用户名: 密码: 验证码:
高强韧冷作模具钢组织设计及组织控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对Cr12MoV、D2等常用冷作模具钢因碳化物偏析严重,凝固时易形成带状莱氏体碳化物导致模具因韧性不足而崩刃、断裂或塌陷的实际情况,采用热力学原理并结合计算机辅助优化设计,以减少莱氏体碳化物、增加二次析出碳化物数量来提高韧性的合金化思路,在Cr12MoV成分的基础上适当降低C和Cr含量以减少莱氏体碳化物偏析,提高Mo、V含量以细化晶粒、改善韧性。开发出兼备高强韧性和高耐磨性的SDC99冷作模具钢,以适应当前冷冲压成形材料强度不断提高的发展趋势。同时采用深冷处理技术对组织进行控制,进一步改善使用性能。通过力学性能测试、光学显微镜(OM)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、X射线衍射仪(XRD)、DIL805A膨胀仪、电阻仪、内耗仪等测试手段展开研究,揭示了高强韧冷作模具钢的合金化规律和强韧化机制,澄清了深冷处理过程中的微观组织转变及相变机理,获得以下主要结论:
     本研究设计的高强韧冷作模具钢SDC99克服了传统Cr12MoV易崩刃或开裂的弱点,高温抗回火稳定性优于Cr12MoV。在硬度为62HRC条件下,韧性达80J以上,比Cr12MoV提高一倍,耐磨性能与Cr12MoV相当。其性能与进口同类型高品质冷作模具钢相当,可替代进口DC53,SLD-Magic及ASSAB88等高强韧冷作模具钢。通过电解萃取碳化物的激光粒度分析表明,SDC99低温回火后钢中碳化物的中位径为1.23μm,而Cr12MoV低温回火后钢中碳化物的中位径为11.37μm。采用统计方法得出SDC99钢中有45.5%的碳化物尺寸在0.25~1μm之间,而Cr12MoV钢中91%的碳化物尺寸均大于5μm。通过改善钢中碳化物的形态、数量及尺寸分布,使钢的力学性能得到了提高。
     采用深冷处理技术实现了对高强韧冷作模具钢热处理后组织的有效控制,进一步提高了耐磨性能。经不同工艺深冷处理后,硬度都有1~3HRC的提高,但冲击韧性均下降到常规淬回火处理的一半左右。深冷处理工艺顺序对性能影响显著:试样经淬火+回火+深冷处理(HTC24)以及淬火+一次回火+长时间深冷+一次回火(HTC24T),硬度均无明显增加,但冲击韧性较淬火+深冷处理+回火的冲击韧性更高。长时间深冷处理后残余奥氏体仍不能完全转变为马氏体,经深冷处理后钢中的残余奥氏体以纳米级薄膜状存在于马氏体板条间。淬火+回火+深冷处理的试样中剩余奥氏体量高于淬火+深冷处理+回火试样的残余奥氏体量,其原因可能是回火过程中部分碳原子从马氏体中扩散进入残余奥氏体,从而使残余奥氏体发生了部分稳定化。经深冷处理+回火后马氏体基体碳含量比淬火+回火处理马氏体的碳含量低,表明深冷处理的试样在回火过程中有更多的碳化物析出。
     深冷处理后试样的Snoek峰明显降低,即深冷处理后试样中可提供应力感生有序产生Snoek弛豫的碳原子减少。SKK峰增高表明深冷处理过程中的应力作用可导致碳原子发生迁移,迁移的碳原子偏聚于位错周围对位错产生强烈的钉扎作用。延长深冷处理保持时间使SKK峰高度进一步增加的结果表明:间隙原子在应力作用下发生了迁移,并且与时间具有一定的关系,即间隙碳原子在低温下应力诱导扩散需要较长时间,深冷处理保持时间对SKK峰的影响可用耦合模型进行解释。回火后SKK峰弛豫强度随回火温度升高而降低。经过深冷处理与未深冷处理的试样在相同温度回火相同时间后发现,经过深冷处理试样的SKK弛豫强度明显低于未经深冷处理试样的弛豫强度,且回火温度升高后,深冷处理前后峰高的差距变小。由此表明:深冷处理使碳化物析出的动力增强,与未深冷处理的试样相比,经深冷处理的试样在较低温度回火就能析出更多的碳化物。使用电阻测试淬火态和深冷处理后的试样得出了相同的结论。
     深冷处理过程中的应力诱导作用导致碳原子发生迁移。迁移的碳原子偏聚于位错周围形成偏聚区或原子团簇,在回火过程中偏聚于位错周围的碳原子团簇无需进行长程扩散而形成碳化物。因此,在相同温度回火相同时间条件下,深冷处理后的试样比未经深冷处理的试样能析出更多的碳化物。这是除残余奥氏体转变为马氏体外,深冷处理提高耐磨性能的第二诱因。
     采用计算机模拟技术对深冷处理过程的温度场、应力场和应变场进行计算表明:深冷处理有利于降低淬火过程中产生的内应力。冷却温度越低,消除淬火应力的效果越明显。深冷处理过程由于收缩作用将产生很大的内应力,应在深冷处理前进行回火处理。冷却速度、深冷次数和深冷时间的对应力和应变的影响甚微。
It is directed at the ledeburite carbides segregated seriously in solidification of Cr12 die steels (e.g. Cr12MoV or D2 etc.). The morphology characterization of ledeburite carbide is distributed in banding and net with fishbone shapes. Thus the moulds are usually failure with tipping, fracture and collapse in services due to low toughness. In order to improve this situation, a new high strength and high toughness cold work die steel was developed to adapt for the requirement of high strength materials forming. The thermodynamic theory and equilibrium principle of carbon as well as computer aided optimizing design are used in. The alloying ideas are decreasing ledeburite to improve toughness and increasing second precipitation carbides to strength matrix also improve wear resistance. The composition design is to reduce the content of carbon and chromium in order to cut down the segregation of ledeburite carbide; to increase content of molybdenum and vanadium in order to refining grain as well as improve toughness based on Cr12MoV. At the same time, deep cryogenic treatment (DCT) was carried out in order to give full play to proficiency and improve properties.
     By means of Mechanics Performance Testing, optical microscope (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer, DIL805A dilatometer, electric resistance instrument and internal friction system and so on used in research. The alloying regularity and mechanism of toughness have been discovered. And the variation of microstructure as well as mechanism of phase transformation in the process of DCT has been clarified in this dissertation. The main conclusions are summarized as follows:
     The new developed high strength and high toughness cold work die steel SDC99 have overcome the weakness of Cr12MoV which failed with tipping, fracture and collapse in services due to low toughness. The temper resistance is better than Cr12MoV. The toughness achieves to 80J which is twice as Cr12MoV while the hardness is 62HRC. In addition, the wear-resisting property is as same as Cr12MoV. It can instead of the imported high strength high toughness steel such as DC53, SLD-Magic and ASSAB88 etc. The carbides were obtained by electroextraction in quenched and tempered steel. The distribution of carbides size was analyzed by Laser Particle Size Analyzer (LPSA). The average size of carbide in SDC99 and Cr12MoV are 1.23μm and 11.37μm respectively after tempering. In addition, the statistical method was used to study the carbides distribution in the tempered two steals. There are 45.5% of carbides distributed between 0.25~1μm in tempered SDC99 steel, while 91%of carbides size lager than 5μm in tempered Cr12MoV. The SDC99 steel was made the carbides size distribution better than Cr12MoV and a large number of fine carbides precipitated in the tempering process. It is the reason that higher toughness obtained in SDC99 while the wear resistance is as well as Cr12MoV.
     Deep cryogenic treatment was carried out in order to improve the wear resistance and dimensional stability. The hardness is increased 1~3HRC after DCT, however, the toughness reduced. The volume of retained austenite is reduced after DCT. The volume of retained austenite in tempering then DCT treated sample is higher than DCT treated after quenching. The reason is that carbon atoms diffuse into retained austenite in the process of tempering to make the retained austenite stabilized. Besides, the carbon content in martensite is lower than tempered sample after DCT. It can be concluding that more carbide was precipitated in the tempering after DCT.
     It is shown the Snoek peak reduced after DCT treating by means of internal friction. The Snoek relaxation which is associated with the reorientation of interstitial solute atoms(C, N) disappeared almost in the body-centered cubic metals under the application of oscillatory stress. The decreasing of the height of Snoek peak indicates the solute C amount is reduced after DCT treating. However, the Snoek-Kê-K?ster (SKK) peak increased after DCT means the carbon atoms segregate to nearby dislocations and produced strong interactions including the interstitial carbon atom themselves and between the interstitial carbon atoms with time-dependent strain field of dislocations. The interactions between the interstitial carbon atoms in the Cottrell atmosphere are stronger than the long range interactions between interstitial carbon atoms in the perfect bcc lattice. These effects are enhanced with the soaking time in temperature of cryogenic treatments due to more transformation of austenite to martensite and increase the lattice distortion with prolonging soaking time. Effect of deep cryogenic treatment on internal friction behaviors of cold work die steel can be explained by coupling model.
     The SKK peak decreased with increasing tempering temperature. It is shown that the height of SKK peak in DCT treated sample is lower than non DCT treated sample which were tempered at same temperature with 2 h. This indicates that there is more carbide precipitated from matrix after DCT treated during tempering. The same result is obtained from experiment of electric resistance. DCT promotes the carbon atoms segregated nearby dislocations and the segregated carbon atoms forming clusters as well as the carbides precipitation in the process of tempering. This is an important reason in improvement of wear resistance besides the transformation of retained austenite into martensite after DCT.
     Moreover, the computer modeling and simulating technology was used to calculate the temperature field, stress and strain field in the process of DCT. It is shown that DCT is helpful for reducing internal stress which produced in quenching process. It is obviously that the lower temperature, the lower internal stress after DCT treating. It is necessary to carry out tempering before DCT because large internal stress produced in the process of DCT. However, cooling speed, cryogenic times and cryogenic time have very little effect of stress and strain from simulations.
引文
[1]徐进,姜先畬,陈再枝等.模具钢.北京:冶金工业出版社, 1998.
    [2]市场信息.中国力争2020年成为世界制造业强国.模具商情,2005,70(3):22.
    [3]徐向善.工程机械轮辋生产变热压成型为冷作成型技术的优势.工程机械文摘, 2007,(02):60.
    [4] Gladman, Dulieu D, McIvor ID. Microalloying 75, Proceedings,Union Carbide Corporation. New York,1977.
    [5]齐俊杰,黄运华,张跃等.微合金化钢.北京:冶金工业出版社, 2006.
    [6]雍歧龙.钢铁材料中的第二相.北京:冶金工业出版社,2006.
    [7] M.科恩.钢的微合金化及控制轧制.北京:冶金工业出版社, 1984.
    [8]杨德庄编著.位错与金属强化机制.哈尔滨:哈尔滨工业大学出版社,1991.
    [9]董翰.低合金钢的强化和韧化理论研究.超纯净超细晶合金化高强高韧钢(文集1).北京:钢铁研究总院, 1998.
    [10]哈宽富.金属力学性质的微观理论.北京:科学出版社, 1983.
    [11]潘金芝,任瑞铭,戚正风.国内外模具钢发展现状.金属热处理, 2008,(8):10-15.
    [12] Bergstr?m F. The effect of lubrication on wear of tool steels used in punching of stainess and HSLA steel sheet. Proceedings of the 8th international tooling conference2009. p. 47-54.
    [13] Picas RH, Casellas D, Casas B, Valls I. Mechanical performance of cold forming tools. Proceedings of the 8th international tooling conference2009. p. 1037-1048.
    [14] Casellas D, Caro J, Molas S, Prado JM, Valls I. Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Mater. 2007,55(13):4277-4286.
    [15] Picas I, Cuadrado N, Casellas D, Goez A, Llanes L. Microstructural effects on the fatigue crack nucleation in cold work tool steels. Procedia Engineering, 2010,2(1):1777-1785.
    [16] Shiozawa K, Morii Y, Nishino S, Lu L. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int J Fatigue. 2006,28(11):1521-1532.
    [17] Sakaia T, Sugano N, Tsuji T, Nishii T, Yoshikawa H, Ohzono K. Serial magnetic resonance imaging in a non-traumatic rabbit osteonecrosis model: an experimental longitudinal study. Magn Reson Imaging, 2000,18(7):897-905.
    [18] Meurling F, Melander A, Tidesten M, Westin L. Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels. Int J Fatigue. 2001,23(3):215-224.
    [19]马永庆,王逊,张春基.新型高强韧性冷作模具钢DM9的组织和性能.特殊钢, 2002,(01):36-8.
    [20]赵昌盛. Cr12系钢冷作模具断裂失效分析.金属热处理, 2003,(01):68-69.
    [21]陈再良,陈蕴博,佟晓辉,吕东显.典型冷作模具钢性能与失效关系的探讨.金属热处理, 2006,(02):87-93.
    [22]刘云旭.金属热处理原理.北京:机械工业出版社, 1982.
    [23]沙桂英.高温奥氏体化对40Cr钢疲劳裂纹扩展行为的影响.金属热处理, 1990,(11)12-19.
    [24]陈鼎,黄培云,黎文献.金属材料深冷处理发展概况.热加工工艺, 2001,(04):57-59.
    [25] Preciado M, Bravo PM, Alegre JM. Effect of low temperature tempering prior cryogenic treatment on carburized steels. J Mater Process Technol. 2006,176(1-3):41-44.
    [26] Bensely A, Prabhakaran A, Mohan Lal D, Nagarajan G. Enhancing the wear resistance of casecarburized steel (En 353) by cryogenic treatment. Cryogenics, 2005,45(12):747-754.
    [27] Liu H, Wang J, Yang H, Shen B. Effects of cryogenic treatment on microstructure and abrasion resistance of CrMnB high-chromium cast iron subjected to sub-critical treatment. Mater Sci Eng, A. 2008,478(1-2):324-328.
    [28] Darwin JD, Mohan Lal D, Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J Mater Process Technol. 2008,195(1-3):241-247.
    [29] Molinari A, Pellizzari M, Gialanella S, Straffelini G, Stiasny KH. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J Mater Process Technol. 2001,118(1-3):350-355.
    [30]尹洪臣,刘肃人.液氮深冷处理的应用研究.国外金属热处理, 1999,(4):43-45.
    [31] Barron RF. Cryogenic treatment of metals to improve wear resistance. Cryogenics, 1982,22(8):409-413.
    [32] Collins DN. Deep cryogenic treatment of tool steels: a review. Heat Treat Met. 1996,23(2):40-42.
    [33] Kamody DJ. Using deep cryogenics to advantage. Adv Mater Processes, 1998,154(4):215-218.
    [34] Meng F, Tagashira K, Azuma R, Sohma H. Role of eta-carbide precipitation's in the wear resistance improvements of Fe-12-Cr-Mo-V-1.4C tool steel by cryogenic treatment. Isij Int. 1994,34(2):205-210.
    [35] Yang H, Jun W, BaoLuo S, HaoHuai L, ShengJi G, SiJiu H. Effect of cryogenic treatment on the matrix structure and abrasion resistance of white cast iron subjected to destabilization treatment. Wear, 2006,261(10):1150-1154.
    [36] Das D, Dutta AK, Toppo V, Ray KK. The effect of cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater Manuf Process. 2007,22(4)474–480.
    [37] Stratton PF. Optimising nano-carbide precipitation in tool steels. Mater Sci Eng, A. 2007,449-451:809-812.
    [38] Bensely A, Venkatesh S, Mohan Lal D, Nagarajan G, Rajadurai A, Junik K. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Mater Sci Eng, A. 2008,479(1-2):229-235.
    [39] Collins D, Dormer J. Deep cryogenic treatment of a D2 cold-worked tool steel. Heat Treat Met. 1997,24(3):71-74.
    [40] Bensely A, Senthilkumar D, Mohan Lal D, Nagarajan G, Rajadurai A. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater Charact. 2007,58(5):485-491.
    [41] Das D, Dutta AK, Toppo V, Ray KK. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater Manuf Processes. 2007,22(4):474-80.
    [42] Das D, Dutta AK, Ray KK. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater Sci Eng, A. 2010,527(9):2182-2193.
    [43] Golovin IS. Interstitial distribution in Fe-Al and Fe-Cr quenched and aged alloys: Computer simulation and internal friction study. J Alloys Compd. 2000,310(1-2):356-362.
    [44] Snoek JL. Letter to the editor. Physica, 1939,6(7-12):591-592.
    [45] Snoek JL. Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica, 1941,8(7):711-733.
    [46] Koiwa M. A note on Dr. J.L. Snoek. Mater Sci Eng, A. 2004,370(1-2):9-11.
    [47] Koiwa M, Numakura H. The Snoek effect in ternary BCC alloys: A review. Sol St Phen.2006,115:37-40.
    [48] Dijkstra LJ. Elastic relaxation and some other properties of the solid solutions of carbon and nitrogen in iron.Philips Res Rep. 1947,(2):357.
    [49] Dijkstra LJ. Met Trans AIME. 1949,185:252-260.
    [50] Richards P, Barratt K. Carbon and Nitrogen in solution in low carbon steel after short annealing cycles. ASM Trans Quart. 1965,58(4):601-610.
    [51] Richards P, Barratt K. dissolved carbon and nitrogen at low concentrations in commercial steel determined by internal friction. Iron Steel INST J. 1966,204(4):380-384.
    [52] W Pascheto, Johari GP. Annealing and aging of interstitial C inα-Fe, As measured by internal friction. Metall Mater Trans, A. 1996,27(9):2461-2469.
    [53] Baker LJ, Parker JD, Daniel SR. The use of internal friction techniques as a quality control tool in the mild steel industry. J Mater Process Technol. 2003,143-144:442-447.
    [54] Mosher D, Diercks D, Wert C. Precipitation of carbon from solid solution in vanadium. Metallurgical and Materials Transactions B. 1972,3(12):3077-3080.
    [55] Ogi H, Ledbetter H, Kim S. Snoek relaxation in a copper-precipitated alloy steel. J Alloys Compd. 2000,310(1-2):432-435.
    [56] Molinas BJ, Lambri O, Weller M. Study of non-linear effects related to the snoek-k?ster relaxation in Nb. J Alloys Compd. 1994, 211-212:181-184.
    [57] Jiang F-X, Zhang T-Y. A corrected mechanism of Snoek-K?ster relaxation for the hydrogen Cold-Work Peak in a-Fe. Scr Metall. 1988,22(6):779-784.
    [58] Oytana C, Varchon D. The Snoek-K?ster relaxation transient period in cold-worked niobium. Acta Metall. 1979,27(1):17-23.
    [59] Juan J S, Fantozzi G, No M L, Esnouf C. Hydrogen Snoek-K?ster relaxation in iron. J Phys F: Met Phys. 1987,17(4):837-848.
    [60]张国福,戢景文,魏全金,赖祖涵,陈廷国. Fe-P-N合金的Snoek-Kê-K?ster峰.内耗与超声衰减——第三次全国固体内耗与超声衰减学术会议论文集,1991. p. 15-17.
    [61]戢景文,魏全金,张国福,赖祖涵,陈廷国. La对Fe-P-N合金Snoek-Kê-K?ster峰的影响.内耗与超声衰减——第三次全国固体内耗与超声衰减学术会议论文集,1991. p. 17.
    [62]戢景文,赵增祺,贺礼端,耿殿奇.铁磷合金中的Snoek-Kê-K?ster峰.物理学报, 1985,(12):1620-1626.
    [63]车韵怡,刘芬娣,曾桂仪,许余昌,戢景文,华桥柱,刘建民,黄镇如. 340MPa级BH钢的Snoek-Kê-K?ster阻尼.金属学报,1998,34(8):831-835.
    [64] Tkalcec I, Mari D, Benoit W. Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel. Mater Sci Eng, A. 2006,442(1-2):471-475.
    [65] Tkalcec I, Mari D. Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects. Mater Sci Eng, A. 2004,370(1-2):213-217.
    [66] Hoyos JJ, Ghilarducci AA, Salva HR, Chaves CA, Vélez JM. Internal friction in martensitic carbon steels. Mater Sci Eng, A. 2009,521-522:347-350.
    [67] Asano S. On the characteristics of a hydrogen peak of internal friction in austenitic stainless steels. Scri Metall. 1985,19(9):1081-1084.
    [68] Asano S, Kazaoka M. A hydrogen peak of internal friction and its isotope effect in austenitic stainless steel. Scr Metall. 1985,19(1):47-50.
    [69] Gavriljuk VG, H?nninen H, Tarasenko AV, Ullakko K. Effect of nitrogen on internal friction of hydrogen charged stable austenitic stainless steels. Scripta Metallurgica et Materialia.1993,29(2):177-182.
    [70] Jagodzinski Y, Tarasenko A, Smuk S, T?htinen S, H?nninen H. Internal friction study of hydrogen behaviour in low activated martensitic F82H steel. J Nucl Mater. 1999,275(1):47-55.
    [71]孔庆平.内耗方法在研究蠕变和蠕变断裂中的应用.物理, 1993,22(4):217-219.
    [72]肖金泉.金属内耗在评价深冲薄板质量中的应用.物理测试, 1987,(4):4-5.
    [73]方前锋,葛庭燧.与位错和点缺陷交互作用有关的非线性滞弹性内耗的研究.中山大学学报(自然科学版), 2001,40(S3):203-207.
    [74]于宁,刘永刚,张志波,詹华,张建,戢景文.汽车钢板冲压性能的内耗谱表征.上海交通大学学报, 2010,44(5):624-627.
    [75]曾桂仪,车韵怡,金洪征,戢景文,黄镇如,刘建民,华桥柱,周星.无间隙冷轧汽车钢的内耗谱.金属学报, 1997,33(09):912-916.
    [76]戢景文,刘芬娣,王登京,车韵怡,华桥柱,刘建民,黄镇如.汽车钢烘烤硬化性机理的内耗研究.金属学报, 1999,35(09):913-919.
    [77]车韵怡,孙玉杰,戢景文. BPH340冷轧汽车钢板的内耗谱.东北大学学报, 1997,18(06):676-679.
    [78] Bhagat AN, Baek SJ, Lee HC. A simple method for prediction of shelf life of bake hardening steels. ISIJ Int. 2008,48(12):1781-1787.
    [79] Eloot K DJ, Kestens L. Effect of texture on the height of the snoek peak in electrical steels. ISIJ International, 1997,37(6):615-622.
    [80]戢景文,于宁.冶金内耗相关的阻尼峰机理.物理学进展. 2006;26(3\4):296-308.
    [81]戢景文,李尚诣.关于发展“冶金内耗”.物理, 1995,24(10):599-606.
    [82] Blanter MS, Golovin IS, Neuh?user H, Sinning H-R. Internal friction in metallic materials -A Handbook: Springer Berlin Heidelberg, 2007.
    [1] Costae Silva A, Agren J, Clavaguera-Mora MT, Djurovic D, Gomez-Acebo T, Lee B-J, et al. Applications of computational thermodynamics-the extension from phase equilibrium to phase transformations and other properties. Calphad. 2007,31(1):53-74.
    [2] Kaufman L. Computational thermodynamics and materials design. Calphad. 2001,25(2):141-161.
    [3]杜勇,陈启元.材料热力学与材料设计.中国化学会第十三届全国化学热力学和热分析学术会议2006. p. 1.
    [4]郑志刚.合金热力学性质的Miedema理论计算.广西大学, 2005.
    [5]侯哲哲.人工神经网络在材料设计中的应用.河北工业大学, 2003.
    [6]徐建林,王智平.材料设计中的BP神经网络技术.宇航材料工艺, 2003,(02):22-25.
    [7]刘国华,包宏,李文超.人工神经网络在材料设计中的应用及其若干共性问题的研究.计算机与应用化学, 2001,18(04):388-392.
    [8]曹先凡,刘书田.基于拓扑描述函数的特定性能材料设计方法.固体力学学报, 2006,27(03):217-22.
    [9]刘红飞,严学华,程晓农.拓扑优化方法在复合材料设计中的研究进展.材料导报. 2006,20(02):33-36.
    [10] Villars P, Onodera N, Iwata S. The Linus Pauling file (LPF) and its application to materials design. J Alloys Compd. 1998,279(1):1-7.
    [11] Hu J C, Song H M, Yu M, Jiang L Z. Thermo-calc calculation and experimental study of microstructure of sus 410s and sus 430 ferrite stainless steels at high temperature. Journal of Iron and Steel Research, International. 2007,14(5, Supplement 1):183-188.
    [12] Andersson JO, Helander T, H?glund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 2002,26(2):273-312.
    [13] Lu X G, Selleby M, Sundman B. Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc. Calphad. 2005,29(1):49-55.
    [14] Saunders N, SchilléJP, Miodownik AP. Material properties for process simulation proceedings of the fifth international conference on physical and numerical simulation of materials processing2007. p. 8.
    [15]闵永安,刘湘江,毛远建.应用JMatPro软件对比研究两种抽油杆钢的合金化特点.上海大学学报(自然科学版), 2008,83(05):503-508.
    [16]王衣,孙锋,董显平,张澜庭,单爱党.新型Ni-Co基高温合金中平衡析出相的热力学研究.金属学报, 2010,46(03):334-339.
    [17]陈丙星.低合金耐磨铸钢热处理工艺的研究.东华大学, 2008.
    [18]郭俊梅,邓德国,潘健生,胡明娟.计算材料学与材料设计.贵金属, 1999,(04):62-68.
    [19]冯武锋,王春青,张磊.材料设计的发展新趋势——材料设计计算方法.材料科学与工艺, 2000,8(04):57-62.
    [20]王桂金,吴宝榕.相变和晶体缺陷的计算机模拟在合金设计中的应用.材料科学进展. 1989,3(02):97-104.
    [21]谢殷子.高强韧性冷作模具钢的研究与开发.上海大学硕士论文, 2010.
    [22]陈世朴,王永瑞.金相电子显微镜分析.北京:机械工业出版社, 1982.
    [23]戎咏华.分析电子显微学导论.北京:高等教育出版社, 2006.
    [24] http://www.baehr-thermo.de/uk/produkte/html/frame_produkte.html.
    [25] Snoek JL. Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica, 1941,8(7):711-733.
    [26] Snoek JL. Letter to the editor. Physica, 1939,6(7-12):591-592.
    [27] Zener C. Stress Induced preferential orientation of pairs of solute atoms in metallic solid solution. Phys Rev. 1947,71(1):34.
    [28] Granato A, Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies. J Appl Phys. 1956,27(7):789-805.
    [29] http://www.nihon-tp.com/index.htm.
    [30]田莳,李秀臣,刘正堂.金属物理性能.北京:航空工业出版社, 1993.
    [31]吕克茂.残余应力测定的基本知识——第四讲X射线应力测定方法(一).理化检验(物理分册), 2007,43(07):349-354.
    [32]杨玉兴,漆璿. X射线衍射分析.上海:上海交通大学出版社, 1994.
    [1] Chen J, Wang G, Ma H. Fracture behavior of C-Mn steel and weld metal in notched and precracked specimens: Part II. micromechanism of fracture. Metall Mater Trans,A. 1990,21(1):321-330.
    [2] Chen J, Zhu L, Wang G, Wang Z. Further investigation of critical events in cleavage fracture of C-Mn base and weld steel. Metall Mater Trans,A. 1993,24(3):659-667.
    [3] Curry DA, Knott JF. Effect of microstructure on cleavage fracture toughness of quenched and tempered steels. Metal Science. 1979,13(6):341-345.
    [4] Hahn G. The Influence of microstructure on brittle fracture toughness. Metall Mater Trans,A . 1984,15(6):947-959.
    [5]王国珍,陈剑虹.碳化物粒子尺寸对裂纹断裂韧性的影响.甘肃工业大学学报, 1996,22(04):1-7.
    [6]潘金芝,任瑞铭,戚正风.国内外模具钢发展现状.金属热处理, 2008,33(8):10-15.
    [7] Bergstr?m F. The effect of lubrication on wear of tool steels used in punching of stainess and HSLA steel sheet. Proceedings of the 8th international tooling conference2009. p. 47-54.
    [8] Badisch E, Mitterer C. Abrasive wear of high speed steels: Influence of abrasive particles and primary carbides on wear resistance. Tribol Int. 2003,36(10):765-770.
    [9]贺林,邓月声.二次碳化物对马氏体钢三体磨料磨损性能的影响.钢铁研究学报, 1994,6(03):61-66.
    [10]马幼平.二次碳化物对基体三体磨粒磨损特性的影响.热加工工艺, 1996,(06):13-14.
    [11] D.A.波特, K.E.伊斯特林著.金属和合金中的相变.李长海,余永宁译.北京:冶金工业出版社, 1988.
    [12] Heidenreich RD, Sturkey L, Woods HL. Investigation of secondary phases in alloys by electron diffraction and the electron microscope. J Appl Phys. 1946,17(2):127-136.
    [13] Jack KH, Wild S. Nature ofχ-Carbide and Its Possible Occurrence in Steels Nature. 1966,(212):248-250
    [14]马永庆.多元合金的电子、原子层次的理论计算及应用.大连:大连海事大学出版社, 2006.
    [15]张洋.相平衡热力学方法在超细碳化物高碳合金钢合金设计中的应用:大连海事大学博士论文, 2007.
    [16]马永庆,王逊,刘艳侠,戴玉梅,张洋.多元合金的电子、原子层次理论计算及应用.世界科技研究与发展, 2008,30(6):675-680.
    [17] Nam W, Kim D, Ahn S. Effect of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels. J Mater Sci. 2003;383611-7.
    [18] Shtansky DV, Inden G. Phase transformation in Fe-Mo-C and Fe-W-C steels--ii. Eutectoid reaction of M23C6 carbide decomposition during austenitization. Acta Mater. 1997,45(7):2879-2895.
    [19]胡正飞,吴杏芳,王春旭.二次硬化合金钢中多组元强化相M2C碳化物的粗化动力学研究.金属学报, 2003,39(06):585-591.
    [20]邱军,袁逸,陈景榕.高速钢中马氏体二次硬化的TEM研究.金属学报, 1992,28(07):19-24.
    [21] Kuo K. Carbide precipitation, secondary hardening and red hardness of high-speed steel. J Iron Steel Inst. 1953,174:223-228.
    [22] Kuo K. Alloy carbides precipitated during the fourth stage of tempering. Electron Microscopic Examination. J Iron & Steel Inst. 1956,184:258-268.
    [23] AkréJ, Danoix F, Leitner H, Auger P. The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy. 2009,109(5):518-523.
    [24] Allen AJ, Gavillet D, Weertman JR. SANS and TEM studies of isothermal M2C carbide precipitation in ultrahigh strength AF1410 steels. Acta Metall Mater. 1993,41(6):1869-1884.
    [25]吉田润二,胜亦正昭,山崎善夫,王金寅.一次碳化物对冷作模具钢疲劳寿命的影响.浙江冶金, 1999,106(03):51-54.
    [26]《金属机械性能》编写组.金属机械性能.北京:机械工业出版社, 1978.
    [27]今井勇之进.淬火、回火和钢中的相.姚中凯等译.钢的组织转变.北京:机械工业出版社, 1980. p. 265.
    [28]杨永俐,孟庆昌国,冯晓曾.热处理制度对4Cr5MoSiV1钢显微组织和机械性能的影响金属热处理, 1990,(6):28-32.
    [29]王学前,王彦平.高碳钢中残余奥氏体形态控制与利用.金属热处理学报, 1996,17(2):17-21.
    [30]冶金工业钢铁研究总院.钢和铁、镍基合金的物理化学相分析.上海:上海科学技术出版社, 1981.
    [31]雍歧龙.钢铁材料中的第二相.北京:冶金工业出版社, 2006.
    [32]冯晓曾,王家瑛,何世禹.提高模具寿命指南.北京:机械工业出版社, 1994.
    [33]陈再枝,蓝德年.模具钢手册.北京:冶金工业出版社, 2002.
    [34]邹安全.改善Cr12钢不均匀性碳化物分布的热处理工艺研究.中国机械工程, 2005,(07):645-647.
    [35] Picas I, Cuadrado N, Casellas D, Goez A, Llanes L. Microstructural effects on the fatigue crack nucleation in cold work tool steels. Procedia Engineering. 2010,2(1):1777-1785.
    [36] Shiozawa K, Morii Y, Nishino S, Lu L. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int J Fatigue. 2006,28(11):1521-1532.
    [37] Sakaia T, Sugano N, Tsuji T, Nishii T, Yoshikawa H, Ohzono K. Serial magnetic resonance imaging in a non-traumatic rabbit osteonecrosis model: an experimental longitudinal study. Magn Reson Imaging. 2000,18(7):897-905.
    [38]葛庭燧.关于开展金属中内耗研究的初步意见.科学通报, 1956,(03):42-43.
    [39]戢景文,李尚诣.关于发展“冶金内耗”.物理, 1995,24(10):599-606.
    [40]曾桂仪,车韵怡,金洪征,戢景文,黄镇如,刘建民,华桥柱,周星.无间隙冷轧汽车钢的内耗谱.金属学报, 1997,33(09):912-916.
    [41]戢景文,刘芬娣,王登京,车韵怡,华桥柱,刘建民,黄镇如.汽车钢烘烤硬化性机理的内耗研究.金属学报, 1999,35(09):913-919.
    [42] Baker LJ, Parker JD, Daniel SR. The use of internal friction techniques as a quality control tool in the mild steel industry. J Mater Process Technol. 2003,143-144:442-447.
    [43] Eloot K, Kestens L, Dilewijns J. Effect of texture on the height of the Snoek peak in electrical steels. ISIJ Int. 1997,37(6):615-622.
    [44] Rege JS, Hua M, Garcia CI, Deardo AJ. The segregation behavior of phosphorus in Ti and Ti+Nb stabilized interstitial-free steels. ISIJ International 2000,40(2):191-199.
    [45] Bhagat AN, Baek S-J, Lee H-C. A simple method for prediction of shelf life of bake hardening steels. ISIJ Int. 2008,48(12):1781-1787.
    [46]葛庭燧.固体内耗的概况和新近发展.物理, 1988,17(01):1-7.
    [47] C.甄纳著.孔庆平,周本濂等译.金属的弹性与滞弹性.北京:科学出版社, 1965.
    [48]葛庭燧.固体内耗理论基础:晶界弛豫与晶界结构.北京:科学出版社, 2000.
    [49] Zener C. Anelasticity of metals. Il Nuovo Cimento (1955-1965), 1958,7(0):544-68.
    [50] Nowick AS. Internal friction in metals. Progress in Metal Physics. 1953,4:1-70.
    [51] Nowick AS, Berry BS. Anelastic relaxtion in crystalline solids. New York: Academic Press, 1972.
    [52] KêTS. Experimental evidence of the viscous behavior of grain boundaries in metals. Phys Rev. 1947,71(8):533-546.
    [53] Zener C. Elasticity and anelasticity of metals: The Univ. of Chicago Press, 1948.
    [54] Wert C, Marx J. A new method for determining the heat of activation for relaxation processes. Acta Metall. 1953,1(2):113-115.
    [55]马应良,葛庭燧.高碳和低碳马氏体回火分解产物的共格性所引起的内耗峰.物理学报,1964,13(1):72-82.
    [56]葛庭燧,马应良.碳在低碳合金马氏体中微扩散所引起的内耗峰.物理学报, 1957,13(01):69-77.
    [57]葛庭燧,马应良.钢中马氏体在回火转变中所引起的内耗峰.物理学报, 1955,11(06):479-492.
    [58]雷廷权,唐之秀,苏梅.结构钢高温回火脆的内耗法研究.金属学报, 1982,18(4):485-492.
    [59]孙晶,唐之秀,雷廷权. 30CrMnSiA钢高温回火脆性的内耗法研究.沈阳工业大学学报, 1996,18(S1):33-36.
    [60]戢景文,刘芬娣,王登京,车韵怡,华桥柱,刘建民,黄镇如.汽车钢烘烤硬化性机理的内耗研究.金属学报, 1999,35(09):913-919.
    [61]戢景文.钢铁中稀土合金化的内耗研究.物理,1993,22(04):208-211.
    [62]于宁,刘永刚,张志波,詹华,张建,戢景文.汽车钢板冲压性能的内耗谱表征.上海交通大学学报, 2010,44(5):624-627.
    [63]闵娜,李伟,金学军.拉拔珠光体钢时效过程的内耗研究.物理学进展,2006,36(3/4):415-418.
    [64]闵娜,薛厂,佟倩,汪宏斌,吴晓春.高锰系奥氏体热作模具钢时效过程中的内耗研究.上海交通大学学报, 2010,44(05):621-623.
    [65]薛厂,汪宏斌,吴晓春,宋雯雯.热作模具钢淬火回火态的内耗谱分析.上海交通大学学报, 2010,44(05):640-644.
    [66]汪宏斌,薛厂,彭金明,罗毅,吴晓春.回火对非调质SG钢组织和性能的影响.上海交通大学学报, 2010,44(05):635-639.
    [67]李绍宏,邓黎辉,谢殷子,吴晓春.高碳高合金马氏体钢回火过程连续性转变的内耗行为研究.钢铁研究学报, 2011,23(04):37-41.
    [68] Weller M. Point defect relaxations. In: Schaller R, Fantozzi R, Gremaud G, editors. Mechanical Spectroscopy Q-1 2001. Uetikon-Zuerich,Switzerland: trans Tech Publications Ltd.; 2001. p. 95-137.
    [69] Weller M. The Snoek relaxation in bcc metals - From steel wire to meteorites. Mater Sci Eng, A. 2006,442(1-2):21-30.
    [70] KêTS. Trans AIME. 1948,176:448-474.
    [71] K?ster W, Bangert L, Hahn R. Arch Eisenhuttrnw. 1954,255:69.
    [72] Oytana C, Varchon D. The Snoek-k?ster relaxation transient period in cold-worked niobium. Acta Metall. 1979,27(1):17-23.
    [73] KêTS. On the physical models of the cold-work (Snoek-K?ster) internal friction peaks in BCC metals. Scr Metall. 1982,16(3):225-232.
    [74] Weller M. The Snoek-K?ster relaxation in body-centred cubic metals. J Phys Colloques. 1983,44(C9):C9-63-C9-82.
    [75] L.B.Magalas.有关力学谱和内耗工作的综合与回顾(英文).物理学进展, 2006,26(3/4):258-275 .
    [76] Magalas LB. On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: The cold work (CW) peak, the Snoek-K?ster (SK) peak, and the Snoek-Kê-K?ster (SKK) peak - Dedicated to the memory of professor Ting-Sui Kê. Acta Metall Sinica. 2003,39(11):1145-1152.
    [77] Granato A, Lücke K. Theory of mechanical damping due to dislocations. J Appl Phys. 1956,27(6):583-593.
    [78] Granato A, Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies. J Appl Phys. 1956,27(7):789-805.
    [79]葛庭燧,容保粹,王业宁.钢铁中碳、氮的扩散、脱溶和沉淀.物理学报, 1955,11(01):91-106.
    [80] Darinski BM, Turkov SK. Sov Phys Solid State. 1968,10:1469-1473.
    [81] Escaig B. Frottement interieur de haute temperature et diffusion de lacunes entre les dislocations. Acta Metall. 1962,10(9):829-834.
    [82] Bevington PR. Data reduction and error analysis,or the physical science. New York: McGraw-Hill; 1969, p. 235.
    [83] Magalas LB, Dufresne JF, Moser P. The Snoek-K?ster relaxation in iron. J Phys Colloques. 1981,42(C5):C5-127-C5-32.
    [84] Snoek JL. Letter to the editor. Physica. 1939,6(7-12):591-592.
    [85] Snoek JL. Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica. 1941,8(7):711-733.
    [86] Koiwa M. A note on Dr. J.L. Snoek. Mater Sci Eng, A. 2004,370(1-2):9-11.
    [87] Koiwa M, Numakura H. The Snoek effect in ternary BCC alloys. A review. Sol St Phen. 2006,115:37-40.
    [88] Kalish D, Cohen M. Structural changes and strengthening in the strain tempering of martensite. Materials Science and Engineering. 1970,6(3):156-166.
    [89] Izotov VI, Utevskii LM. Structure of the martensite crystals of high-carbon steel Fiz Matel Metalloved,1968,25(1):86-96.
    [90]弘津祯颜.碳钢马氏体回火过程中的结构变化.姚中凯等编《钢的组织转变》.北京:机械工业出版社,1980. p. 251.
    [91] Speich G, Leslie W. Tempering of steel. Metall. Mater. Trans. B. 1972,3(5):1043-1054.
    [92] Kamber K, Keefer D, Wert C. Interactions of interstitials with dislocations in iron. Acta Metall. 1961,9(5):403-414.
    [1]陈鼎,黄培云,黎文献.金属材料深冷处理发展概况.热加工工艺, 2001,(04):57-59.
    [2]尹洪臣,刘肃人.液氮深冷处理的应用研究.国外金属热处理, 1999,(04):43-45.
    [3] Preciado M, Bravo PM, Alegre JM. Effect of low temperature tempering prior cryogenic treatment on carburized steels. J Mater Process Technol. 2006,176(1-3):41-44.
    [4] Bensely A, Prabhakaran A, Mohan Lal D, Nagarajan G. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics. 2005,45(12):747-754.
    [5] Liu H, Wang J, Yang H, Shen B. Effects of cryogenic treatment on microstructure and abrasion resistance of CrMnB high-chromium cast iron subjected to sub-critical treatment. Mater Sci Eng.A. 2008,478(1-2):324-328.
    [6] Darwin JD, Mohan Lal D, Nagarajan G. Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J Mater Process Technol. 2008;195(1-3):241-247.
    [7] Molinari A, Pellizzari M, Gialanella S, Straffelini G, Stiasny KH. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J Mater Process Technol. 2001,118(1-3):350-355.
    [8] Leskov?ek V, Kalin M, Vi?intin J. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum. 2006,80(6):507-518.
    [9] Firouzdor V, Nejati E, Khomamizadeh F. Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill. J Mater Process Technol. 2008,206(1-3):467-472.
    [10]王洪艳.深冷处理对高速钢刀具性能的影响及机理研究.北方工业大学硕士论文, 2009.
    [11]赵国华,于文平,魏建勋.深冷处理对GCr15组织和力学性能的影响.材料开发与应用, 2010,25(01):26-29.
    [12] Johan Singh P, Guha B, Achar DRG. Fatigue life improvement of AISI 304L cruciform welded joints by cryogenic treatment. Eng. Fail .Anal. 2003,10(1):1-12.
    [13] Asl KM, Tari A, Khomamizadeh F. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Mater Sci Eng, A. 2009,523(1-2):27-31.
    [14] R.Frey,刘金谋.深冷处理改善钻头及粉末冶金机械零件的机械性能.国外金属热处理, 1985,(02):16-20.
    [15]袁根福,黄曼平,尹延国,储元香.粉末冶金模具的深冷处理.模具技术, 2000,(03):86-88.
    [16] Gilmore VE. .Frozen Tools. popular science. 1987(6):64-68.
    [17] Notebook E. Gearmaking.Increasing hardness through cryogenics. Tooling & Produetion, 1996,93-99.
    [18]刘承杰,邱亚玲,华寅初.渗碳钢的深冷强化.金属热处理, 1999,(08):17-20.
    [19] Cryogenics International.(http://www.cryogenicsinternational.com/).
    [20]段春争,张鹏宇,李士燕.高速钢循环深冷处理工艺及机理研究.热加工工艺, 2008,37(12):74-6.
    [21]安丽丽,李士燕.深冷处理对冷冲压模具钢Cr12MoV力学性能影响的研究.机械研究与应用, 2003,16(01):12-3+30.
    [22]李钢,李士燕. LD1钢深冷处理后的力学性能与残余奥氏体形态分布及亚结构的研究.机械工程材料, 1997,21(01):26-39.
    [23]李士燕,陈长风,李雄,袁子洲,刘秀芝.深冷处理对高碳钢抗磨粒磨损性能影响的研究.摩擦学学报, 2000,20(04):276-279.
    [24]段春争,王敏杰,李士燕.深冷处理工艺对W6Mo5Cr4V2钢力学性能和微观组织的影响.材料工程,2008,(06):40-43.
    [25]阎红娟,徐宏海,罗学科. YT15硬质合金刀片深冷处理工艺实验研究.制造技术与机床, 2010,(06):113-5.
    [26]张红,王俊杰,郭嘉.深冷处理对铝合金2A11尺寸稳定性的影响.热加工工艺, 2009,(20):133-4+7.
    [27]肖长玉,屈树新,王绍钢,王刚,翁杰,王勇,冷永祥.深冷处理对超高分子量聚乙烯性能的影响.工程塑料应用, 2009,37(06):30-32.
    [28]韩霖霏,李建,黄丽娟,王瑞霞,杜劲英.深冷处理对钴铬合金烤瓷冠金瓷结合力的影响.口腔医学, 2008,(03):136-138.
    [29]陈鼎,夏树人,姜勇,刘芳,滕杰.镁合金深冷处理研究.湖南大学学报(自然科学版), 2008,(01):62-65.
    [30]庞利佳,乔祎,陈菊芳,孙光飞,张锦标,黎文安.深冷处理对纳米复合永磁材料织构度和磁性能的影响.稀土, 2006,(06):28-32.
    [31]吴志生,单平,廉金瑞,胡绳荪.深冷处理提高镀锌钢板点焊电极寿命的机理.焊接学报, 2003,(02):7-10+4.
    [32]宛传平.深冷处理在瓷砖模具上的应用.安徽技术师范学院学报, 2004,(03):23-25.
    [33]中山久彦,徐安达,王剑飞.用液氮进行的液体超冷处理.国外金属热处理, 1987,(01):9-12.
    [34]丛吉远,李玉林.高速钢深冷处理的组织转变及耐磨性.热加工工艺,1998,(03):21-22.
    [35]黎文献,龚浩然,柏振海,陈鼎.金属材料的深冷处理.材料导报, 2000,(03):16-18.
    [36] Stratton PF. Optimising nano-carbide precipitation in tool steels. Mater Sci Eng, A. 2007,449-451:809-812.
    [37]陈鹰,陈再枝,董瀚,马党参,刘建华.经深冷处理的4Cr5MoSiV1钢的回火组织和力学性能.钢铁研究学报, 2006,(05):29-32.
    [38]林晓娉,董允,王亚红.高速钢深冷处理及其机理研究.金属热处理学报, 1998,(02):23-27.
    [39]王伊卿,方其先,马明亮,许伟春,郎光军,马锦.深冷处理对Cr12MoV冲模尺寸及性能的影响.热加工工艺, 1998,(03):22-24.
    [40]熊剑平. D2冷作工具钢的深冷处理.国外金属热处理, 1998,(06):17-20.
    [41]王毓敏.工模具钢深冷处理探讨.金属热处理, 1996,(03):37-39.
    [42]王春武,王忠堂.深冷处理及在模具中的应用.锻压机械, 1989,(02):3-6.
    [43]刘劲松.高速钢冷作模具深冷处理及应用.模具制造, 2002,(11):54-55.
    [44]李智超,董允,王洪才.低中碳合金结构钢深冷处理试验研究.阜新矿业学院学报(自然科学版), 1993,(01):6-9.
    [45]李雄,李士燕,张鸿冰,阮雪榆. 6W-5Mo-4Cr-2V高速钢深冷处理微观组织结构的分析.上海交通大学学报, 2002,(07):905-907+10.
    [46]董俊.工具钢的深冷处理.国外金属热处理, 1997,(02):8-10.
    [47]陈鼎,刘芳,滕杰,杨芳,陈振华.深冷处理对低碳钢组织与性能的影响.金属热处理, 2008,(09):66-69.
    [48] D. Yun, L. Xiaoping, Hongshen X. Deep cryogenic treatment of high speed steel and its mechanism. Heat Treat Met. 1998,(3):55–59.
    [49]刘劲松,蒲玉兴.深冷处理对高速钢刀具组织及红硬性的影响.工具技术, 2008,(05):51-53.
    [50]曾志新,李勇,周志斌,张扬.深冷处理对W9Mo3Cr4V刀具耐磨性能影响的研究.中国机械工程, 2003,(09):80-82+6.
    [51]闫献国,庞思勤,李永堂.高速钢深冷处理技术研究进展.新技术新工艺, 2008,(03):14-18.
    [52] Alexandru I, Ailincai G, Baciu C. Influence of cryogenic treatments on life of alloyed high speed steels .Mem Etud Sci Rev Metall. 1990,87(6):383-388.
    [53] Alexandru I, Picos C, Ailincai G. Contribution on the study of the increase of durability of the high2alloyed tool steel by thermal treatments at cryogenic temperatures. Associazione Italiana di Metallurgia (AIM), Milan ,Italy. 1983,573-579.
    [54] Mahmudi R, Ghasemi HM, Faradji HR. Effect of cryogenic treatments on the mechanical properties and wear behaviour of high-speed steel M2.Heat Treatment of Metals (UK). 2000,27(3):69-72.
    [55] Huang JY, Zhu YT, Liao XZ, Beyerlein IJ, Bourke MA, Mitchell TE. Microstructure of cryogenic treated M2 tool steel. Mater Sci Eng, A. 2003,339(1-2):241-244.
    [56] Kelkar P, Nash P, Zhu Y. The mechanism of property enhancement in M2 tool steel by cryogenic treatment 45th MWSP Conference Proceedings 2003. p. 13-19.
    [57]徐祖耀,任懹亮,钣永瑞,司徒锡麟,曹凤高.高速钢在零下温度时的相变.北京钢铁学院学报, 1960,(06):1-4.
    [58]李智超.深冷处理及其应用.新技术新工艺, 1985,(04):13-14.
    [59]李智超.深冷处理工艺对W18Cr4V钢机械性能的影响.兵器材料科学与工程, 1990,(12):27-32.
    [60]马光锋,李万友,李智超,赵德生.深冷处理工艺对高速钢刀具切削性能的影响.阜新矿业学院学报(自然科学版), 1989,(01):110-116.
    [61]董允,林晓娉,姜延飞.高速钢强韧化深冷处理研究.河北工业大学学报. 1998,(02):40-45.
    [62]李士燕,刘天佐,李钢.在深冷条件下残余奥氏体转变的研究.材料导报, 2003,(08):80-81+4.
    [63] Barron RF. Cryogenic treatment of metals to improve wear resistance. Cryogenics. 1982,22(8):409-413.
    [64] Collins DN. Deep cryogenic treatment of tool steels: a review. Heat Treat. Met. 1996,23(2):40-42.
    [65] Das D, Dutta AK, Ray KK. On the enhancement of wear resistance of tool steels by cryogenic treatment. Philos. Mag. Lett. 2008,88(11):801-811.
    [66] Das D, Dutta AK, Ray KK. Inconsistent wear behaviour of cryotreated tool steels: role of mode and mechanism. Mater Sci Technol. 2009,25(10):1249-1257.
    [67] Das D, Dutta AK, Ray KK. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel. Cryogenics. 2009,49(5):176-184.
    [68] Das D, Dutta AK, Ray KK. Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel. Wear. 2009,267(9-10):1371-1380.
    [69] Das D, Dutta AK, Toppo V, Ray KK. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater Manuf Processes. 2007,22(4):474-480.
    [70] Mohan Lal D, Renganarayanan S, Kalanidhi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics. 2001,41(3):149-155.
    [71] Das D, Ray KK, Dutta AK. Influence of temperature of sub-zero treatments on the wear behaviour of die steel. Wear. 2009,267(9-10):1361-1370.
    [72] Meng F, Tagashira K, Azuma R, Sohma H. Role of eta-carbide precipitation's in the wear resistance improvements of Fe-12-Cr-Mo-V-1.4C tool steel by cryogenic treatment. Isij Int. 1994,34(2):205-210.
    [73] Oppenkowski A, Weber S, Theisen W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J Mate Proc Tech. 2010,210(14):1949-1955.
    [74]李士燕,刘秀芝,陈长风,段春争.孪晶马氏体深冷分解产物的组织结构分析.机械工程材料, 2000,(04):15-17.
    [75]段春争,李士燕,刘秀芝,陈长风.高碳马氏体深冷处理后分解产物的组织分析.甘肃工业大学学报, 1999,(04):26-29.
    [76]唐明华,刘先兰.模具钢深冷处理的应用研究.机床与液压, 2003,(05):296-297.
    [77]余立林,冯晓曾. Cr12MoV钢的深冷处理及其强化机制的研究.金属热处理, 1991,(01):24-30.
    [78]彭匡鼎.低温处理时钢铁中碳原子的扩散.云南大学学报(自然科学版), 1996,(03):231-234+40.
    [79]翟应田,彭匡鼎,姚裕昌,张曙.深冷处理中钢铁基质强化的物理机理.云南大学学报(自然科学版), 1996,(03):226-230.
    [80]邱庆忠.深冷处理技术在金属材料中的应用.材料研究与应用, 2007,(02):150-153.
    [81]张茂勋,何福善,尤华平,郭帅.深冷处理技术进展及应用.机电技术, 2003,(S1):60-62.
    [82]大川雄史,汤伟林.模具的深冷处理.模具技术, 1990,(01):82-86.
    [83] Zhirafar S, Rezaeian A, Pugh M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. J Mater Process Technol. 2007,186(1-3):298-303.
    [84] Leskov?ek V, Ule B. Influence of deep cryogenic treatment on microstructure,mechanical properties and dimensional changes of vacuum heat-treated highspeed steel. Heat Treatment of Metals (UK). 2002,29(3):72-76.
    [85]尹延国,解挺,朱元吉.深冷处理与工模具的耐磨性.金属热处理, 1996,(08):27-28+37.
    [86] Da Silva FJ, Franco SD, MachadoáR, Ezugwu EO, Souza JAM. Performance of cryogenically treated HSS tools. Wear. 2006,261(5-6):674-685.
    [87] Kalin M, Leskovsek V, Vizintin J. Wear behavior of deep cryogenic treated high-speed steels at different loads. Colchester, ROYAUME-UNI: Taylor &, Francis; 2006.
    [88]姬景丽,苟卫东.用深冷处理来提高刀具使用寿命.机械制造, 2003, (01):42-43.
    [89]钱士强,赵兴堂.冷挤压模具的深冷处理.上海金属, 1996,(03):29-32.
    [90]钱士强,李曼萍,严敏杰. T8钢深冷处理后的马氏体形态和回火特性研究.热加工工艺, 2001,(04):3-5+32.
    [91]钱士强,李曼萍,严敏杰.深冷处理后低碳马氏体的形态和回火特性研究.上海金属, 2001,(05):21-5.
    [92]钱士强,童建华,马宁,陆蓉.原位观察深冷处理板条马氏体.热加工工艺, 2008,(08):12-4.
    [93] Bensely A, Venkatesh S, Mohan Lal D, Nagarajan G, Rajadurai A, Junik K. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Mater Sci Eng, A. 2008,479(1-2):229-235.
    [94] Stratton P, Graf M. The effect of deep cold induced nano-carbides on the wear of case hardened components. Cryogenics. 2009,49(7):346-349.
    [95] Das D, Dutta AK, Ray KK. On the refinement of carbide precipitates by cryotreatment in AISI D2 steel. Philos Mag. 2009,89(1):55-76.
    [96] Das D, Dutta AK, Ray KK. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater Sci Eng, A. 2010,527(9):2182-2193.
    [97]李智超,董允.回火后深冷处理试验.热加工工艺, 1989,(05):37-40.
    [98] Li S, Xie Y, Wu X. Hardness and toughness investigations of deep cryogenic treated cold work die steel. Cryogenics. 2010,50(2):89-92.
    [99] Das D, Dutta AK, Ray KK. Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear. 2009,266(1-2):297-309.
    [100]严不渝,旦启勋.深冷处理提高金属材料的耐磨性.固体润滑, 1984,(04):224-228.
    [101]徐祖耀.马氏体相变与马氏体.北京:科学出版社, 1975.
    [102]俞德刚.钢的强韧化理论与设计.上海:上海交通大学出版社, 1990.
    [103] Das D, Dutta AK, Ray KK. On the refinement of carbide precipitates by cryotreatment in AISI D2 steel. Philos Mag Lett. 2008,88(11):801-811.
    [104]刘云旭.金属热处理原理.北京:机械工业出版社, 1982.
    [105] Patel JR, Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953,1(5):531-538.
    [106] Weller M. Point defect relaxations. In: Schaller R, Fantozzi R, Gremaud G, editors. Mechanical Spectroscopy Q-1 2001. Uetikon-Zuerich,Switzerland: trans Tech Publications Ltd., 2001. p. 95-137.
    [107] Weller M, Wert C. Snoek peaks of carbon in Fe-Ni meteorites. J Phys IV. 1996,6(C8):131-134.
    [108] Li S, Deng L, Wu X, Min Ya, Wang H. Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel. Cryogenics. 2010,50(11-12):754-758.
    [109]卡恩(英).物理金属学.北京:科学出版社, 1984.
    [110] Kamody DJ. Cryogenic process update. Adv Mater Processes. 1999,155(6):H67-H9.
    [111] Rhyim YM, Han SH, Na YS, Lee JH. Effect of deep cryogenic treatment on carbide precipitation and mechanical properties of tool steel. Solid State Phenom. 2006,118:9-14.
    [112]段春争,王敏杰.深冷处理后W18Cr4V高速钢的显微组织.钢铁研究学报. 2008,20(08):38-41.
    [113]王京秋,刘守智.制备钢中碳化物萃取复型的探索.理化检验:物理分册. 1996,32(6):33-35.
    [114]章瑞鹏,蒙华伟.透射电镜萃取复型样品制备关键技术及应用.宁夏电力. 2006,255-257.
    [115]陈世朴,王永瑞.金属电子显微分析.北京:机械工业出版社, 1982.
    [116]冯端等著.金属物理学:第三卷-金属力学性质.北京:科学出版社, 1999.
    [117]葛庭燧.固体内耗理论基础:晶界弛豫与晶界结构.北京:科学出版社, 2000.
    [118] Snoek J L. Letter to the editor. Physica. 1939,6(7-12):591-592.
    [119] Snoek JL. Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica. 1941,8(7):711-733.
    [120] Stephenson ET, Conard Ii GP. Damping near the Snoek peak in Fe. Acta Metall. 1968,16(10):1253-1266.
    [121] Koiwa M. A note on Dr. J.L. Snoek. Mater Sci Eng, A. 2004,370(1-2):9-11.
    [122] Nowick AS, Berry BS. Anelastic relaxtion in crystalline solids. New York: Academic Press, 1972.
    [123] Kalish D, Cohen M. Structural changes and strengthening in the strain tempering of martensite. Mater Sci Eng. 1970,6(3):156-166.
    [124] Dijkstra LJ. MetTransAIME. 1949,185:252-260.
    [125]冯端,王业宁,丘第荣.金属物理.北京:科学出版社, 1975.
    [126] KêTS. On the physical models of the cold-work (Snoek-K?ster) internal friction peaks in BCC metals. Scr Metall. 1982,16(3):225-232.
    [127] KêTi-s. Anomalous Internal friction associated with the precipitation of copper in cold-worked Al-Cu Alloys. Phys Rev. 1950,78(4):420.
    [128] KêTS. Amplitude internal friction peaks associated with the interaction between dislocation kinks and solute atoms in aluminium. J Nucl Mater. 1989,169:275-284.
    [129] Tan Q, KêTS. Internal friction peak (P3 peak) attributed to the interaction of cottrell atmosphere of magnesium atoms with dislocation kinks in aluminium. Acta Metall Mater. 1991,39(5):877-884.
    [130]戢景文,于宁.冶金内耗相关的阻尼峰机理.物理学进展. 2006(3\4):296-308.
    [131] Schoeck G. The cold work peak. Scr Metall. 1982,16(3):233-239.
    [132] Tkalcec I, Mari D, Benoit W. Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel. Mater Sci Eng, A. 2006,442(1-2):471-475.
    [133] Tkalcec I, Mari D. Internal friction in martensitic, ferritic and bainitic carbon steel, coldwork effects. Mater Sci Eng, A. 2004,370(1-2):213-217.
    [134] Hoyos JJ, Ghilarducci AA, Salva HR, Chaves CA, Vélez JM. Internal friction in martensitic carbon steels. Mater Sci Eng, A. 2009,521-522:347-350.
    [135] Asano S. On the characteristics of a hydrogen peak of internal friction in austenitic stainless steels. Scr Metall. 1985,19(9):1081-1084.
    [136] Asano S, Kazaoka M. A hydrogen peak of internal friction and its isotope effect in austenitic stainless steel. Scr Metall. 1985,19(1):47-50.
    [137] Gavriljuk VG, H?nninen H, Tarasenko AV, Ullakko K. Effect of nitrogen on internal friction of hydrogen charged stable austenitic stainless steels. Scripta Metallurgica et Materialia. 1993,29(2):177-182.
    [138] Jagodzinski Y, Tarasenko A, Smuk S, T?htinen S, H?nninen H. Internal friction study of hydrogen behaviour in low activated martensitic F82H steel. J Nucl Mater. 1999,275(1):47-55.
    [139]孔庆平.内耗方法在研究蠕变和蠕变断裂中的应用.物理, 1993,(4):217-219.
    [140]肖金泉.金属内耗在评价深冲薄板质量中的应用.物理测试, 1987,(4):4-5.
    [141]方前锋.与材料中的微裂纹有关的内耗和模量亏损.中山大学学报(自然科学版), 2001,40(S3):211-213.
    [142]于宁,刘永刚,张志波,詹华,张建,戢景文.汽车钢板冲压性能的内耗谱表征.上海交通大学学报, 2010,44(5):624-627.
    [143]曾桂仪,车韵怡,金洪征,戢景文,黄镇如,刘建民,华桥柱,周星.无间隙冷轧汽车钢的内耗谱.金属学报, 1997,33(09):912-916.
    [144]戢景文,刘芬娣,王登京,车韵怡,华桥柱,刘建民,黄镇如.汽车钢烘烤硬化性机理的内耗研究.金属学报, 1999,35(09):913-919.
    [145]车韵怡,孙玉杰,戢景文. BPH340冷轧汽车钢板的内耗谱.东北大学学报, 1997,18(06):676-679.
    [146] Bhagat AN, Baek S-J, Lee H-C. A Simple method for prediction of shelf life of bake hardening steels. ISIJ Int. 2008,48(12):1781-1787.
    [147] Eloot K DJ, Kestens L. Effect of texture on the height of the snoek peak in electrical steels. ISIJ International 1997,37(6):615-622.
    [148]戢景文,李尚诣.关于发展"冶金内耗".物理, 1995,24(10):599-606.
    [149] Golovin IS. Interstitial distribution in Fe-Al and Fe-Cr quenched and aged alloys: Computer simulation and internal friction study. J Alloys Compd. 2000,310(1-2):356-362.
    [150] Blanter MS, Golovin IS, Neuh?user H, Sinning H-R. Internal friction in metallic materials -A Handbook: Springer Berlin Heidelberg, 2007.
    [151] Bagramov R, Mari D, Benoit W. Internal friction in a martensitic high-carbon steel. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties. 2001,81(12):2797-2808.
    [152] Magalas LB, Dufresne JF, Moser P. The Snoek-K?ster relaxation in iron. J Phys Colloques. 1981,42(C5):C5-127-C5-32.
    [153] Magalas LB, Ngai KL. Critical experimental data on the Snoek-K?ster relaxation and their explanation by the coupling model. In: Wolfenden A, Kinra VK, editors. M3D III: mechanics and mechanisms of material damping: ASTM special technical publication, 1997, p. 189-203.
    [154] Bevington PR. Data Reduction and Error Analysis,or the Physical Science. New York: McGraw-Hill, 1969, p. 235.
    [155] Weller M. The Snoek relaxation in bcc metals - From steel wire to meteorites. Mater Sci Eng, A. 2006,442(1-2):21-30.
    [156] Pascheto W, Johari G. Annealing and aging of interstitial C inα-Fe, As measured by internal friction. Metallurgical and Materials Transactions A. 1996,27(9):2461-2469.
    [157] Surberg CH, Stratton P, Lingenh?le K. The effect of some heat treatment parameters on the dimensional stability of AISI D2. Cryogenics. 2008,48(1-2):42-47.
    [158]戢景文,魏全金,张国福,赖祖涵,陈廷国. La对Fe-P-N合金Snoek-Kê-K?ster峰的影响.内耗与超声衰减——第三次全国固体内耗与超声衰减学术会议论文集,1991, p. 17.
    [159]张国福,戢景文,魏全金,赖祖涵,陈廷国. Fe-P-N合金的Snoek-Kê-K?ster峰.内耗与超声衰减——第三次全国固体内耗与超声衰减学术会议论文集,1991, p. 15-17.
    [160]车韵怡,刘芬娣,曾桂仪,许余昌,戢景文,华桥柱,刘建民,黄镇如. 340MPa级BH钢的Snoek-Kê-K?ster阻尼.金属学报,1998,34(8):831-835.
    [161]戢景文,赵增祺,贺礼端,耿殿奇.铁磷合金中的Snoek-Kê-K?ster峰.物理学报, 1985,(12):1620-1626.
    [162] Magalas LB. The Snoek-Koster (SK) relaxation and dislocation-enhanced Snoek effect (DESE) in deformed iron. In: Darinskii BM, Magalas LB, editors. Mechanical Spectroscopy Iii - Mechanical Spectroscopy and Relaxation Phenomena in Solids. Stafa-Zurich: Trans Tech Publications Ltd, 2006. p. 67-72.
    [163] Molinas BJ, Lambri O, Weller M. Study of non-linear effects related to the snoek-k?ster relaxation in Nb. J Alloys Compd. 1994,211-212:181-184.
    [164] Seeger A. The kink-pair-formation theory of the snoek-k?ster relaxation. Scr Metall. 1982,16(3):241-247.
    [165]闵娜,李伟,金学军.拉拔珠光体钢时效过程的内耗研究.物理学进展,2006,36(3/4):415-418.
    [166] Wang Y, Gu M, Sun L, Ngai KL. Mechanism of Snoek-K?ster relaxation in body-centered-cubic metals. Phys Rev B. 1994,50(6):3525-3531.
    [167] Ngai KL, Wang YN, Magalas LB. Theoretical basis and general applicability of the coupling model to relaxations in coupled systems. J Alloys Compd. 1994,211-212:327-332.
    [168] Ngai KL, Kanert O. Comparisons between the coupling model predictions, Monte Carlo simulations and some recent experimental data of conductivity relaxations in glassy ionics. Solid State Ionics. 1992,53-56(Part 2):936-946.
    [169] Magalas LB. Snoek-K?ster relaxation. New insights - New paradigms. J Phys IV. 1996,6(C8):163-172.
    [170] Schoeck G. Friccion interna debido a la interaction entre dislocacionesy atomos solutos. Acta Metall. 1963,11(6):617-622.
    [171] Hirth JP. Introduction to the viewpoint set on the cold work peak. Scr Metall. 1982,16(3):221-223.
    [172] KêTS. On the Physical Models of the Cold Work (Snoek-K?ster) Internal Friction Peaks in B.C.C. Metals Scr Metall. 1982,16(3):225-232.
    [173] Ritchie IG. Core diffusion, unpinning and the Snoek-K?ster relaxation. Scr Metall. 1982,16(3):249-253.
    [174] Li S, Deng L, Wu X, Wang H, Min Ya, Min N. Effect of deep cryogenic treatment on internal friction behaviors of cold work die steel and their experimental explanation by coupling model. Mater Sci Eng, A. 2010,527(29-30):7950-7954.
    [175] Ibarra A, Rodríguez PP, Recarte V, Pérez-Landazábal JI, NóML, San Juan J. Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy. Mater Sci Eng, A. 2004,370(1-2):492-496.
    [176] Li S, Min N, Deng L, Wu X, Min Ya, Wang H. Influence of deep cryogenic treatment on internal friction behavior in the process of tempering. Mater Sci Eng, A. 2011,528(3):1247-1250.
    [177] L.I. Lysak YIV. Fiz Met Metalloved. 1965,20:540–545 .
    [178] L.I. Lysak BIN. Fiz Met Metalloved. 1966,22:730–736.
    [179] A.L. Roitburd AGK. Fiz Met Metalloved. 1970,30:1189–1199.
    [180] Tyshchenko AI, Theisen W, Oppenkowski A, Siebert S, Razumov ON, Skoblik AP, et al. Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater Sci Eng, A. 2010,527(26):7027-7039.
    [181] Li S, Deng L, Wu X. The mechanism investigation of deep cryogenic treatment on high alloy martensitic steel by low frequency internal friction. Cryogenics. 2010,50(8):433-438.
    [182] AkréJ, Danoix F, Leitner H, Auger P. The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy. 2009,109(5):518-523.
    [183] Kuo K. The formation of [eta] carbides. Acta Metall. 1953,1(3):301-304.
    [184] Kuo K. Carbide precipitation, secondary hardening and red hardness of high-speed steel. J Iron Steel Inst. 1953,174:223-228.
    [185] Rong W, Dunlop GL. The crystallography of secondary carbide precipitation in high speed steel. Acta Metall. 1984,32(10):1591-1599.
    [186] Fischmeister HF, Karag?z S, Andrén HO. An atom probe study of secondary hardening in high speed steels. Acta Metall. 1988,36(4):817-825.
    [187] Rong W, Andrén HO, Wisell H, Dunlop GL. The role of alloy composition in the precipitation behaviour of high speed steels. Acta Metall Mater. 1992,40(7):1727-1738.
    [188]迟宏宵,马党参,王昌,陈再枝,雍岐龙. Cr8Mo2SiV钢二次硬化机理的研究.金属学报. 2010,46(10):1181-1185.
    [189] Saitoh H, Yoshinaga N, Ushioda K. Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron. Acta Mater. 2004,52(5):1255-1261.
    [190] Guan XS, Nishizawa Y, Okamura K, Numakura H, Koiwa M. Interaction between substitutional and interstitial solute atoms inα-iron studied by isothermal mechanical spectroscopy. Mater Sci Eng, A. 2004,370(1-2):73-77.
    [191] Numakura H, Yotsui G, Koiwa M. Calculation of the strength of Snoek relaxation in dilute ternary B.C.C. alloys. Acta Metall Mater. 1995,43(2):705-714.
    [192] Dijkstra LJ. Elastic relaxation and some other properties of the solid solutions of carbon and nitrogen in iron .Philips Res Rep. 1947,2:357.
    [193] Ino H, Takagi S, Sugeno T. On the relaxation strength of the snoek peak. Acta Metall. 1967,15(1):29-34.
    [194] Lagerberg G, Josefsson ?. Influence of grain boundaries on the behaviour of carbon and nitrogen in [alpha]-iron. Acta Metall. 1955,3(3):236-244.
    [195] Seemann HJ, Dickenscheid W. Zum einfluss der korngr?sse auf die Snoek-d?mpfung und die alterung des kohlenstoffs im ferrit. Acta Metall. 1958,6(1):62-63.
    [196] Lagerberg G, Wolff EG. The effects of grain size and texture on the internal friction in [alpha]-iron due to interstitial solutes. Acta Metall. 1958,6(2):136-137.
    [1]全钰泰.热处理过程中温度、组织转变和应力的计算机模拟技术.渝州大学学报(自然科学版), 1999,16(02):51-54.
    [2]陈鼎,陈吉华,严红革,黄培云.深冷处理原理及其在工业上的应用.兵器材料科学与工程, 2003,26(03):68-72.
    [3]大川雄史,汤伟林.模具的深冷处理.模具技术, 1990,(01):82-86.
    [4]滑志高.液氮中冷速对P6M5钢残余奥氏体转变动力学的影响.工具技术, 1985,(02):45-47.
    [5]李智超,董允.回火后深冷处理试验.热加工工艺, 1989,(05):37-40.
    [6]刘亚俊,李勇,曾志新,李西兵.深冷处理提高YW1硬质合金刀片耐磨损性能的机理研究.工具技术, 2001,35(03):19-20.
    [7]黄根哲,郭宝莲. LD钢深冷处理的组织转变及疲劳断口.金属热处理, 1992,(01):27-31.
    [8]高华.金属模具的超零下温度处理.国外金属热处理, 1993,14(01):21-24.
    [9]汤光平,黄文荣.循环处理对铝合金力学性能和组织结构的影响.金属热处理, 1998,(05):36-38.
    [10] Li S, Deng L, Wu X, Wang H, Min Ya, Min N. Effect of deep cryogenic treatment on internalfriction behaviors of cold work die steel and their experimental explanation by coupling model. Mater Sci Eng, A. 2010,527(29-30):7950-7954.
    [11] Das D, Dutta AK, Ray KK. Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel. Cryogenics,2009,49(5):176-184.
    [12]潘健生.热处理信息化与制造业跨越式发展.江苏科技信息, 2004,(08):1-4.
    [13]赵祖德,王秋成,谢伟东,康凤,孟彬. 7A04铝合金构件深冷处理过程瞬态温度场的数值模拟.低温工程, 2007,(02):21-3+34.
    [14]付军,王秋成,胡晓冬. 7050铝合金板材深冷处理时温度场的数值模拟.低温与特气, 2005,(02):20-3+38.
    [15]赵祖德,王益嗣,王秋成,康凤.深冷处理消除7A04长条构件残余应力的建模与仿真.低温工程, 2008,(03):30-34.
    [16]王秋成,柯映林.深冷处理消除7050铝合金残余应力的研究.浙江大学学报(工学版),2003,37(06):120-123.
    [17]王秋成,付军,胡晓冬,王建国.深冷处理消除铝合金板材残余应力的建模与仿真.低温工程,2006,(02):45-49.
    [18]兰国生,闫献国,李淑娟.深冷处理刀具温度场的计算机模拟.机械工程与自动化, 2005,(06):50-52.
    [19]韩斌慧.丝锥深冷处理温度场的ANSYS模拟.现代制造工程, 2008,(04):58-9+75.
    [20]韩斌慧. M24丝锥淬火冷却以及深冷处理的计算机模拟.太原科技大学硕士论文, 2007.
    [21]李强.齿轮滚刀的深冷处理的计算机模拟.太原科技大学硕士论文,2009.
    [22]付军,王秋成,胡晓冬. 7050铝合金板材深冷处理时温度场的数值模拟.低温与特气, 2005,23(02):20-3+38.
    [23]林晓娉,董允,王亚红.高速钢深冷处理及其机理研究.金属热处理学报,1998,19(02):23-27.
    [24]钱士强,赵兴堂.冷挤压模具的深冷处理.上海金属,1996,(03):29-32.
    [25]钱士强,李曼萍,严敏杰. T8钢深冷处理后的马氏体形态和回火特性研究.热加工工艺,2001,(04):3-5+32.
    [26]段春争,王敏杰.高速钢循环深冷处理后的显微组织和力学性能.金属热处理, 2008,(03):90-93.
    [27]段春争,张鹏宇,李士燕.高速钢循环深冷处理工艺及机理研究.热加工工艺, 2008,(12):74-76.
    [28]董允,林晓娉,姜延飞.高速钢强韧化深冷处理研究.河北工业大学学报, 1998,(02):40-45.
    [29] Oppenkowski A, Weber S, Theisen W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J Mater Process Technol. 2010;210(14):1949-55.
    [30] Li S, Xie Y, Wu X. Hardness and toughness investigations of deep cryogenic treated cold work die steel. Cryogenics, 2010,50(2):89-92.
    [31] Das D, Dutta AK, Toppo V, Ray KK. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel. Mater Manuf Processes. 2007;22(4):474-80.
    [32] Mohan Lal D, Renganarayanan S, Kalanidhi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics, 2001,41(3):149-55.
    [33] Barron RF. Cryogenic treatment of metals to improve wear resistance. Cryogenics, 1982,22(8):409-413.
    [34] Das D, Dutta AK, Ray KK. Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel. Wear. 2009,267(9-10):1371-1380.
    [35] Meng F, Tagashira K, Azuma R, Sohma H. Role of eta-carbide precipitation's in the wear resistance improvements of Fe-12-Cr-Mo-V-1.4C tool steel by cryogenic treatment. Isij Int. 1994,34(2):205-210.
    [36] Bensely A, Senthilkumar D, Mohan Lal D, Nagarajan G, Rajadurai A. Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater Charact. 2007,58(5):485-491.
    [37] Bensely A, Shyamala L, Harish S, Mohan Lal D, Nagarajan G, Junik K, et al. Fatigue behaviour and fracture mechanism of cryogenically treated En 353 steel. Mater Design. 2009,30(8):2955-2962.
    [38] Li S, Min N, Deng L, Wu X, Min Ya, Wang H. Influence of deep cryogenic treatment on internal friction behavior in the process of tempering. Mater Sci Eng, A. 2011,528(3):1247-1250.
    ①波特DA,伊斯特林KE著.金属和合金中的相变.李长海等译.北京:冶金工业出版社,1988,408-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700