and J. Dudley [M], Madison, w 1: American Sociery of Agronomy, 1993, 81-258
    53. Coe E.H., McCormick S. and Modena S.A., White pollen in maize[J]. Hered. 1981, 72: 318-320
    54. Cook NC and Sammam S., Flavonids-chemistry, metabolism, cardioprotective effects and dietary sources (review). Nutritional Biochemisty. 1996, 7:66-76
    55. Cook NC and Samman S., Flavonoids-chemistry, metabolism, cardioprotecive effects and dietary sources, Nutr, Biochem, 1996, 7:66-76
    56. Cone K.C., Burr B., Molemlar and genetic analysis of ligh treguirement for anthoyanin synthesis in maize, In the Genetics of Flavonoids [M], Milan: Edizioni Unicopli, 1994, 143-146
    57. Consonni G, Geuna F., Gavazzi G, et al., Molecular homology among members of the Rgnne faro ily in maize [J], Plant, 1993, 3: 335-346
    58. COUL TATE T P., Food: The Chemistry of Its Components, 2nd ed[J]. The Royal Society of Chemistry, 1990, 137-149
    59. Cushman J.C. and Bohnet H..J., Genomic approavhes to plant stress tolerance. Curr. Opin. Plant Biol, 2000, 3: 117-124
    60. Dalkin K., Edwards R., Edigton B., et al., Induction of phenylpropanoid biosynthesis and hydrolytic enzymes in elicitor-treated cell suspension cultures. Plant physiol. 1990, 92(2): 440-446
    61. Damiani F., Paolocci F., Cluster P., et al., The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants. Aust J Plant Physiol 1999, 26: 159-169
    62. DAS N P., RATTY A K., Effect of flavoloids on induced non-enzymic lipid peroxidation. In Plant Flavonoids in Biology and Medicine: Biochemical. Pharmacological and Structure-Activity Relationships[J]. Alan R. Liss, New York, NY USA, 1986, 243-2471
    63. Dellapenna D., Plant metabolic engineering. Plant Physiol, 2001, 125: 160-163
    64. Delph L.J. and Lively C.M., The evolution of floral color change: pollinator attraction versus physiological constraints in Fuchsia excorticata. Evolution 1989, 43: 1252-1262
    65. de Majnik J, Weinman J, Djordejevic M, et al., Anthocyanin regulatory gene expression in transgenic white clover can result in an altered pattern of pigmentation. Aust J Plant Physiol 2000, 27: 659-667
    66. DE WHALL EY C V, RANKIN S M., Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages[J]. Biochem Pharmacol, 1990, 39: 1743-1750
    67. De-Yu Xie, Lisa A. Jackson, John D. Cooper, Daneel Ferreira, and Nancy L. Paiva2*Molecular and Biochemical Analysis of Two Cdna Clones Encoding Dihydroflavonol-4-Reductase from Medicago truncatulal Plant Physiology, 2004, 3(134): 979-994
    68. Dillon V.M , Overton J., Grayer R. J., et al., Differences in the phytoalexin resposne among rice cultivars of difference resistance to blast. Phylochemistry. 1997, 44(4): 599-603
    69. Dixon RA, Sumner LW., Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol, 2003, 131: 878-885
    70. Djordjevic M. A., Redmond J.W., Batley M. et al., Clovers secrete compounds with either stimulate or repress nod gene in Rhizobium trifolii. EMBO J. 1987, 6: 1173-1179.
    71. Dooner. H. K, Robbins. T. P, Jorgensen. R. A, Genetic and derelopmental control of anthoayanin biosgnthesis [J], Annu. Rer. Genet, 1991, 25: 173-199
    72. Elomaa P, Helariu Y, Gresbach R J, et al., Transgene inactivation in Petuniahy brda is influenced by the properties of the foreign gene [J], Mol Gen Genet, 1995, 10(25): 649-656
    73. Elomaa P, Mehto M, Kotilainen M, et al., A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). Plant[J], 1998, 16: 93-99
    74. Elomma P., Helariutta Y., Kotilanen M., et al., Transformation of antisense constructs ofthe chalcone synthase gene superfamily into Gerbera hybrida: differential effect on the expression of family members. Mol Breed. 1996, 2: 41-50
    75. Erich Grotewold*(?), Manuel B. Sainz(?)§, Laura Tagliani(?), J. Marcela Hernandez*, Ben Bowen(?)i, and Vicki L. Chandler**Identification of the residues in the Myb domain of maize C1 that specify the interaction with thebHLH cofactor R PNAS u December 5, 2000 u vol. 97 u no. 25 u 13579-13584
    76. Endres, R. (Ed). Plant Cell Biotechnology. Springer-Verlag. Berlin Heidelberg, New York. 1994, 121-242
    77. Falco S.C., Guida T., Locke M., et al., Transgenic canola and soybean seeds with increased lysine. Biotechnology. 1995, 13: 577-582
    78. Fetter J.L., Jez J.M., Bowman M.E., et al., Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 1999, 6: 775-784
    79. Fine AM, Oligomeric proanthocyanidin complexes: history, structure and phytopharmaceutical applications[J]. Altern Med Rev, 2000, 5(2): 144-151
    80. Firman J.L., Wilson K.E., Rossen. U, et al., Flavonoid activation ofnodulation genes in Rhizobium reversed by other compounds present in plants. Nature. 1986, 324: 90-92
    81. Forkmann G, and Dangelmayr B., Genetic control of chalcone isomerase activity in flowers of Dianthus caryuphyllus. Biochem.Genet. 1980, 18: 519-527
    82. Forkmann G, Martens S., Metabolic engineering and applications of flavonoids. Current Opinion in Biotech. 2001, 12: 155-160
    83. Forkman G., Ruhnau, BID istinct subst rate specificity of dihydroflavonol 4-feductase from flow ers of Petunia hy brida Z. [J], Naturforsch, 1987, 42: 1146-1148
    84. Francesca Quattrocchio, 1 Walter Verweij, 1 Arthur Kroon, Cornelis Spelt, Joseph Mol, and Ronald Koes. PH4 of Petunia Is an R2R3 MYB Protein That Activates Vacuolar Acidification through Interactions with Basic-Helix-Loop-Helix Transcription Factors of the Anthocyanin Pathway The Plant Cell, 2006, 5(18): 1274-1291
    85. Franken P., Niesbach-Klosgen U., Weydemann U., et al., The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated: Evidence for translational control of Whp expression by the anthocyanin intensifying gene in. EMBO J. 1991, 10: 2605-2612
    86. French C.J., Towers GH.N., Inhibition of infectivity of potato virus X by flavonoids.Phytochemistry. 1992, 31(9): 3017-3020
    87. Gao G, et al., Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Redical Biology & Medicine. 1997, 22(5): 749-760
    88. Gao Z, Meng FH., Effect of fagopyrumcyosum rootin in clonal formation of four human tumor cells[J].Chung Kuo Chung Yao Tsa Chih, 1993, 18(8): 498-500
    89. Goff S. A., Klein T.M., Roth B. A., et al., Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 1990, 9: 2517-2522
    90. Goldsbrough A. P., Tong Y., Yoder J. 1., Lc as a nondestructive visual reporter and transposition excision marker gene for tomato. Plant J. 1996, 9: 927-933
    91. Goodrich, J, Carpenter, R, Coen, E. S. A common gene regulates Rgmentation pattern in diverse plant speaes[J]. Cell. 1992, 68: 955-964
    92. Greets, deLaming, Doodeman, M, et al., Genetics control of the conversion of dihydroflavonols into flavone's and anthocyanins in flowers of Petunia hybrida[J]. Planta. 1982, 155: 364-368
    93. Griesbach R. J., The inheritance of flower color in Petunia Hybrida Vim. J. of Heridity, 1996, 87(3): 241-245
    94. GriffT W., Cancer, 1983, 13(2): 48
    95. Grotewald E., Chamberlin M M., Snook K., et al., Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant cell. 1998, 10(5): 721-740
    96. Grotewald E., Drummond B.J., Bowen B, et al., The Myb-homolognus P gene controls phlobaphene pigmentation in maize floral organs by diretly activating a flavonoid biosynthetic gene subset. Cell. 1994, 76: 543-553
    97. Grotewold E. , Peterson T., Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol. Gen. Genet. 1994, 242: 1-8
    98. GRYGL EWSKI RJ, KORBUT R, ROBAKJ, et al., On the mechanism of antithrombotic action fo flavonoids [J]. Biochem Pharmacol, 1987, 36: 317-322
    99. Ha Sook Chung, et al., Flavonoid Constituents of Chorizanthe diffusa with Potential Cancer Chemop reventive Activity[J]. Agric Food Chem, 1999, 47(1): 36-41
    100. Hackett A M., The metabolism of flavonoid compounds in mammals. In Plant Flavonoidsin Biology and Medicine: Biochemical, Pharmacological, and Structural-Activity Relationships[J]. Alan R. Liss, New York, NY USA, 1986, 177-194
    101. Hagerman AE, Riedl KM, Jones GA, et al., High molecular weight plant polyphenolics (tannins) as biological antioxidants[J]. Agri Food Chem, 1998, 46: 1887-1892
    102. Hailing J, Cathie M., Multifunctionality and diversity within the plant MYB-gene family Plant Mol. Biol. 1999, 41: 577-585
    103. Hain R., Reif H.J., Krause E., et al., Disease resistance results from foreign phytoalexin expression in a novel plant. Nature. 1993, 361(6408): 153-156
    104. Hamrick J L, Goat M J W., Plant population genetic, breeding and genetic resources[M]. Sunderland: Sinauer Associates, 1989, 43-63
    105. HANASAKI Y, OGAWA S, FU KUI S., The correlation between active oxygens scavenging and antioxidative effects of flavonoids[J]. Free Radical Biol Med, 1994, 16: 845-850
    106. Harborne J. B. and Williams C. A., Anthocyanins and other flavonoids. Natural Product Reports 1998, 631-652
    107. HARBORNE J B. Nature, distribution and function of plant flavonoids. In Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships[J]. Alan R. Liss, New York, NY USA, 1986, 15-24
    108. Harborne.J, Williams C., Advances in flavonoid research since 1992, J.Phytochemisty, 2000, 55:485-504
    109. Harrison M.J, Dixon. R.A., Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal associations in roots of medicago trancatula. Mol Plant Microbe Interact. 1993, 6: 643-654
    110. Hattori, T, V asil, V, Rosenk rans, L, et al., The viviparous-1 gene and abscisic cuid activate the cl regulatory gene or anthocyanin biosgnthesis during seed maturation in maize [J], Genes, 1992, 12(6): 609-618
    111. HAVSTEEN B. Flavonoids. A class of natural products of high pharmacological potency[J]. Biochem Pharmacol, 1983, 32: 1141-1148
    112. Heller W. and Forkmann G., Biosynthesis. In The Flavonoids, J.B. Harbome, ed (London: Chapman and Hall), 1988, 399-425
    113. Herles C., Braune A. and Blaut M., First bacterial chalcone isomerase isolated from Eubacterium ramulus. Arch Mierobiol 2004, 181: 428-434
    114. Hertong MGL et al 1993 Dietary antioxidant flavonoids and risk of coronary heart disesc: The Zuphen Elderly Study Lancet 342: 1007-1011
    115. Hertog MGL, Hollman P C H and Katan M B., Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Nethjerlands, J.Agric. Food Chem. 1992, 40:2379-2383
    116. Hill B T, Whelan R D, Br J Cancer, 1980, 41(suPPI Ⅳ): 203
    117. Hirai H, Sherr C J., Interaction of D-type cyclins with a novel MYB-like transcription factor, DMPI. Mol. Cell. Biol. 1996, 16: 6457-6467
    118. HODNICK W F, MILOSAVLJ EVIC E B, NELSON J H, et al. Electrochemistry of flavonoids: Relationships between redox potentials, inhi2 tition of mitochondrial respiration and production of oxygen radicals by flavonoids[J]. Biochem Pharmacol, 1988, 37: 2607-2611.
    119. Hollman P C E, J M Feskens, M B Katan., Tea flavonols in cardiovascular disease and cancer epidemiology. (44365) P. S. E. B. M. 1997, 220:198-202
    120. Holton TA, Cornish E, Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083
    121. HOPE W C, WEL TON A F, FIELDER-NAG C, et al., In vitro inhibition of the biosythesis of slow reacting substances of anaphylaxis(SRS-A) and lipoxygenase activity of quercetin[J]..Biochem Pharmacol, 1983, 32: 367-371
    122. Hoshino A, Johzuka-Hisatomi Y, Iida S, Gene duplication and mobile genetic elements in the morning glories. 2001, 265: 1-10
    123. Hosokawa N., Hosokawa Y., Sakai J., et al., Inhibitory effect of quercetin on the synthesis of a possibly cell-cyclerelated 17-kDa protein, in human colon cancer cells. Cell Struct Funct. 1990, 15: 393-401
    124. Howles P A, Aprioli T, Weinman J J., Nuclentide sequence of additional members of the gene family encoding chalcone synthase in Trifolum subterraneum. Plant Physiol. 1995.107:1035-1036
    125. Hrazdina G, Compartmentation in aromatic metabolism.In HA Stafford, RK Ibrahim, eds, Recent Advances in Phytochemistry. Plenum Press, New York, 1992:1-23
    126. Huits H, S. M, Gerats A, G. M, Krelke,M. M, etal, Genetic control of dihydroflavonol 4-reductase gene exp ression in petumiahy bride [J], Plant J, 1994, 6:295-310.
    127. Hull A.K., Vij R. and Celenza J.L., Arabidopisis cytochrome P450 that catalyze the fist step of tryptophan-dependent, indole-3-acetic, acid, biosynthesis.Proc. Natl. Acad. Sci. USA, 2000, 97: 2379-2384
    128. Hults H.S.M., Gerats A.G.M., Kreike M.M., et al., Genetic control of dihydroflavonol Qreductase gene expression in Fetunia hybrida. Plant J. 1994, 6: 295-310
    129. HUSAIN S R, CILLARD J, CILLARD P., Hydroxyl radical scavenging activity of flavonoids[J]. Phytochemistry, 1987, 26:2489-2491
    130. Ito M, Ichinose Y, KatoH, et al., Molecular evolution and functional relevance of the chalcone synthase genes ol pea. Mol Gen Genet. 1997, 255:28-37
    131. Iro T. and Meyerowiltz E. M., Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopisis. Plant Cell. 2000, 12:1541-1550
    132. Jacob M. and Rubery P.H., Naturally occurring auxin transport regulators. Science. 1988, 241, 346-349
    133. Jeffrey B., Harborne, Christine A. Williams., Anthocyanins and other flavonoids (January 1998 to December 2000). Natural Product Reports. 2001, 310-333
    134. Jez J.M., Noel J.P., Reaction mechanism of chalcone isomerase, pH dependence, diffusion control, and product binding differences[J]. Biol. Chem. 2002, 277: 1361-1369
    135. Jiang C, Gu X, Peterson T, Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. lndica. Genomc Biol 2004,5:R46
    136. Jin H, Cominelli E, Bailey P, et al., Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000, 19:6150-6161
    137. Jochen Bogs, Felix W. Jaffe, Adam M. Takes, et al., The Grapevine Transcription Factor VvMYBPA1 Regulates Proanthocyanidin Synthesis during Fruit Devclopmenti[OA] Plant Physiology, 2007, 3(143): 1347-1361
    138. Johnson CS, Smyth DR, The TTG2 gone of Arabidopsis encodes a WRKY family transcription factor that regulates trichome development and the production of pigment and mucilage in seed coats. 9th International Conference on Arabidopsis Research. University of Wisconsin, Madison, 1998, 186
    139. Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant[J], 2001, 25: 325-333
    140. Johnson E. T, Yi H, Shin B, et al., Cymbidium hybrid a dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant [J], 1999, 19(1): 81-85
    141. Johnson ET, Yi H, Shin B, Oh BJ, Cheong H, Choi G (1999) Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferul to produce orange pelargonidin-type anthocyanins. Plant [J] 1999, 19: 81-85
    142. Jovanovic S.V, et al., Flavonoids as antioxidants. J. Am. Chem Society. 1994, 116: 4846-4851
    143. Jung W, Chung 1M, Hen HY., Manipulating isoflavone levels in plants. Plant Biotech. 2003, 5(3): 149-155
    144. Jung W, Yu.O. and Lau S. M., etal, Identification and expression isoflavone synthase, the key enzyme for biosynthesis of isoflavonc in legumes, Nather biotech, 2000, 18: 208-221
    145. Kakiuchi N., Namba T., et al., J Nat Prid, 1985, 48: 614
    146. Kandaswami C.,C., Perkins E., Soloniuk D.S., et al., Ascorbic acidenhanced antiproliferative effect of fiavonoids on squamous cell carcinoma in vitro. Anticancer Drugs. 1993, 4(1): 91-96.
    147. Kaul T.N, Middleton E., Ogra P.L., Antiviral effect of flavonoids on human viruses[J]. Med ViTol. 1985 15(1): 71-79
    148. Kazuyasu Samejima, et al., A Strong A ntimutagen against Dietary Carcinogen, Trp-p-2, in Peppermint, Sage, and Thyme. J A gric Food Chem. 1995, 43(1): 410-414
    149. Kirk E A, P Suthcrland, S A Wang, et al., Dietary iso-flavones reduce plasma cholesteroland at herosclerosis in C57BL/6 mice but not LDLre-ceptor-deficient mice [J]. J Nutr. 1998, 128: 954-959.
    150. Koes R E, Spelt C E, van den EIzen PJ, et al., Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Genc. 1989, 81: 245-257
    151. Koes R.E., Van Blokland R., Quattrocchio F., et al., Chaiconc synthase promoters in pentunia are active in pigment and unpigment cell types. Plant Cell. 1990, 2: 491-502
    152. Kondo T., Yoshida K., Nakagawa A., Structure basis of blue color development in flower petals of Commelia communis. Nature. 1992, 358: 515-518
    153. Kranz H., Scholz K., Wisshaar B., cMYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. The Plant Journal, 2001, 21(2): 231~235
    154. Kreuzaler F., Ragg H., Fautz E., Kuhn D.N., and Hahlbrock K., UV-induction of chalcone synthase mRNA in cell suspension cultures of Fetmselinum hortense. Proc. Natl. Acad. Sci. USA 1983, 80: 2591-2593.
    155. Kristiansen KN, Rohde W, Structure of the Hordeum vulgate gene encoding dihydroflavonol 4-reductase and molecular analysis of anti 8 mutants blocked in flavonoid synthesis. Mol Gen Genet 1991, 230: 49-59
    156. Kroon J., Souer E., de Graaff A., , Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: Characterization of insertion sequences in two mutant alleles. Plant J. 1994, 5: 69-80
    157. Kubasek W.L., Shirley B.W., McKillop A., et al., Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedings. Plant Cell. 1992, 4: 1299-1236
    158. KUHNAU J., The Flavonoids: A class of semi-essential food components: Their role in human nutrition[J]. WId Rev Nutr Diet. 1976, 24: 117-191
    159. Laurent Deluc, Francxois Barrieu, Chloe' Marchive, et al., Characterization of a Grapevine R2R3-MYB Transcription Factor That Regulates the Phenylpropanoid Pathwayl[W] Jean-Pierre Carde, Jean-Michel Me'rillon, and Sal'd Hamdi Plant Physiology, 2006, 12(40): 499-511
    160. Li J., Qu-Lee T., M., Raba R. G and Last R. L., Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell. 1993, 5: 171-179
    161. Li, S.F., Santini, J.M, Nicolaou, O., et al., . A novel mybrelated gene from Arabidopsis thaliana. FEBS Lett. 1996, 379, 117-121
    162. Lloyd A M, Walbot V, Davis R W., Arabidopsis and nicotiana anthocyanin activated by maize regulators R and C1[J]. Science. 1992, 258: -1775
    163. Lipsick J S., One billion years of MYB. Oncogene. 1996, 13: 223-235
    164. Liu JR, Choi DW, Chung HJ, et al., Production of useful secondary metabolites in plants: functional genomics approaches. Journal of Plant Biology. 2002, 45(1): 126
    165. Liu WF, Song YM, Wang LZ, et al., Drug mechanism of Fagopyrum cymosum[J]. Acta Pharmaceutica Sinica. 1981, 16(4): 247-251
    166. Liu YL, Fang Q, Zhang XQ, et al., Chemical constituents of Fagopyrum cymosum[J]. Yao Xue Xue Bao. 1983, 18(7): 545-547
    167. Lloyd A.M, Walbot V., Davis R.W., Arabidopsls and Nicotiana anthocyanin production activated by maize regulators R and C1. Science. 1992, 258: 1773-1775
    168. Macodougall J R, Matrisian L M., Cancer Metastasis Rev, 1995, 14: 35
    169. Madhuri G and Reddy A. R. (1999), Plant Blotechnology of Flavonolds, Plant Biotechnology 16(3): 179-199
    170. Mahmoud S.S., Croteau R.B., Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 2001, 98: 8915-8920
    171. Malhotra B., Onylagha J. C., Bohm B.A., et al., Inhibition of tomato ringspot virus by flavonoids. Phytochemistry. 1996, 43(6): 1271
    172. Manach Cetal, Bioavallability metadolism and physiological inpact of 4-oxo-flavonolds. Nutr Res. 1996, 16: 17-544
    173. Martin C, Carpenter R, Sommer H, et al., Molecular analysis of instability in flower pigmentation of Antirrh inummajus, following isolation of the pallid a locus by transpo son tagging [J]. EMBO J. 4: 1625-1630
    174. Martin C., Prescott A., Mackay S., Bartlett J., and Vrijlandt E.(1991). Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1, 37-49.
    175. Martin C. and Getats T., (1993) The control of pigment biosynthesis during petal development. Plant Cell 5: 1253-1264.
    176. Maxwell C.A., Hartwig U.A., Joseph C M., et al., A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium melilcti Plant Physiol. 1989, 91: 842-847
    177. Mazur W M, J A Duke, K Wahala, et al., Isoflavones and lignans in legumes: Nt ritional and heat h aspect s in humans[J]. J Nut r. Biochem. 1998, 9: 193-200
    178. Mehdy M.C. and Lamb C.J., Chalcone isomerase cDNA cloning and mRNA induction byfungal elicitor, wounding and infection. EMBO J. 1987, 6:1527-1533
    179. Menssen A., Hohmann S., Martin W., et al., The En' Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J. 1990, 9: 3051-3058
    180. Mercedes, et al., Oxidation of the F lavono I Q uercetin by po lypheno I oxidase. J A gric Food Chem. 1999, 47(1): 56-60
    181. Meyer P, Linn F, Heidmann I, etal, Endogenous and envirmental factors in fhience 35s promoter methylation of a Maiszeal gene const ruct in transgenic petunia and its colour pheno type[J], Mol Gen Genet, 1992, 231(3): 345-352.
    182. Meyer P., Heidmann I., Niedenhof I., Differences in DNA methylation are associated with a para mutation phenomenon in transgenic Petunia. Nature. 1987, 330:667-678
    183. MIDDL ETON E J, KANDASWAMI C., The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer[A]. In the flavonoids: Advances in Research Since 1986[C]. (J.B. Harborne, ed.), Chapman and Hall, London, UK, 1993,619-652
    184. Mo Y., Nagel C. and Taylor L.P., Biochenmical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc. Nat. Acad. Sci. USA 1992, 89:7213-7217
    185. MORA A, PAYA M, RIOS J L, et al., Structure activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lip peroxidation[J].. Biochem Pharmacol. 1990, 40:793-797
    186. MOREL I, L ESCOAT GM, COGREL P, et al., Antioxidant and ironchelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures[J]..Biochem Pharmacol. 1993, 45: 13-19
    187. Morris M R., Cytogenetic studies on buckwheat[J]. Journal of Heredity. 1951, 42: 85-89
    188. Muir S.R., Collins G.J., Robinson S., Hughes S., Bovy A., Ric De Vos C.H., van Tunen A.J., Verhoeyen M.E.(2001)Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of fiavonols. Nat Biotechnol 19: 470-474.
    189. Myara I., Pico I., Vedie B., et al., A method to screen for the antioxidant effect of compounds on low-density lipoprotein (LDL): illustration with flavonoids. J. Pharmacol Toxicol Methods. 1993, 30(2): 69-73
    190. Nagata C N, Takat suka, Y Kurisu., Decreaced serum total cholesterol concent ration is associated with highintake of soy produc s in Japanesemen and women[J]..J Nut r. 1998, 128:209-213
    191. Nakajima J., Tanaka Y., Yamazaki M., et al., Reaction Mechanism from Leucoanthocyanidin to Anthocyanidin 3-Glucoside, a Key Reaction for Coloring in Anthocyanin Biosynthesis. The Journal of Biological Chemistry. 2001, 276: 25797-25803
    192. O,Reilly C,Shepherd N S,PereiraA,et al.Molecular cloning of the al locus of Zea mays using transposable elements EN and Mul.EMBOJ,1985.4:877~822
    193. Ogata K, Morikawa S, Nakamura H, et al., Comparison of the free and DNA-bingding domain of c-MYB. Nature Struct. Biol. 1995, 2: 309-320
    194. Ohmi Ohnishi, Search for the wild ancestor of buchwheat 1: Description of new Fagopyrum species and their distribution in China. Fagopyrum. 1998, 15: 8-28
    195. Ohmi Ohnishi, Search for the wild ancestor of buckwhear Ⅱ: Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability[J]. Cenes Cenet.Syst. 1996, 71: 383-390
    196. Ohmi Ohnishi, Search for the wild ancestor of buckwheat Ⅲ: The wild ancestor of cultivated common buckwheat and of tatary buckwheat[J]. Economic Botany. 1998, 52(2): 123-133
    197. Ohmi Ohnishi, Discovery of wild ancestor of common bukwheat[J]. Fagoryioum. 1991, 11: 5-10
    198. Ohnishi O, Matsuoka Y, Search for the wild progenitor of buckwheat 1: Taxonomy of Fagopyrum(Polygonaceae) species based on morphology, isozymes and cpDNA variability. Genes and Genetic Systems. 1996, 71: 383-380
    199. Ohmi Ohnishi, Yasui. Yasuo Yasui, Search for wild buckwheat species in high mountain regions of Yunnan and Sichuan provinces of China[J]. Fagopyrum. 1998, 15: 8-17
    200. Okuda T, Hatann, T, Agata T. et al., J Pharmacobio_Dyn, 1985, 8: 64
    201. Oomen A., Dixon R. A., Paiva N.L, The elicitor inducible alafalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell. 1994, 6: 1789-1803
    202. Ozaki Yetal, Effects of genistein, a tyrosine kinase in hibitor, on platelet functions. Biochem pharmacol. 1993, 46: 395-403
    203. Padmavathi M., Saktivel N., Thara K.V., et al., Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry. 1997, 46(3): 499-502
    204. Pamela Pedrielli, et al AntioxidantM echanism of Flavono ids.Solvent Effect on Rate Constant for Chain- Break ing Reaction of Quercetin and Ep icatech in in A utoxidation of M ethy L ino leate. J A gric Food Chem, 2001, 49 (6): 3034-3040.
    205. Pasqua G, Monacelli B, Cuteri A, et al., Cell suspension cultures of Macl ura pomif era: Optimization of growth and metabolite production. J Plant Physiol. 1991, 139: 249-251
    206. Paz-Ares J., Ghosal D., Saedler H., Molecular analysis of the C1-1 allele from Zea mays: a domaint mutant of the regulatory C1 locus. EMBO J. 1990, 9: 315-321
    207. Paz-Ares J., Ghosal D., Wienand U., et al., The regulatory C1 locus of Zea mays encodes a protein with homology to Myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987, 9: 3533-3558
    208. Paz-Ares J., Wienand U., Peterson P. A. et al., Molecular cloning of the c locus ofZea mays: A locus regulating the anthocyanin pathway. EMBOJ. 1986, 5: 829-833
    209. Peng Y, Sun ZM, Xiao PG, Research and development of Fagopyrum dibotrys[J]. Chinese Herbs. 1996, 27(10): 629-631
    210. Peters K.N, Long S R, Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Planta. 1988, 160: 341-347
    211. Peters N.M., Long S.R., Rhizobium meliloti nodulation gene inducers and inhibitors. Plant Physiol. 1988, 88: 396-400
    212. Petroni K, Com inelli E, Consonni G, et al., The developmental expression of the maize regulatory gone Hopi defermines germination-dependent anthoyanin accumulation [J]. Genetics. 2000, May, 155(1): 323-336
    213. Plant Medicine Volume (国外医药·植物药分册).1990,5:10~15
    214. Potter S M, Baum T A, Yu T H., Soy protein and iao-flavones: their effect on blood lipids and bone density in postmenopausal women[J]. Am. J of Clin. Nutr. 1998, 68: 1375S-1379S
    215. Qing-Fu CHEN, A study of resource of Fagopyrum(Polygonaceae)native to China. Botanical Journal of the linnean Society. 1999, 130: 53-64
    216. Qing-Fu CHEN, Hybridization between Fagopyrum(Polygonaceae) species native to China. Botanical Journal of the linnean Society. 1999.131: 177-185
    217. Qing-Fu CHEN, Discussion on the Origin of Cultivated Buckwheat in Genus Fagopyrum. Advances in Buckwheat Research. 2001: 206-213
    218. Quattrocchio, F. M, Regulato y Genes cont ro lling flower pigmetation in petumia hybrida. PHD. Dissertation [M]. Amsterdam: Vrije Universitieit. 1994, 365-376.
    219. Quattrocchio F., Wing J.F., Leppen H.T.C., et al., Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell. 1993, 5: 1497-1512.
    220. Rabinowicz P.D., Braun E.L, Wolfe A. D., et al.. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants[J].Genetics, 1999, 153: 427-444
    221. RATTY K, DAS N P. Effects of flavonoids on nonenzymic lipid peroxidation: Structure activity relationship [J]. Biochem Med Metabol, 1988, 39: 69-79.
    222. Reddy, A. R, B ritsch, L, Salamini, F, The A1 (A nthocyanin-1) locus in Zea may s encodes dihydroquercet in reductase[J]. Plant Sci. 1987, 52: 7-13
    223. Rice Evans CA et al., Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Biol. Med. 1996, 20: 933-956
    224. ROBAKJ, KORBUT R, SHRIDI F, et al., On the mechanismof antiaggregatory effect of myricetin Pol[J]. J Pharmacol Pharm. 1988, 40: 337-340
    225. Robbins M, Bavage A, Strudwicke C, et al., Genetic manipulation of condensed tannins in higher plants. Plant Physiol. 1998, 116: 1133-1144
    226. Robbins M, Morris P, Metabolic engineering of condensed tannis and other phenolic pathways in forages and fodder crops. In Metabolic Engineering of Plant Secondary Metabolism. Edited by Verpoorte R, Aifermann AW. Amsterdam: Kluwer Academic Publishers. 2000: 165-177
    227. Robbins RC, Regulatory action of phenylbenzo -r—pyrone(PBP)derivatives on blood constituents affecting rheololgy in patients with coronaryn heart disease(CHD). Int Nutr Res. 1976, 46: 338-347
    228. Romero 1, Fuertes A, Benito M J, et al., More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J. 1998, 14: 273-284.
    229. Rosati C, Cadic A, DwronM, et al., Mo lecular cloning and expression analysis ofdihydroflavonol 4-reductase gene in flower organs of Forsy th ia X intermedia [J]. Plant Mol, Biol. 1997, Oct, 35(3): 303-311
    230. Sachalinensis, In an air-lift reactor kinetics and technological characteristics. Biotechnology TechniQue. 1998, 12(1): 1-5
    231. SALVAYRE R, NEGRE A, DOUSTE-BLAZY L., Protective effect of plant flavonoids, analogs and vitamin E against lipid peroxidation of membranes. In Plant Flavonoids in Biology and Medicine Ⅱ: Biochemical, Cellular and Medicinal Properties[J]. Alan R. Liss. New York, NY USA. 1988, 313-316
    232. Samel D, Donnella-Deana A, de WiRe P., The effect of Punned extract of Fagopyrum esculentum(buckwheat) on Protein kinases involved in signal transduction Pathways. Planta Med. 1996, 62(2): 106-100
    233. Santos AC, et al., Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radical Biology & Medicine. 1998, 24(9): 1455-1461
    234. Saslowsky DE, Winkel-Shirley B, Localization of flavonoid enzymes in Arabidopsis roots. Plant J. 2001, 126: 485-93
    235. Savark L, LiP, Strauss S H, et al., Chloroplast and nuclear gene sequences indicate late Pennsylvanian pine for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA. 1994, 91: 5163-5167
    236. Scambia G. Ranelletti F. O., Panici P.B., Piantelli M, De Ferrandina G., Pierelli L., Capelli A.(1991 )Quercetin inhibits the growth of a multidrug-resistant estrogen - receptor- negative MCF - 7 human breast-cancer cell line expressing type Ⅱ estrogen-binding sites. Cancer Chemother Pharmacol. 198, 28 (4): 255-258.
    237. Schoenbohm C., Martens S., Eder C., et al., Identification of the Arabidopsis thalianaflavonoid 3' -hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem. 2000, 381: 749-753
    238. Schramm DD., Geman JB., Potential effects of Flavonoids on the etiology of vascular disease. J. Nutr. Biochem. 1998, 9: 560-566
    239. Schwarz-Sommer ZS, ShepherdN, Tacke E, et al., Influence of transposable elements on the structure and function on the Al gene of Zea mays. EMBOJ. 1987, 6: 287-294
    240. Setchel K., Phytoestrogens: the biochemistry, physiology and implication for human health of soy isoflavones. Am J Clin Nutr. 1998, 68: 1333-1346
    241. Sctsuko Shimada, Kana Takahashi, Yuka Sato and Masaaki Sakuta.Dihydroflavonol 4-reductase cDNA from non-Anthocyanin-Producing Species in the Caryophyllales Plant Cell Physiol. 2004, 45(9): 1290-1298
    242. Shirley B.W., Kubasek W.L., Storz G, Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995, 8: 659-671
    243. Snyder B.A., Leite. B., Hipskind J., et al., Accumulation of sorghum phytoalexins induced by Colletotrichum graminicola at the infection site. Physiological and Molecular Plant Pathol. 1991, 39: 463-470
    244. Snyder B. A., Nicholoson R. L, Synthesis of phytoalexins in Sorghum as a site-specific response to fungal ingress. Science. 1990, 248: 1637-1639
    245. Sommer H., Saedler H., Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen. Genet. 1986, 202: 429-434
    246. Sparvoli F, Martin C, Scienza A, et al., Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 1994, 24: 743-755
    247. Spelt, C, Quattrocchio, F, Mol, J N, et al., Anthoyaninl of petunia encode a basic helix-loop-helix protein that directly actives transcription of structural anthocyanin genes [J]. Plant Cell. 2000, 12(9): 1619-1632
    248. Stafford HA, Possible multi-enzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. Rec Adv Phytochem, 1974, 8: 53-79
    249. Stab D. J., Dettendorfer J., Reif H. J., et al., Erhohte Pilzresistenz yon transgenen Kartoffeln dutch heterologe Expression von Resvcratrolsynth -asegenen. Symposium Molekularbiologie der Pflanzen, Wernigerode, March. 1994: 2-5
    250. Stanisalw Burda and w ieslaw O leszek. A ntioxidant and A ntiradical A ctivities of F lavono ids. J A gric Food Chem, 2001, 49(6): 274-279.
    251. Stapleton A. E, Walbot V., Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiology. 1994, 105: 881-889
    252. Strak-Lorenzen P., Nelke B., Hanbler G, et al., Transfer of grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant cell Reports. 1997, 16: 668-673
    253. Stracke R, Wether M, Weisshaar B, The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447-456
    254. Sugihara N, et al., Anti2and pro-oxidative effects of flavonoids on metal induced lipid hydroperoxide dependent lipid peroxidation in cultured hepatocytes loaded with a linolenic acid. Free Radical Biology &Medicine. 1999, 27 (11/12): 1313-1323
    255. Sukrasno N , Yeoman M M., Phenylpropanoid metabolism during growth and development of Capsicum frutescens fruits. Phytochemistry. 1993, 32: 839-844
    256. Suzuki Y, Yoshitomo K, Maruyama K, et al.. Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. Gene. 1997, 200, 149-156.
    257. Tanaka T, Fukui Y, Fukchi Mizutani M, et al., Molecular cloning and characterization of Rosahybrid a dihedron flavones 4-reductase gene [J]. Plant cell physiologic. 1995, 36(6): 1023-1031
    258. Tanaka Y, Tsuda S, Kusmi T., metabolic engineering to modify flower color. Plant Cell Physiology. 1998, (11): 1119-1126
    259. Tamagnone L, Merida A, Parr A, et al., The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell. 1995, 10: 135-154
    260. Taylor C.B., Factories of the future? Metabolic engineering in plant cells. The Plant Cell 199g, 10:641-644
    261. Taylor L.P. and Jorgensen R. (1992)Conditional male fertility in chaicone synthase deficient petunia. J.Hered, 83, 11-17
    262. Taylor L E, Briggs,W.R, Genetic regulation and photocontrol of anthocyanin accumulation in maize seedings. The Plant Cell. 1990, 2: 115-127
    263. Tetsuo Meshi, Masaki lwabuchi., Plant transcription factors. Plant Cell Physiol. 1995, 36:1405-1420
    264. Thomas R L, Jen J J., Phytochrome-mediated carotenoids biosynthesis in ripening tomatoes. Plant Physiol. 1975, 56: 452-453
    265. Thomzik J.E, Gene transfer in plants. Pflazenschutz Nachrichtenbayer. 1995, 48:5-23
    266. Tonelli C, Consonni G, Dolfini SF, et al., Genetic and molecular analysisofsn, a lightinducible, tissue spesific regulatory gene in maize [J]. Mol. Gen, Genet. 1991, Mar, 225(3): 401-410
    267. TOREL J, CILARD J, CILLARD P., Antioxidant activity of flavonids and reactivity with peroxy radical[J]. Phytochemistry. 1986, 25: 383-385
    268. Two Dihyroflavonol-4-Reductase cDNAs from Medicago truncatula Plant Physiol. Vol. 134, 2004 99
    269. Tzeng SH, et al., Inhibition of platelet aggregation by some flvonoids. Thromb Res. 1991, 64: 91-100
    270. Van der Krol A.R., Lenting P.E., Veenstra J., et al., An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature. 1988, 333:866-869
    271. Van der meer I.M., Stare, M., VanTunen A.J, Mol J.N.M and Stuitje A.R. (1992) Antisense inhibition of falconoid biosynthesis in Petunia anthers result in male sterility. Plant Cell 4: 253-262.
    272. Van Tunen, A.J., Regulation of Flavonoid Biosynthesis in Petunia: Isolation, Molecular Analysis and Manipulation of the Two Chalcone Flavanone Isomerase Genes. PhD Dissertation (Amsterdam: Vrije Universiteit). 1990
    273. Van Tunen, A.J., Hartman, S.A., Mur, L.A., et al., Regulation of chalcone isomerase (CHI) gene expression in Petunia hybrida: The use of alternative promoters in corolla, anthers and pollen. Plant MOI. Biol. 1989, 12: 539-551
    274. Van Tunen, A.J., Koes, R.E., Spelt, CE., et al., Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: Coordinate, light-regulated and differential expression of flavonoid genes. EMBO. 1988, 7: 1257-1263
    275. Van Tunen, A.J., Mur, L.A., Recourt, K., et al., Regulation and manipulation of flavonoid gene expression in anthers of petunia: The molecular basis of the pomutation. Plant Cell. 1991, 3:39-48
    276. Verpoorte R., Secondary metabolism. In: Metabolic Engineering of Plant Secondary Metabolism. Verpuorte R, Alfermann A W. Kluwer Academic Publishers. 2000, 1-85
    277. Vom Endt D, Kijne J W, Memelink J. Transcription factors controlling plant secondary metabolism: what regulates the regulators. Phytochemistry. 2002, 61: 107-114
    278. Walker AR, Davison PA, Bolognesi-Winfield AC, et al., The TRANSPARENT TESTA GLABRAl locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1991, 11: 1337-1350
    279. Wang M(王曼), Wang XJ (王小菁), Photoreceptors of ultraviolet light and blue light and induction of CHS expression. Chin Bull Bot (植物学通报).2002,19:265-271
    280. Wang. X, Olsen. O, Knudsen S, Expression of the dihydroflavono 1 reductase gene in an anthocyanin fre barleymutant [J]. Cell. 1993, 69(1): 67-75
    281. Wei YM, Buckwheat production in China[A]. In: Matano T, Ujihara A. Current Advances in Buckwheat Research[M]. vol.2. Shinshu University Press. 1995, 7-10
    282. Weiss D., Van der Lult A. H., Kmn J.T.M., et al., The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes; homology to flavanone 3-hydroxylase and ethylene forming enzyme. Plant MOI. Biol. 1993, 22: 893-897
    283. WEISS M R., Floral colour changes as cues for pollinators[J]. Nature. 1991, 354: 227-229
    284. Wellenreuther R., Schupp I., Consortium TGDNA, et al.. SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones. BMC Genomics, 2004, 5: 36-43
    285. Weon T. S., Young H. P, Tae B. C., Identification and production of flavonoids in a cell suspension culture of Scutellaria baicalensis G. Plant Cell Re. 1993, 12: 414-417
    286. Wijsman H. J. W., On the interrelationship of certain species of petunia. Experimental data: Ⅱ rosses between different taxa. Acta Bot. Neel. 1983, 32: 97-107
    287. Williams C.A., Grayer R., Anthocyanins and other flavonoids. Nat. Prod. Rep. 2004, 21: 539-573
    288. Wilmouth R.C., Turnbull J.J., Welford R.W.D., et al., Structure and Mechanism of Anthocyanidin Synthase from Arabidopsis thaliana. Structure. 2002, 10: 93-103
    289. WinkeI-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 2001, 126: 485-493.
    290. WinkeI-Shirley B, Hanley S, Goodman HM, Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell, 1992, 4: 333-347
    291. WinkeI-Shirley B, Kubasek W, Storz G, et al., Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant[J], 1995, 8: 659-671
    292. XU GH, He TH, Zhou GH, Active ingredients of Fagopyrum cymosum[J]. Chinese Herbs. 1982, 13(4): 48
    293. Xu J. F, Xie J, Feng P.S., et al., Suspension nodule culture of the Chinese herb. Rhodiola
    294. Yamada Y, F Sato., Production of berberine in cultured cells of Coptis japonica. Phytochemistry. 1981, 20: 545-547
    295. Yamamoto Y, Kinoshita Y, Watanabe S, et al., Anthocyanin production in suspension cultures of high-producing cells of Euphorbia millii. Agric Biol Chem. 1989, 53: 417-423
    296. Yang W.C., Canter Cremers H. C. J., Hogendijk P., et al., In situ localization of chalcone synthase mRNA in pea root nodule development. Plant J. 1992, 2: 143-151
    297. Ye NG, Guo GQ, Classification, origin and evolution of genus Fagopyrum in China. In: Lin R, Zhou M, TaoY, Li J, Zhang Z eds, Proceedings of the 5thinternational Symposium on Buckwheat. Taiyuan. Beijing: Chinese Agricultural Publishing House. 1992, 19-28
    298. Ye X, A1-Babili S, KIoti A, et al., Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. 2000, 287: 303-305
    299. Ylstra B., Molecular control of fertilization in plants. Thsesis, Free University of Amsterdam. 1995
    300. Yu LJ (余龙江), Zhao CF(赵春芳), Advances in the secondary metabolic engineering of the production for taxol andtaxanes. High Technology Lett(高技术通讯).2003, 1:106-110
    301. YUTING C, RONGL IANG Z, ZHONGJ IAN J, et al., Flavonoids as supoeroxide scavengers and antioxidants[J]. Free Radical Biol Med. 1990, 9: 19-21
    302. Zhai S. L IFE Sci, 1998, 62(8): 119-123
    303. Zhang WL, Li XC, Liu YQ, et al., Phenolic constituents from fagopyum cymosum[J]. Acta Botangica Yunnanica. 1987, 16: 354-356
    304. ZHI GUO J, YONGBING Y, CHENGL IAN L, et al., Dihydroflavonol reductase activity and anthocyanin accumulation in ' Delicious' 'Golden Delicious' and 'Indo' apples[J]. Scientia Horticulturae. 1997, 70: 31-43
    305. Zhou N., Tottle T L., Glazebrook J., Arabidopisis PAD3,a gene reguired for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell. 1999, 11: 2419-2428
    306. Zhu QY, et al., Interaction between Flavonoids and a-toopherol in human low density lipoprotein. J. Nutr. Biochem. 200, 11: 14-21
    307. Zondio S.C., Irish V.F., CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. Plant J. 1999, 19: 259-268
    308.艾群,王斌,王国清.金荞麦制剂的抑菌研究[J].黑龙江医学.2002,26(9):666
    309.奥田拓男.昭和医药学杂志.1985,2:168
    310.白凤梅,蔡同一.类黄酮生物活性及其机理的研究进展.食品科学,1999,(8):11~13
    311.北京市第二传染病院等,医药卫生资料,1977,(1):15
    312.陈东海,欧阳虹.类黄酮抗癌症及其机理研究进展.中国农学通报.2005,21(4):91~96
    313.陈福勇等.金荞麦对几种致病菌的体外抑菌试验.中兽医学杂志.1987,(4):5
    314.陈洁梅,顾振纶,梁中勤,等.金荞麦Fr4的抑瘤作用[J].中国野生植物资源.2002,21(4):48~50
    315.陈庆富.五个中国荞麦(FagopyNm)种的核型分析[J].广西植物.2001,21(2):107~110
    316.陈素萍,王莉,宋秀清,等.党参多倍体育种的研究门[J].中草药.1991,25(5):224~227
    317.陈晓锋,等.金荞麦抗肿瘤作用研究进展[J].中草药.2000,31(9):715~718
    318.崔洪斌.大豆生物活性物质的开发与利用.北京:中国轻工业出版社,2001.3
    319.戴均贵,朱蔚华.发根培养技术在植物次生代谢物生产中的应用[J].植物生理学通讯.1999,35(1):69~76
    320.董玉宁,等.威麦宁抑制DENA诱发小鼠肺肿瘤发生的实验研究.四川肿瘤防治.1996,9(1):5~8
    321.傅体辉,等.威麦宁增强荷瘤小鼠脾LAK活性的实验研究.中国实验临床免疫学杂志.1994,6(1):43~45
    322.傅乃武,刘朝阳,张如意,等.甘草黄酮类和三萜类化合物抗氧化作用的研究[J].中药药理与临床.1994,5:26
    323.高中洪.黄芩中黄酮类生物活性的研究进展.中国药学杂志.1998,(12):705~707
    324.高山林,徐德然,蔡朝辉,等.丹参同源四倍体新物种的培育[J].中国药科大学学报.1992,23(4):224~228
    325.高开泉.全养麦根治疗原发性痛经30例临床观察.中医杂志.1990,31(8):39
    326.高悼,五凡虹.中国中药杂志.1993,18(8):498
    327.甘烦远,郑光植.Selection of high yieid line in plant cell culture. Foreign Medical Sciences.
    328.《国家重点保护野生植物资源(第一批)》[M],1999
    329.何显忠.金荞麦的药理作用和临床应用[J].李时珍国医国药.2001,12(4):316~317
    330.胡春,丁宵霖.黄酮类化合物在不同氧化体系中的抗氧化作用研究.食品与发酵工业.1996,(3):46~53
    331.胡美英.中华肿瘤杂志.1986,8(1):1
    332.胡美英.肿瘤防治.北京:中国科学技术出版社.1989:98
    333.黄芸,秦民坚,余国奠.异黄酮类化合物在植物界的分布及药理作用.中国野生植物资源.2001,20(1):5~7
    334.贾国惠.甘草中黄酮的药理作用研究进展.中国药学杂志.1998,(9):513~515
    335.蒋俊方,贾星.四川大凉山地区是苦荞麦的起源地之一[J].荞麦动态.1990,12(1):18~19
    336.金治平,赵德修,乔传令,等.水母雪莲Myb转录调控因子SmP基因的克隆及序列分析[J].生物工程学报.2003,19(3):368-371
    337.李安仁.中国植物志.北京:科学出版社[M].1998,25(1):108~117
    338.李成东,黄正芳.金荞麦栽培技术的研究[J].中国中药杂志.1997,22(12):726~728
    339.李风兰,等.花色素基因工程研究进展.东北农业大学学报.2004.35(5):627~633
    340.李练兵,等.威麦宁对小鼠骨髓多染红细胞的微核试验.中国药理学与毒理学杂志.1989,3(2):129
    341.李钦元,杨曼霞.荞麦起源于云南初探[J].荞麦动态.1992,14(1):6~10
    342.梁效忠,等.药物分析杂志.1990,10(4):227
    343.梁明达,贾伟,杨丽,等.金荞麦根素体外抗癌作用的研究.云南医药.1991,12(6):364~369
    344.林洪生.金荞麦抗肿瘤研究进展[J].中西医结合学报.2004,2(1):72~74
    345.林汝法,苦荞的研究与利用[J],荞麦动态,1998,(1)1~7
    346.刘红岩,韩锐.金荞麦提取物抑制肿瘤细胞侵袭、转移和HT-1080细胞产生Ⅳ型胶原酶的研究.中国药理学通报.1998,14:36
    347.刘庆华.实用植物草本.天津:天津科技出版社.1998:94
    348.刘文富,等.金荞麦的一些药理作用.药学学报.1981,16(4):247
    349.刘永隆,房其年,张秀琴.金荞麦有效成分的研究[J].药学学报.1983,18(7):545~547
    350.吕桂兰,等.中国兽药杂息.1992,26(3):17
    351.吕桂兰,张荫麟,李英,等.金荞麦营养成份的研究:Ⅰ.全草及制剂中微量元素含量比较研究[J].中国兽药杂志.1995,29(3):22~23
    352.吕桂兰,张荫麟,李英,等.金荞麦营养成分的研究:Ⅱ.金荞麦不同部位及制剂中蛋白质氨基酸及分析[J].中国兽药杂志.1996,30(1):19~21
    353.吕泽田,姜德勇,田惠争,等.蜂胶中黄酮类化合物抑制肿瘤作用的试验与应用.蜜蜂杂志.1999,14(1):89~91
    354.罗定泽,等.两南地区金荞麦(Fagopyrum dibotrys(D. Don)Hara)居群的等位酶变异[J].四川师范大学报(自然科学版).2000,23(5):518~5520
    355.罗定泽,候鑫,赵佐成.西南地区金荞麦(Fagopyrum dibatrys(D. Don)Hara)剧群遗传多样性研究[J].四川师范大学报(自然科学版).2000,23(4):421~424
    356.马明福,等.金荞麦的致突变的抗突变研究.中药药理与临床.1989,5(6):38
    357.马云鹏,程佳,席宁,等.金E与肿瘤细胞DNA作用模式的探讨.中华肿瘤杂志.1989,11(2);95~97
    358.孟凡虹,等.金荞麦根体外培养人肿瘤细胞的抗癌研究.昆明医学院学报.1994,15(2):18~23
    359.南京药学院.药用植物栽培.上海人民出版社.1997
    360.南通市第三人民医院.中草药通讯.1974,5(2):51
    361.Pui-Kwong Chan.金荞麦体外抑制肿瘤细胞生长的研究[J].中两医结合学报.2003,1(2):128~131
    362.彭勇,孙载明,肖培根.金荞麦的研究与开发[J].中草药.1996,26(10):629~631
    363.全国中草药编编写组,1975年,全国中草药汇编,人民卫生出版社
    364.上海中医学院中药教学研究室.中药临床手册[M].上海:上海科学出版社.1993:106
    365.邵萌,杨跃辉,高慧媛,吴斌,王立波,吴立军,金荞麦的化学成分研究[J],沈阳药科大学学报,2005,22(2):81,101-102,160
    366.申文江.威麦宁胶囊与放疗联合治疗中晚期肺癌的临床研究.中国临床肿瘤学教育专辑.广州:中山大学出版社.2002:96~100
    367.孙震晓,马清温.药用植物组织培养研究进展.植物科学进展[M].北京:高等教育出版社.2000,(3):237~244
    368.汤丽云,何国振,林万莲,等.植物代谢工程在活性天然产物制备中的应用.天然产物研究与开发.2005,17(4):518~532
    369.汤容,樊瑞霞.大豆异黄酮抗癌作用的研究进展.中国药学杂志.1999,34(7):436~437
    370.唐传核,彭志英.类黄酮的最新研究进展(Ⅰ)——抗氧化研究.中国食品添加剂.2001,5:5~10
    371.唐传核,彭志英.类黄酮的最新研究进展(Ⅱ)——生理功能.中国食品添加剂.2002,1:12-25
    372.唐建军,向田夫.张禄源,等.植物次生代谢、离体培养条件下次生代谢产物积累及调控研究进展.中国野生植物资源.1995,17(4):1~6
    373.田磊,徐丽珍,杨世林.金荞麦地上部分化学成分的研究[J].997,22(12):743~745
    374.田振东,柳俊,谢从华.cDNA文库与RACE方法结合克隆一个马铃薯病程相关蛋白基因cDNA[J].遗传学报.2003,30(11):996~1002
    375.王本样.现代中药药理学.天津:天津科学技术出版社.1999:250
    376.王莉花,叶昌荣,肖卿.云南野生养麦资源地理分布的考察研究[J].西南农业学报.2004,17(2):156~159
    377,王龙,孙建设.类黄酮的化学结构及其生物学功能.河北农业大学学报.2003,26(26):144~147
    378.吴惠群,等.金荞麦生态环境研究[J].云南师范大学学报.1994,14(4):102~109
    379.吴乃虎.基因工程原理.北京:科学出版社.2001,88~99
    380.吴清,向素琼,闰勇,等.金荞麦的离体快繁及同源四倍体的诱导[J].西南农业大学学报.2001,23(2):108~110
    381.吴清,梁国鲁.金荞麦野生资源开发与利用[J].中国野生植物资源.2001,20(2):27~28
    382.吴双秀.高山红景天颗粒状愈伤组织悬浮培养和红景天试的诱导.博士论文.东北林业大学.2001
    383.吴友仁.金荞麦抗癌研究肿瘤防治.全国肿瘤防治学术讨论会议论文集[M].北京:中国科学技术出版社.1989:987
    384.吴征益,朱谚丞相.云南植被[M].北京:科学出版社.1987
    385.吴征益.云南种子与植物名录[M].昆明:云南人民出版社.1984:271~182
    386.谢棒祥,张敏红.生物类黄酮的生理功能及其应用研究进展.动物营养学报.2003,15(2):11~15
    387.谢棒祥.类黄酮对肉仔鸡胴体品质、脂质代谢和抗氧化状况的影响[D].中国农业科学院.2001
    388.徐贵发.麦胚黄酮类提取物诱导乳腺癌细胞株凋亡作用.营养学报.2000.(1):43~45
    389.徐国辉,合天惠,周贵华,等.金荞麦根素体外抗癌作用的研究.中草药.1982,13(4):48
    390.徐国钧,王强,余伯阳,等.抗肿瘤中草药彩色图谱[M].福州:福建科学出版社.1997:487
    391.杨体模,等.金荞麦E药理作用的研究.中国药理通讯.1988,5(3):24
    392.杨体模,荣祖元,吴友仁.金养麦E对小鼠网状内皮系统吞噬功能的影响.四川生理科学杂志.1992,14(1):9~12
    393.杨明宏,卢进,张玉芳,等.金荞麦采收SOP探讨与研究[J].世纪科学技术.2002,4(1)
    394.姚荣成,吴友仁,崇仁,等.云南产金荞麦根茎抗肿瘤有效部位的化学研究[J].云南植物研究.1989,11(2):215~218
    395.印德贤,等.金养麦对小鼠腹腔巨噬细胞吞噬功能的影响.首都医药.1999,6(12):28~29
    396.余杰,陈美珍.亮叶杨桐中类黄酮提取及其抗氧化、抑菌作用的研究[J].汕头大学学报.1997,12(2):52~58
    397.张德权,台建祥,付勤,等.生物类黄酮的研究及应用概况.食品与发酵工业.1999,25(6):52~56
    398.张国风.南通医学院学报.1987,7(3):51
    399.张雯洁,李兴从,刘玉青,等.威麦宁的酚性成分[J].云南植物研究.1994,16(4):354~356
    400.张响英,王根林.植物雌激素的免疫调节作用.畜牧与兽医.2000,32(3):40~42
    401.张荫麟,吕桂兰,周新华,等.金荞麦发状根培养的研究[J].植物学报.1992,34(8):603~608
    402.张政,王转花,刘凤艳.等.苦荞蛋白质复合物的营养成分及其搞衰老作用的研究[J].营养学报.1999,21(2):159~162
    403.赵德修,乔传令,汪沂.水母雪莲的细胞培养和高产黄酮细胞系的筛选.植物学报.1998,40(6):515~520
    404.赵钢,等.金荞麦的营养成分分析及药用价值研究[J].中国野生植物资源.2002,21(5):39~41
    405.赵钢,唐宇,王安虎.金荞麦的营养成分分析及药用价值研究[J].中国野生植物资源.2002,21(5):39~41
    406.赵雪梅,朱大元,叶兴乾,等.柑桔属中类黄酮的研究进展.天然产物研究与开发.2002,14(1):89~91
    407.赵佐成,周明德,罗定泽,等.四川省凉山彝族自治州南部三县苦荞麦栽培居群的遗传多样性研究[J].遗 传学报.2000,27(6):538~548
    408.赵佐成,周明德,王中仁,等.中国苦荞麦及其近缘种的遗传多样性研究[J].遗传学报.2002,29(8):723~734
    409.周立刚,王君健,杨祟仁.植物毛状根的培养及其化学进展1:植物毛状根的诱导形成与培养[J].天然产物研究与开发.1998,10(3):87~95
    410.周立刚,王君健,杨崇仁.植物毛状根的培养及其化学进展2:植物毛状根的次生代谢[J].天然产物研究与开发.1999,11(3):104~112
    411.朱凤绥,林汝法,李永青,等.荞麦不同类型的染色体研究初探[J].细胞生物学杂志.1984,6(3):130~131
    412.朱学.金养麦治疗肺脓肿539例临床报告.中草药.1982,13(10):35
    413.朱学.金养麦治疗帅脓肿临床观察.江苏中医.1991,12(12):34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700