用户名: 密码: 验证码:
危险废物焚烧系统的数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展和工业化进程的加快,危险废物处置需求与处置能力不足间的矛盾日益突出。因焚烧法具有显著的减容、减重效果及无害化程度高等优点成为危险废物无害化处理的重要选择。由于我国对危险废物无害化处置起步较晚,缺乏有关集中焚烧处置设施建设后及设备更新改造后的运行和管理经验,大批处置设施的安全性和可靠性等方面问题逐渐凸显。因此,开展危险废物焚烧处置设施的运行及优化研究,确保其安全稳定运行,进而有效防止焚烧处置过程中的二次污染具有重要意义。基于此背景,本文以某30t/d规模焚烧处置设施为载体,采用数值模拟和现场试验相结合的方法,对危险废物焚烧系统的工艺设计和运行特性进行系统的研究,为危险废物的无害化处理和资源化应用提供有益参考。
     论文首先以某30t/d规模集中焚烧处置设施服务覆盖的区域为研究对象,分析了该区域典型可燃危险废物的基础特性,建立了该地区危险废物基础特性数据库。接着,在对典型危险废物焚烧工艺过程简化分析的基础上,利用化工流程模拟软件Aspen Plus建立了典型危险废物焚烧工艺过程模型。并以30t/d规模的回转窑结合二燃室焚烧系统实际操作和设计参数作为输入,研究了给料量、过量空气系数等参数对焚烧炉运行特性的影响。该模型不仅可用于危险废物焚烧系统设计中的质能平衡计算,还可用于预测非设计工况下运行参数对焚烧系统、余热利用及烟气净化系统运行特性的影响。然后,采用FLUENT对回转窑结合炉排三段焚烧系统燃烧过程进行模拟,侧重分析了危险废物在焚烧炉内的流动和燃烧过程,并研究了不同配风对焚烧特性的影响,对于深入理解危险废物多段焚烧特性具有重要参考价值。
     在对焚烧系统进行数值模拟的基础上,对上述30t/d规模的回转窑结合炉排焚烧系统的运行特性和污染物排放特性进行了工业试验研究。首先研究了给料速率和配风等主要参数对焚烧系统运行特性的影响。并对主要烟气组分进行了测定,重点分析了焚烧过程尾部烟道二恶英的生成及排放特性。接着对尾部烟道不同位置的飞灰进行了采样及特性分析;并研究了典型添加剂CaO和Si02以及气氛对焚烧飞灰熔融特性的影响;同时在自行设计建造的熔融试验台上对焚烧飞灰进行了熔融试验,研究分析了熔渣特性以及熔融过程中重金属的分布迁移规律,为后续飞灰熔融固化处理提供理论依据。
     此外,论文对采用流化床焚烧处理羊毛脂、丙烯酸等工业固废进行了探索性研究,为流化床协同处理固废的法规制定提供了参考和依据。主要内容包括:(1)在0.5MW流化床焚烧炉中对丙烯酸酯生产过程中产生的废料进行单烧以及与煤混烧的试验,试验表明混烧有利于炉膛的均匀稳定燃烧,流化床焚烧炉能够满足此类高挥发分废料的处理要求。(2)以生活垃圾和煤混烧的400t/d循环流化床垃圾焚烧锅炉为依托,对某大型生物医药公司的羊毛脂废料进行混烧的工业试验,了解混烧该废料对垃圾焚烧炉燃烧特性和污染物排放特性影响,证实了羊毛脂废料代替燃煤作为垃圾发电辅助燃料的可行性,具有重要的工程应用价值。
Together with the continuous industrialization and development of the economy, China is facing severe problems concerning hazardous waste (HW) treatment and disposal. Because of its advantage of significant volume/quantity reduction and high degree harmlessness, incineration has been one of the most essential methods for HW treatment. Due to the late start of HW treatment, the operation and management experiences of disposal facilities and equipment are lacking, and problems from security and reliability of facilities increase prominently recently in China. Therefore, it is of great significance to carry out an operation and optimization study to ensure the safe operation and management of HW disposal facilities, and thus to prevent the secondary pollution of incineration effectively. In order to provide a useful reference and supplement, the paper carried on study on HW incineration using the method with the numerical simulation and field experiment based on a30t/d HW incineration facility.
     Firstly, this paper started the study from the basic characteristics of typical combustible HW in a region covered by the30t/d HW incineration facility. Then, the database of basic characteristics was established. A typical incineration process model in Aspen Plus was proposed based on the simplified combustion mechanism analysis and verified by the industrial data. Then, the influences of chemical composition, flow rate of waste, excess air on operating characteristics of incineration system were investigated. The efficiency of the gas cleaning system and thermal utilization was also analyzed. The model can be a useful tool in both forecasting the operating parameters of HW incineration and in evaluating the efficiency of the gas cleaning system. Commercial CFD simulation software FLUENT was used to simulate the HW incineration process featuring a rotary kiln and grate furnace incinerator. The analysis focused on the flow field and combustion characteristic in the incinerator, and also the influence on different air supply.
     Experimental study was performed to investigate the operating characteristics and pollutant emission characteristics on the30t/d HW incineration system featuring a rotary kiln and grate furnace incinerator. The impacts of the feed rate of waste and excess air on the operating characteristic of incineration system were also studied. The dioxin concentrations in the flue gas were measured and analyzed in different locations and different operating conditions. The paper also analyzed the properties of fly ashes along the convection flue gas pass. The influences of typical additives CaO and SiO2as well as melting atmosphere on the properties of fly ashes were studied. The melting experimental study was performed to investigate the distribution and migration characteristics of heavy metals in the fly ashes, which would provide a theoretical basis for the melting and solidification treatment of fly ash.
     Incineration experiments on two types of typical HWs with high heating calories were investigated in fluidized bed incinerators.(1) In a0.5MW fluidized bed incinerator, the waste generated in the production of acrylic was burned singly, and co-firing experiment with the coal was also performed.(2) The feasibility study of utilizing lanolin waste as auxiliary fuel in a400t/d circulating fluidized bed municipal solid waste incinerator was performed. The combustion stability, combustion efficiency and pollutant emissions were investigated during the co-firing of the MSW, coal and lanolin waste. The study demonstrates the technical feasibility of lanolin waste as auxiliary fuel and CFB has a good adaptability for co-firing of MSW and lanolin waste, which has good economic and social benefits.
引文
[1]国家环境保护总局,国家质量监督检验检疫总局.危险废物鉴别标准.GB5085-2007[S].北京,2007
    [2]美国环保总署.RCRA Orientation Manual:Hazardous Waste Identification [M].2008.
    [3]王琪,段华波,黄启飞,.危险废物鉴别体系比较研究[J].环境科学与技术,2005,28(5):16-18.
    [4]宋小霞,郑洋,汪群慧,胡华龙,郭琳琳.日本危险废物统计制度的研究[J].环境科学与管理,2007,32(11):7-8.
    [5]中华人民共和国统计局. 中国统计年鉴[M].北京:中国统计出版社,2001-2009.
    [6]孙宁,吴舜泽,蒋国华.全国危险废物处置设施普查的分析和思考[J].有色冶金设计与研究,2007,28(23):8-17.
    [7]中华人民共和国国务院.医疗废物管理条例[M].2003.
    [8]姚薇,宋春光.我国医疗废物处理的现状及改进措施[J].中国环境管理干部学院学报,2010,20(6):63-65.
    [9]卫樱蕾,机械化学法降解POPs实验及机理研究[D];浙江大学,2010.
    [10]蔡同锋,张艳艳.危险废物处理技术进展及若干建议[J].污染防治技术,2010,23(2):48-51.
    [11]胡勇有,刘绮.有机废水及高浓度废水处理工艺技术与处理设备生产大全[M].广州:华南理工大学出版社,2011.
    [12]J. R. C. Chemical fixation and solidification of hazardous wastes. [M]. New York:Van Nostrand-Reinhold,1990.
    [13]GILLIAM T.M. W C C. Stabilization and solidification of hazardous, radioactive and mixed wastes; proceedings of the ASTM, Philadelphia, PA,1996 [C].
    [14]李国鼎主编.环境工程手册—固体废物污染防治卷[M].北京:高等教育出版社,2003.
    [15]李水清.固体废物热解制取洁净燃料和化学原料的基础研究[D];浙江大学,2002.
    [16]周庆荣.重庆长寿危险废物处置场工程关键技术研究[D];重庆大学,2005.
    [17]谢泽.利用可燃性危险废弃物作燃料生产水泥[J].水泥工程,2000,1(1):1-3.
    [18]D.A. TILLMAN A J R, K. M. VICK,. Rotary incineration systems for solid hazardous wastes [J]. Chemical engineering process,1990, 7(19-30.
    [19]朱江.典型危险废弃物的热处置基础研究[D];浙江大学,2005.
    [20]沈维民,贺新华,王赛辉,李文辉.我国危险废物焚烧处理中回转窖炉型的探讨[J].工业炉,2006,28(2):16-18.
    [21]蒋昌潭,杨三明,郑建军,张丹.危险废物焚烧中污染防治的过程控制[J].四川环境,2008,27(2):47-51.
    [22]李水清,池涌,李润东,马加德,严建华,岑可法.基于3T思想的城市垃圾回转窑焚烧系统的设计[J].动力工程,2002,22(5):1983-1989.
    [23]BEHMANESH N M V. Optimizing Throughput of Hazardous Waste Incineration [J]. AIChE,1990,36(11):1707-1714.
    [24]PERSHING D. W. L J S, ET AL. Solid waste incineration in rotary kilns [J]. Combustion Science Technology,1993,93(1):245-276.
    [25]OWENS W D, SILCOX G D, LIGHTY J S, et al. Thermal analysis of rotary kiln incineration:Comparison of theory and experiment [J]. Combustion and Flame,1991,86(1-2):101-114.
    [26]ROVAGLIO M,MANCA D, BIARDI G. Dynamic modeling of waste incineration plants with rotary kilns:comparisons between experimental and simulation data [J]. Chemical Engineering Science,1998,53(15): 2727-2742.
    [27]PARK S I, KYONG N H, PARK Y J, et al. Numerical simulation to control rotary-kiln incineration of municipal solid waste [J]. Energy, 1994,19(2):179-186.
    [28]ORLOFF K, FALK H. An international perspective on hazardous waste practices [J]. International Journal of Hygiene and Environmental Health,2003,206(4-5):291-302.
    [29]李穗中,匡胜利.危险废物回转窑焚烧系统的工艺设计[J].广州环境科学,1999,14(4):29-33.
    [30]王玉如,白广彬,白庆中.医疗废物热解特性及产物性质研究[D];清华大学,2007.
    [31]邓娜.医疗废物热解特性及动力学模型研究[D];天津大学,2005.
    [32]马洪亭.医疗废物热解特性实验研究[D];天津大学,2007.
    [33]黄本生.危险废物系统管理模式研究及应用[D];重庆大学,2004.
    [34]全翠,李爱民,高宁博.几种典型电子垃圾大物料量热重实验及机理研究[J].燃烧科学与技术,2010,16(1):45-50.
    [35]王晓峰.危险废物理化特性分析及其对废物焚烧的影响[D];同济大学,2006.
    [36]陶玲.油漆渣-焦油渣工业危险废物焚烧特性的研究[D];哈尔滨工业大学,2010.
    [37]杨雷.水泥工业处理含重金属的危险废物的技术研究[D];武汉理工大学,2007.
    [38].沈逍江.医疗废物回转窑热解焚烧处置研究[D];浙江大学,2005.
    [39]刘刚.典型危险废物回转窑热处置特性和技术研究[D];浙江大学,2006.
    [40]谭中欣.典型危险废弃物焚烧过程中无机污染物HCl和重金属的生成特性及其控制的机理研究[D];浙江大学,2006.
    [41]祝红梅.医疗废物中典型组分的热解焚烧特性及回转式流化冷渣三段焚烧系统的数值模拟[D];浙江大学,2009.
    [42]李春雨.典型危险废物在两段式回转窑焚烧系统内的热处置和结渣 特性研究及其应用[D];浙江大学,2011.
    [43]浙江省环保厅.2010年度浙江省环境状况公布[M].杭州.2011.
    [44]浙江省危险废物集中处置设施建设规划[M].2008.
    [45]顾建军,李凯,郑永征.交流电弧炉系统建模与仿真研究[J].冶金动力,2010,2):1-3.
    [46]邓晶,李要建,王蕊,田君国,徐永香,盛宏至.等离子体电弧炉内流动与传热数值模拟[J].工程热物理学报,2010,31(5):879-882.
    [47]曹学新,张宏伟.危险废物集中处置工程设计中值得关注的几个问题[J].有色冶金设计与研究,2007,28(2-3):30-34.
    [48]张益,赵由才.生活垃圾焚烧技术[M].化学工业出版社,2005.
    [49]赵由才.危险废物处理技术[M].化学工业出版社,2003.
    [50]吴桐.三燃式危险废物焚烧技术探讨[J].中国产业环保,2008,6):22-25.
    [51]AYKAN K. Health risk assessment of PCDD/F emissions from a hazardous and medical waste incinerator in Turkey [J]. Environment International,2004,30(8):1027-1038.
    [52]MARCIA B B. Trial burn activities for a mixed waste incinerator [J]. Waste Management,1998,18(6-8):467-471.
    [53]SCHUHMACHER M, DOMINGO J L, KIVIRANTA H, et al. Monitoring dioxins and furans in a population living near a hazardous waste incinerator:levels in breast milk [J]. Chemosphere,2004,57(1):43-49.
    [54]TIMMERMANS E A H, DE GROOTE F P J, JONKERS J, et al. Atomic emission spectroscopy for the on-line monitoring of incineration processes [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2003, 58(5):823-836.
    [55]YANG Y, REUTER M A, HARTMAN D T M. CFD Modelling for control of hazardous waste incinerator [J]. Control Engineering Practice,2003, 11(1):93-101.
    [56]YONGXIANG YANG M J A P, MARKUS A. REUTER & JOEP VERWOERD, Modeling the Combustion Behavior of Hazardous Waste in a Rotary Kiln Incinerator [J]. Journal of Environmental Science and Health,2005, 40(10):1823-1842.
    [57]REINHARDT T. R U, SUCHOMEL HORST H.. Hazardous waste incineration in context with carbon dioxide [J]. Waste Management and Research,2008,26(1):88-95.
    [58]SIGG A. Improve combustion control in Rotary Kiln incinerators [J]. Chemical Engineering Progress,1991,87(1):44-48.
    [59]刘朝阳. 回转窑式医疗废弃物焚烧处置系统开发与应用[J].工业锅炉,2007,1(2):8-12.
    [60]朱柱民. 回转窑焚烧技术在农药化工行业的应用[J].节能减排,2008,16(13):29-30.
    [61]国家环保总局.危险废物焚烧污染控制标准.GB18484-2001[S].北京,2001
    [62]国家环境保护总局. 危险废物集中焚烧处置工程建设技术规 范.HJ/T176-2005[S].北京,2005
    [63]陈曦,祁国恕,刘舒.危险废物焚烧处置设施性能测试技术研究[J].固废处置与处理,2009,35(3):27-30.
    [64]韩国梗伦工程(株).台州危废焚烧处理项目建设方案[M].2007.
    [65]刑杨荣.危险废物焚烧配伍与燃烧反应分析[J].环境工程,2008,26(203-204.
    [66]住房和城乡建设部.生活垃圾采样和分析方法.CJ/T 313-2009[S].北京,2009
    [67]肖丽.电化学再生活性炭机理和影响因素的研究[D];北京化工大学,2006.
    [68]臧建勇.甘氨酸生产中废活性炭的再生方法研究及工艺设计[D];重庆大学,2010.
    [69]李诗媛.高浓度有机废液在流化床中焚烧处理研究[D];哈尔滨工业大学,2006.
    [70]别如山,杨励丹,李季,陆惠林.国内外有机废液的处理技术[J].化工环保,1999,19(148-154.
    [71]梁恒国.超高浓度有机废水处理技术[J].建设科技,2004,14(50-51.
    [72]邹家庆.工业废水处理技术[M].化学工业出版社,2003.
    [73]YOUNG B E. Technico-economic evaluation of atmospheric fluidized bed combustion in steam production [D]; Queen's University, 1986.
    [74]PAFFENBARGER J. Analyse des Procedes a Lit Fluidise avec ASPEN et USRFBC [M]. CERCHAR, France,1991.
    [75]SOTUDEH-GHAREBAAGH R, LEGROS R, CHAOUKI J, et al. Simulation of circulating fluidized bed reactors using ASPEN PLUS [J]. Fuel,1998, 77(4):327-337.
    [76]CIMINI S, PRISCIANDARO M, BARBA D. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus [J]. Waste Management,2005,25(2):171-175.
    [77]JANNELLI E, MINUTILLO M. Simulation of the flue gas cleaning system of an RDF incineration power plant [J]. Waste Management,2007, 27(5):684-690.
    [78]GRIECO E, POGGIO A. Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant [J]. Applied Energy,2009,86(9):1517-1523.
    [79]霍小华.基于资源循环的城市生活垃圾和污水集成处理研究[D];华北电力大学,2010.
    [80]刘鹏远.城市废弃物循环流化床气化-焚烧技术研究[D];中国科学院,2007.
    [81]刘晓峰.以循环灰为热载体的垃圾热解焚烧技术研究[D];中国科学院,2007.
    [82]曹慎雪.基于AspenPlus的水泥预分解窑过程大气污染排放和能源利用分析[D];大连理工大学,2010.
    [83]YUN ZHANG S-X C, SHUAI SHAO, YU CHEN, SU-LING LIU AND SHU-SHEN ZHANG. Aspen Plus-based simulation of a cement calciner and optimization analysis of air pollutants emission [J]. Clean Technologies and Environmental Policy 2011,13(3):459-468.
    [84]徐松,王逊,田文栋.燃煤的垃圾焚烧飞灰熔融和余热发电系统研究[J].煤炭转化,2008,31(2):78-82.
    [85]陈翀.生活垃圾固定床热解气化特性的实验研究及其过程模拟[D];浙江大学,2011.
    [86]YANG W, NAM H-S, CHOI S. Improvement of operating conditions in waste incinerators using engineering tools [J]. Waste Management,2007, 27(5):604-613.
    [87]SAFFARZADEH A, SHIMAOKA T, MOTOMURA Y, et al. Petrogenetic characteristics of molten slag from the pyrolysis/melting treatment of MSW [J]. Waste Management,2009,29(3):1103-1113.
    [88]XIAO G, NI M-J, CHI Y, et al. Gasification characteristics of MSW and an ANN prediction model [J]. Waste Management,2009,29(1): 240-244.
    [89]傅维镳,张永廉,王清安.燃烧学[M].高等教育出版社,1989.
    [90]CHRISTOPHER B. LEGER V A C, ARTHUR M. STERLING. A three-dimensional detailed numerical model of a field-scale rotary kiln incinerator [J]. Environ Sci Technol,1993,27(677-690.
    [91]JAKWAY A L. Experimental and numerical-modeling studies of a field-scale hazardous waste rotary kiln incinerator [D]; Louisiana State University,1985.
    [92]ALLEN L. JAKWAY A M S. Three-Dimensional Numerical Modeling of a Field-Scale Rotary Kiln Incinerator [J]. Environ Sci Technol,1996, 30(1):1699-1712.
    [93]YONGXIANG YANG M A R, DERK T. M. HARTMAN. Modelling for control of hazardous waste incinerator [J]. Control Engineering Practice,2003, 11(93-101.
    [94]M. ROVAGLIO D M, G. BIARDI. Dynamic modeling of waste incineration plants with rotary kilns-- comparisons between experimental and simulation data [J]. Chemical engineering science,1998,53(15): 2727-2742.
    [95]JOHN M. VERANTH G D S, DAVID W. PERSHING. Numerical Modeling of the Temperature Distribution in a Commercial Hazardous Waste Slagging Rotary Kiln [J]. Environ Sci Technol,1997.,31(2534-2539.
    [96]K. WARDENIER E V D B. Steady-State Waste Combustion and Air Flow Optimization in a Field Scale Rotary Kiln [J]. Environmental Engineering Science,1997,14(1):43-55.
    [97]Y. Y. CHEN D J L. A Steady State Model of a Rotary Kiln Incinerator [J]. Hazardous Waste & Hazardous Materials,1994,11(4): 541-560.
    [98]MARIAS F. A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases [J]. Computers & Chemical Engineering,2003.27(1):813-825.
    [99]F. MARIAS H R, A. PICHAT. Modelling of a rotary kiln for the pyrolysis of aluminium waste [J]. Chemical Engineering Science,2005, 60(1):4609-4622.
    [100]陈思维.窑尾预分解系统冷模流场研究[D];武汉理工大学,2005.
    [101]冉景煜.固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验[D];重庆大学,2003.
    [102]X.L. HUAI W L X, Z. Y. QU.Z.G. LI.F.P. ZHANG,G.M. XIANG.S.Y ZHU,G. CHEN. Analysis and optimization of municipal solid waste combustion in a reciprocating incinerator [J]. Chemical Engineering Science,2008,63(12):3100-3113.
    [103]李相国,马保国,胡贞武等.分解炉内流动特性数值模型的探讨[J].水泥工程,2004,7(4-6.
    [104]李相国,马保国,王信刚等.喷腾分解炉内流场优化的数值仿真研究[J].水泥技术,2006,127(1):51-54.
    [105]李相国.预分解系统内流动燃烧与分解的研究及数值模拟[D];武汉理工大学,2006.
    [106]马爱纯,周孑民,李兴旺.混联法氧化铝生产中熟料窑节能降耗的研究[J].冶金能源,2003,22(2):7-10.
    [107]马爱纯,周孑民,孙志强,李兴旺.氧化铝熟料窑内一维传热模型[J].冶金能源,2004,23(1):23-26.
    [108]马爱纯.熟料窑内流动传热和煤粉燃烧的数值模拟和优化研究[D];中南大学,2007.
    [109]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [110]郑楚光,周向阳.湍流反应的PDF模拟(第二版) [M].武汉:华中科技大学出版社,2005.
    [111]CHENG P. Two-dimensional radiating gas flow by a moment method [J]. AIAA Journal 2,1964,1662-1664.
    [112]SIEGEL R, HoWELL, J. R. Thermal Radiation Heat Transfer [M]. Washington DC:Hemisphere Publishing Corporation,1992.
    [113]周力行. 多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    [114]王维.两相流数值模拟及其在循环流化床锅炉上的软件实现[D].北京;中科院工程过程研究所,2001.
    [115]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [116]王应时,范维澄,周力行等.燃烧过程数值计算[M].北京:科学出版社,1986.
    [117]岑可法,樊建人.工程气固多相流动的理论[M].杭州:浙江大学出版社,1989.
    [118]CHIESA M, ET AL. Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed [j]. Computers & Chemical Engineering,2005, 29(2):291-304.
    [119]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992.
    [120]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [121]周力行.燃烧理论和化学流体力学[M].北京:科学出版社,1986.
    [122]韩昭沧.燃料及燃烧[M].北京:冶金工业出版社,1994.
    [123]岑可法,姚强,骆仲泱,高翔.燃烧理论与污染控制[M].北京:机械工业出版社,2004.
    [124]岑可法,樊建人.燃烧流体力学[M].北京:水利水电出版社,1991.
    [125]ZHOU H. Numerical modeling of straw combustion in a fixed bed [J]. Fuel,2005,84(4):389-403.
    [126]SMOOT L D, PRATT, D. T. Pulverized-coal Combustion and Gasification [M]. New York:Plenum Press,1979.
    [127]THOMAS K, KLAUS, G. Numerical calculation and optimization of a large municipal solid waste incinerator plant. [J]. IFRF Combustion Journal,2002,1-18.
    [128]X. L. HUAI W L X, Z. Y. QU.Z. G. LI,F.P. ZHANG, G. M. XIANG.S. Y ZHU.G. CHEN. Numerical simulation of municipal solid waste combustion in a novel two-stage reciprocating incinerator [J]. Waste Management,2007, 28(1):15-29.
    [129]张东伟,杨红芬,高明智.危险废物回转窑焚烧系统工程概述[J].技术与工程应用,2010,10(56-58.
    [130]周庆荣.重庆长寿危险废物处置场工程关键技术研究[D];重庆大学,2005.
    [131]李惠中,匡胜利.危险废物回转窑焚烧系统的工艺设计[J].冶金环境保护,1999,5(114-118.
    [132]聂永丰.三废处理工程技术手册[M].北京:化学工业出版社2000.
    [133]国家环境保护总局.多氯代二苯并二嗯英和多氯代二苯并呋喃的测定同位素稀释高分辨毛细管气相色谱/高分辨质谱法.HJ77.2-200[S].2009
    [134]陈彤,李晓东,陆胜勇,谷月玲,严建华,岑可法.湿法除尘对垃圾焚烧炉中二恶英排放特性影响的试验研究[J].电站系统工程,2002,18(6):45-47.
    [135]国家环境保护总局.危险废物焚烧污染控制标准.GB18484-2001[S].北京,2001
    [136]OLIE K, VERMEULEN, P.L., HUTZINGER,0. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands [J]. Chemosphere,1977,6(455-459.
    [137]BLUMENSTOCK M, ZIMMERMANN, Z., SCHRAMM, K.W., KETTRUP, A. Influence of combustion conditions on the PCDD/F-, PCB-, PCBzand PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant. [J]. Chemosphere,2000,40(987-993.
    [138]BUSER H R. Formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs) from the pyrolysis of chlorobenzenes [J]. Chemosphere,1979,8(415-424.
    [139]GULLETT B K, BRUCE, K. R., BEACH, L.0. Formation of chlorinated organics during solid waste combustion [J]. WasteManage Res,1990,8(1): 203-214.
    [140]GULLETT B K, LEMIEUX, P.M., DUNN, J. E.,. Role of combustion and sorbent parameters in prevention of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran formation during waste combustion. [J]. Environ Sci Technol,1994,28(1):107-118.
    [141]TUPPURAINEN K, HALONEN, I., RUOKOJA " RVI, P., TARHANEN, J. RUUSKANEN, J.,. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibationmechanisms:a review. [J]. Chemosphere, 1998,36(1):1493-1511.
    [142]WEBER R, HAGENMAIER, H.,. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions. [J]. Chemosphere,1999,38(1):529-549.
    [143]TUPPURAINEN K A, RUOKOJA " RVI, P.H., AATAMILA, M., RUUSKANEN, J.,. Chlorophenols as precursors of PCDD/Fs in incineration processes: correlations, PLS modeling, and reaction mechanisms. [J]. Environ Sci Technol,2000,34(1):4958-4962.
    [144]冯斌,吴颖海,李锋,张玉华.城市垃圾焚烧与二恶英[J].能源研究与利用,2000,4):12-14.
    [145]ALTWICKER E R. Formation of PCDD/F in municipal solid waste incinerators:laboratory and modeling studies. [J]. J Hazard Mater,1996, 47(1):137-161.
    [146]XHROUET C, PIRARD, C., DE PAUW, E.,. De novo sythesis of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a sintering process. [J]. Environ Sci Technol,2001,35(1):1616-1623.
    [147]BORN J G P, MULDER, P., LOUW, R.,. Fly ash mediated reactions of phenol and monochlorophenols:oxychlorination, deep oxidation, and condensation. [J]. Environ Sci Technol,1993,27(1):1849-1863.
    [148]章骅,何品晶.城市生活垃圾焚烧灰渣及其性质分析[J].上海环境科学,2002,21(6):356-341.
    [149]CHANGHO CHO S L. Comparative study for the stabilization of heavy metals in the solid waste incineration ashes; proceedings of the ICIPEC, Jeju, Korea,2002 [C].
    [150]A. POLETTINI R P, P.SIRINI. F.TESTA. Properties of Portland cement-stabilised MSWI fly ashes [J]. Journal of Hazardous Materials, 2001, B88(123-138.
    [151]李延吉,李爱民等.城市固体废弃物无害化焚烧的探讨[J].沈阳航空工业学院学报,2002,19(3):67-70.
    [152]OLIE K V P, HUTZINGER 0. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace compounds of fly ash and flue gas of some municipal incinerators in the Nethrlands [J]. Chemosphere,1977,6(8): 445-459
    [153]FIEDLER H. Thermol formation of PCDD/PCDF:a survey [J]. Environmental Engineering Science,2000,40(1143-1147.
    [154]MOO-BEEN CHANG Y-T C. Dioxin contents in fly ashes of MSW incineration in Taiwan [J]. Chemosphere,1998,36(9):1959-1968.
    [155]MOO-BEEN CHANG Y-T C. Dioxin contents in fly ashes from large scale MSW incinerators in Taiwan [J]. Chemosphere,1999,39(15): 2671-2680.
    [156]MILLIGAN M S A E R. Mechanistic aspects of the de novo synthesis of PCDD/Fs in fly ash from experiments using isotopically labeled reagents [J]. Environmental Science & Technology,1995,29(1353^1358
    [157]GILLIAM T. M. W C C. Stabilization and solidification of hazardous, radioactive and mixed wastes; proceedings of the ASTM STP 1240, Philadelphia,1996 [C].
    [l58]J. R. C. Chemical fixation and solidification of hazardous wastes [M]. New York:Van Nostrand-Reinhold,1990.
    [159]ECKE H S H, MATSUTO T. State-of-art treatment processes for municipal solid waste incineration residues in Japan [JJ. Waste Management & Research,2000,18(1):41-51.
    [160]CHANDLER A J E T T, HARTLEN J. Municipal solid waste incinerator residues [M]. Elsevier Science B. V.,1997.
    [161]KNOX K. The future direction of hazardous waste management [J]. Waste Management,2002,9(18-21.
    [162]国家安全生产监督管理总局.粉尘物性试验方法.GB/T 16913-2008[S].2009
    [163]彭政.垃圾焚烧飞灰二嗯英的控制技术研究[D];浙江大学,2007.
    [164]CHAN C J C Q, GRAYDON J W,ET AL. The behavior of selectedheavy metal in MSW incineration electrostatic precipitator ashduring roasting with chlorination agents [J]. Journal of HazardousMaterials,1996,50(1): 1-13
    [165]CHRIS C. Y. CHAN D W K. Behavior of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents [J]. Journal of Hazardous Materials,1999,64(B):75-89.
    [166]CHRIS C. Y CHAN, DONALD W. KIRK, HILARY MARSH.. The behaviour of Al m MSW incinerator fly ash during thermal treatment [JJ. Journal of Hazardous Materials,2000,76(B):103-111.
    [167]李建新.垃圾焚烧过程重金属迁移机理及稳定化处理技术研究[D];浙江大学,2004.
    [168]陈彤,李晓东,,严建华,陆胜勇,金余其,岑可法.垃圾焚烧飞灰中二嗯英的分布特性[J].燃料化学学报,2004,32(1):59-64.
    [169]陆胜勇,吴海龙,李晓东,严建华.医疗垃圾焚烧炉回转窑转速与灰渣二恶英排放的关系[J].燃烧科学与技术,201 1,17(1):11-16.
    [170]CHANG M. B. L, C. H. Dioxin levels in the emissions from municipal waste incinerators in Taiwan [J]. Chemosphere,1998,36(11): 2483-2490.
    [171]国家环境保护总局.危险废物鉴别标准.6B5805.3-2007[S].2007
    [172]国家环境保护总局.固体废物浸出毒性浸出方法硫酸硝酸法.HJ/T299-2007[S].2007
    [173]全国煤炭标准化技术委员会. 煤灰熔融性的测定方法.GB/T219-2008[S].2008
    [174]陈德珍,张鹤声,龚佰勋.垃圾焚烧炉飞灰的低温玻璃固化初步研究[J].上海环境科学,2002,21(6):344-350.
    [175]PARK Y J, HEO J. Vitrification of fly ash from municipal solid waste incinerator [J]. Journal of Hazardous Materials,2002,91(1-3): 83-93.
    [176]田书磊,王琪,王伟.复合添加剂对垃圾焚烧飞灰熔融固化处理的影响[J].环境卫生工程,2009,17(3):1-3.
    [177]王学涛,焦有宙,金保升,徐斌,吴健.SiO_2添加剂对城市垃圾焚烧飞灰熔融特性的影响[J].电站系统工程,2007,23(5):18-21.
    [178]王学涛,金保升,仲兆平,党小剑.添加剂对垃圾焚烧炉飞灰熔融特性的影响[J].锅炉技术,2005,36(3):73-77.
    [179]姜永海,席北斗,李秀金,王琪,张晓萱,魏自民.添加剂对垃圾焚烧飞灰熔融特性的影响[J].环境科学,2006,27(11):2289-2293.
    [180]李润东.城市垃圾焚烧飞灰熔融过程的机理研究[D];浙江大学,2002.
    [181]岑可法,樊建人,池作和等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994.
    [182]李润东,池涌,李水清等.城市垃圾焚烧飞灰熔融DSC-DTA实验研究[J].环境科学,2002,23(4):113-117.
    [183]KIRK D W, CHAN C C Y, MARSH H. Chromium behavior during thermal treatment of MSW fly ash [J]. Journal of Hazardous Materials,2002,90(1): 39-49.
    [184]KUO Y-M, LIN T-C, TSAI P-J, et al. Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace [J]. Chemosphere,2003,51(4):313-319.
    [185]CHAN C, JIA C Q, GRAYDON J W, et al. The behaviour of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents [J]. Journal of Hazardous Materials, 1996,50(1):1-13.
    [186]TAKAOKA M, TAKEDA N, MIURA S. The behaviour of heavy metals and phosphorus in an ash melting process [J]. Water Science and Technology, 1997,36(11):275-282.
    [187]王学涛,金保升,仲兆平等.添加剂对焚烧飞灰旋风熔融过程中重金属固融率的影响[J].中国电机工程学报,2006,26(24):111-115.
    [188]KOBYASHI N, ITAYA Y, PIAO G, et al. The behavior of flue gas from RDF combustion in a fluidized bed [J]. Powder Technology,2005, 151(1-3):87-95.
    [189]GLENN A. NORTON K L M, EDWARD L. DEKALB. Chemical characterization of ash produced during combustion of refuse-derived fuel with coal [J]. Environ Sci Technol,1988,22(11):1279-1283.
    [190]LIU G-Q, ITAYA Y, YAMAZAKI R, et al. Fundamental study of the behavior of chlorine during the combustion of single RDF [J]. Waste Management,2001,21(5):427-433.
    [191]HELENA MANNINEN K P, JUHANI RUUSKANEN. Co-Combustion of Refuse-Derived and Packaging-Derived Fuels (Rdf and Pdf) With Conventional Fuels [J]. Waste Manag Res,1997,15(2):137-147.
    [192]CAPUTO A C, PALUMBO M, SCACCHIA F. Perspectives of RDF use in decentralized areas:comparing power and co-generation solutions [J]. Applied Thermal Engineering,2004,24(14-15):2171-2187.
    [193]曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究[D];浙江大学,2005.
    [194]严建华.煤在流化床中燃烧特性的研究[D];浙江大学,1990.
    [195]BASU P. Combustion of coal in circulating fluidized-bed boilers:a review [J]. Chemical Engineering Science,1999,54(22): 5547-5557.
    [196]李现勇,肖汉云,蔡睿贤.城市垃圾处理的能源化技术分析[J].动力工程,2003,23(1):2196-2200.
    [197]杜军,王怀彬,金宵.国内外垃圾焚烧炉技术概述[J].工业锅炉,2003,5(15-19.
    [198]REIJNDERS L. Disposal uses and treatments of combustion ashes: a review [J]. Resource, Conservation and Recycling,2005,43(313-336.
    [199]SMOOT L D. A decade of combustion research [J]. Progress in Energy and Combustion Science,1997,23(203-232.
    [200]聂永丰,刘富强,王进军.我国城市垃圾焚烧技术发展方向探讨[J].环境科学研究,2000,13(3):20-23.
    [201]国家环境保护总局. 危险废物集中焚烧处置工程建设技术规范.HJ/T 176-2005[S].2005
    [202]徐飞,骆仲泱,王鹏.440t/h循环流化床锅炉颗粒物排放特性的实验研究[J].中国电机工程学报,2007,27(29):7-11.
    [203]高洪培,刘家磊.循环流化床燃烧中NO-x及SO-2排放特性试验研究[J].洁净煤技术,2002,8(4):32-34.
    [204]任维.焦炭流化床燃烧条件下氧化亚氮生成机理的实验研究[D];清华大学,2003.
    [205]TAO L, ZHAO G-B, QIAN J, et al. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag [J]. Journal of Hazardous Materials,2010,175(1-3):754-761.
    [206]JIANG X, LI C, CHI Y, et al. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion [J]. Journal of Hazardous Materials,2010,173(1-3):205-210.
    [207]董长青,金保升,仲兆平,等.城市生活垃圾(MSW)与煤流化床混烧过程中气体污染物的排放[J].热能动力工程,2001,16(6):586-590.
    [208]LI Y H, LU G Q, RUDOLPH V. The kinetics of NO and N20 reduction over coal chars in fluidised-bed combustion [J]. Chemical Engineering Science,1998,53(1):1-26.
    [209]SHAKTI GOEL A M A A F S. Factors Influencing the Time-Resolved Evolution of NO, HCN, and N20 during Char Oxidation at Fluidized Bed Conditions [J]. Energy Fuels,2002,16(4):823-830.
    [210]吕清刚,雍玉梅,那永洁等.循环流化床燃煤锅炉的S02和NOx排放的试验和数值计算[J].中国电机工程学报,2005,25(1):142-146.
    [211]张东平,李晓东,严建华等.垃圾在流化床中焚烧N0排放特性研究[J].燃料化学学报,2003,31(4):322-327.
    [212]王勤辉,骆仲泱,李绚天等.循环流化床锅炉脱硫的工业试验及模型预测[J].中国电机工程学报,1999,19(2):5-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700