用户名: 密码: 验证码:
微波管电子光学系统数值模拟及CAD技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波管是现代通讯器件的核心部件,其中电子光学系统主要用于产生、聚焦、维持和收集电子。电子光学系统由电子枪、磁系统和收集极组成,涉及电磁学、阴极电子学、材料学、机械加工等诸多领域,且设计和制造过程相当复杂,研制周期很长。随着计算机的应用和发展,模拟计算已成为一种高效的研究手段,可以有效地提高设计效率并节约开销。所以,微波管电子光学系统计算机辅助设计是改进和优化微波管电子光学系统的重要手段。
     本论文对微波管电子光学理论进行了详细的研究,详尽分析了电子的发射机制、电磁场的求解以及电子在电磁场中的运动,考虑了电子的热发射和二次发射、空间电荷效应和相对论效应等因素的影响。同时对数值模拟理论也进行了深入的分析,分别讨论了有限差分法和有限元法如何应用到微波管的电子光学系统模拟中,比较了有限元法中线性插值和二次插值的不同。另外,为了分析器件的瞬时效应引入了时域计算,为了提高计算速度提出了三维局部对称计算技术。
     本论文延续了总装备部军事电子预研“九五”重点项目“宽带大功率行波管×××研究”的工作,得到了总装备部军事电子预研“十五”重点项目“微波管×××研究”和总装备部军事电子预研“十一五”重点项目“微波管×××研究”的资助。通过对微波管电子光学系统理论和数值模拟方法的研究,采用面向对象的软件设计思路,完成了二维有限差分模拟软件:电子枪模拟软件(UESTC_Gun)、周期永磁聚焦系统模拟软件(UESTC_PPM)和多级降压收集极模拟软件(UESTC_MDC),完成了二维和三维的有限元模拟软件:电子光学系统模拟器(EOS)和磁场模拟器(MFS)。主要用于模拟轴对称电子枪、栅控电子枪、多注电子枪、轴对称和非轴对称降压收集极、周期永磁聚焦系统等。经过大量的模拟计算和实验证明,这些软件具有较高的精度,能够满足工程设计的需要。目前,这些模拟软件已经广泛用于微波管模拟和设计中。
Microwave tube (MWT) is a core component of the modern communication devices. The electron optics system of the MWT is composed of the electron gun, the magnetic system and the collector. It is mainly used to generate, focus, maintain and collect electrons. The research of the electron optics system of the MWTs needs the knowledge of electromagnetics, cathode electronics, materials, mechanical processing and many other fields. The design and machining are very complex. So usually the whole period is long. Simulation has become an efficient virtual experimental tool that can effectively improve the design efficiency and save costs with the computer application and development. Therefore, the computer-aided design (CAD) is an important means to improve and optimize microwave tubes.
     In this paper, the electron optics theory of microwave tubes is carried out a detailed study. The electron emission mechanism, the solution of electromagnetic field and the movement of electrons in electromagnetic field are analyzed. The thermal emission and secondary emission, space charge effect and the relativistic effects and other factors are taken into account. The theory of numerical simulation is also studied. And the finite difference method and the finite element method are employed in the simulation of the electron optics system. The linear interpolation and the quadratic interpolation in the finite element method are compared. In order to analyze the time-varying effects, a time-domain electrostatic PIC algorithm is studied. The symmetric computation algorithm is applied to reduce the computational time and the computer memory consumption.
     This work is the continuation of the“9-5 Plan”pre-study project. And it is supported by the“10-5 Plan”pre-study project and the“11-5 Plan”pre-study project. By the study of the electron optics system theory and the numerical simulation methods, using the object-oriented software design ideas, the two-dimensional finite difference simulation software is completed. It includes the electron gun simulation code (UESTC_Gun), the periodic permanent magnetic focusing system simulation code (UESTC_PPM), and the multistage depressed collector simulation code (UESTC_MDC). And we have realized the two-dimensional and three-dimensional finite element software which is composed of the electron optics simulator (EOS) and the magnetic field simulator (MFS). All the codes are designed to model the axisymmetric electron gun, the gridded gun, the multi-beam gun, the multistage depressed collector, the periodic permanent magnetic focusing system and so on. Large amount of the simulation results have been compared with the experiment results. The accuracy of these codes is good enough to be used in the design and optimization of MWTs to satisfy the requirements of the engineering design.
引文
[1] R.Kompfner. The traveling wave vale. Wireless Word, 1946, 53(11): 369-372
    [2] R.Kompfner. The traveling wave tube as an amplifier at microwaves. Proc. IRE, 1947, 35(2): 124-127
    [3] R.Kompfner. The traveling wave tube. Wireless Engineer, 1947, 52(9): 255-266
    [4] R.Kompfner. On the operation of the traveling wave tube at low level. British Institute of Radio Engineers, August-September 1950, (8-9): 283-289
    [5] R.Kompfner. The invention of the traveling wave tube. Form a lecture series at the University of California at Berkeley, Published by San Francisco Press, 1963
    [6] R.H.Abram, A.A.Mondeli and R.K.Parker. Vacuum Electronics for the 21st Century. IEEE Microwave Magazine, 2001, 2 (3): 61-72
    [7] R.K.Parker and C.M.Armstrong. Vacuum Electronics at the Dawn of the Twenty-First Century. 1999, 87( 5): 702-716
    [8]廖复疆.大功率微波电子注器件及其发展.真空电子技术,1999, (4): 1-14
    [9]廖复疆.大功率微波管—21世纪军事电子装备的关键器件.中国电子学会真空电子学分会第十届年会论文集(上册),1995,1-7
    [10]邬显平.世纪之交的微波电真空器件.真空电子技术,2003,(1): 1-7
    [11]廖复疆.真空电子技术—信息装备的心脏.北京:国防工业出版社,1999
    [12] Stratton J A.电磁理论(何国瑜).北京:北京航空学院出版社,1986
    [13] Collin R E.导波场论(侯元庆).上海:上海科学技术出版社,1966
    [14] Harrington R F.正弦电磁场(孟侃).上海:上海科学技术出版社,1964
    [15] T.M. Antonson, A.A. Mondelli, B.Levush, et al. Advances in modeling and simulation of vacuum electronic devices. Proc IEEE, 1999, 87 (5): 804-839
    [16] Harrington R F.计算电磁场的矩量法.(王尔杰).北京:国防工业出版社,1981
    [17]王长清.现代计算电磁学基础.北京:北京大学出版社,2005
    [18]王秉中.计算电磁学.北京:科学出版社,2005
    [19]吕英华.计算电磁学的数值方法.北京:清华大学出版社,2006
    [20]姚寿广.边界元数值方法及其工程应用.北京:国防工业出版社,1995
    [21]金建明(美).电磁场有限元方法(王建国).西安:西安电子科技大学出版社,1998
    [22] Yee K S. Transactions on antennas and propagation. IEEE, 1966, 14(4):302-307
    [23] Taflove A, Umashankar K R. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section. Proceedings of the IEEE, 1989, 77(5): 682-698
    [24] Choi D H, Hoefer W J R. The Finite- Difference Time-Domain Method and its Application to Eigenvalue Problems. IEEE Trans. on Microwave Theory Tech, 1986, 34(12):1464-1470
    [25] http://www.mrcwdc.com
    [26]冷纪桐,赵军,张娅.有限元技术基础.北京:化学工业出版社,2007
    [27]刘扬,刘巨保,罗敏.有限元分析及应用.北京:中国电力出版社,2008
    [28] http://www.ansys.com
    [29] Kobelansky A J, Webb J P. Eliminating spurious modes in finite-element waveguides problems by using divergence-free fields. Electron Lett., 1986, 22(11):569-570
    [30] Webb J P. Efficient generation of divergence-free fields for the finite element analysis of 3D cavity resonances. IEEE Trans. Magnetics, 1988, 24(1):162-165
    [31] Rahman, B M, Fernandez F A, Davies J B. et al. Reviews of finite element methods for microwave and optical waveguides. Proceedings of the IEEE, 1991, 79(10):1442-1448
    [32] Mackerle, J, Brebbia C A. The boundary element reference book. Computational Mechanics Pub, 1988
    [33] T.Weiland. On the unique numerical solution of maxwellian eigenvalue problems in three dimensions. Particle Accelerators, 1985, 17:227-242
    [34] T. Weiland. On the numerical solution of maxwell’s equations and applications in the field of accelerator physics. Particle Accelerators, 1984, l5: 245-292
    [35] M.Bartsch, M.Dehler, M.Dohlus, et al. Solution of maxwell’s equations. Computer Physics Communications 72, 1992, 22-39
    [36] T. Weiland. A discretization method for the solution of maxwell’s equations for six-component fields. Electronics and Communication (AEU), 1977, 31: 116-120
    [37] M. Clemens and T. Weiland. Transent Eddy-Current Calculation with the FI-Method. IEEE Trans. Magnetics, 1999, 35 (3): 1163-1166
    [38] http://www.cts.de
    [39] R.T. Benton, et al. First pass TWT design success. IEEE Trans. on Electron Devices, 2001, 48(1):176-178
    [40] W. B. Herrmannsfeldt. EGUN-an electron optics and gun design program. SLAC, Stanford, CA, Oct. 1988:331
    [41] True R. The deformable relaxation meshes technique for solution of electron optics problems. 1975 Int. Electron Devices Meeting. 1975, 257-260
    [42] True R. Beam optics calculations in very high power microwave tubes. 1991 Int. Electron Devices Meeting. 1991, 403-406
    [43] N. Dionne, R. Harper, and H.–J. Krahn. Three-dimensional simulation of gridded TWT guns. Int. Electron devices Meeting, Washington, DC, Dec. 1980, (12):20.3.3
    [44] S. Humphries. TRAK-charged particle tracking in electric and magnetic fields. Computational Accelerator Physics, R. Ryne, Ed. New York: AIP, 1994:597
    [45]胡权,杨中海,黄桃,等. TWTCAD电子枪CAD设计与实现.第十五届中国电子学真空电子学分会,2005, (9):316-319
    [46]黄桃,杨中海,胡权,等. TWTCAD磁系统CAD设计与实现.第十五届中国电子学会真空电子学分会, 2005, (9):324-327
    [47]胡权,黄桃,杨中海,等.行波管周期永磁聚焦系统模拟软件的研制.强激光与离子束, 2008, 20(2):268-272
    [48]黄桃,杨中海,胡权,等. TWTCAD多级降压收集极CAD设计与实现.第十五届中国电子学会真空电子学分会, 2005, 9:320-323
    [49]黄桃,杨中海,李斌,等.行波管多级降压收集极CAD软件研究与实现.电子与信息学报. 2007, 29(8): 2029-2032
    [50] T. Huang, Z. H. Yang, B. Li, et al. Development of a 2D multistage depressed collector code for TWT. 2006 Int. Vacuum Electronics Conf. (IVEC2006), 2006, 361-362
    [51] J. Petillo, K. Eppley, D. Panagos, et al. The MICHELLE 3D electron gun and collector modeling tool: theory and design. IEEE Trans. Plasma Science, 2002, 30(3):1238-1264
    [52] J. Petillo, E. M. Nelson, J. F. DeFord, et al. Recent developments in the MICHELLE 2D/3D electron gun and collector modeling code. IEEE Trans. Electron Device, 2005, 52(5):742-748
    [53] L. Ives et al. Development of 3-D finite element charged-particle code with adaptive meshing. Particle Accelerator Conf., Portland, OR, May, 12-16, 2003:3560-3562
    [54] S. Coco et al. COCA: A novel 3-D FE simulator for the design of TWTs multistage collectors. IEEE Trans. Electron Devices, 2001, 48(1): 24-31
    [55] OPERA-3D user guide. Feb. 2004
    [56] T. Huang, Q. Hu, Z. H. Yang, et al. Electron Optics Simulator: A three-dimensional finite-element electron gun and collector design tool. IEEE Trans. Electron Devices, 2009,56(1): 140-148
    [57] http://www.cst.com
    [58]杨中海.宽带大功率行波管CAD集成系统.总体方案论证报告, 1995, 1-3
    [59]杨中海.宽带大功率行波管CAD集成系统. GF报告, 1999, 1-3
    [60]杨中海,莫元龙.宽带大功率行波管CAD集成环境.电子科学技术评论, 1999, 4(39):15-16
    [61]朱小芳,杨中海,廖莉,等.TWTCAD高频系统CAD设计与实现.2005年中国电子学会真空电子学分会第15界学术年会暨军用微波管研讨会, 328-331
    [62]李斌,杨中海,李健清,等.TWTCAD注波互作用CAD设计与实现.2005年中国电子学会真空电子学分会第15界学术年会暨军用微波管研讨会, 332-335
    [63]肖礼,杨中海,廖莉,等.TWTCAD数据库CAD设计与实现.2005年中国电子学会真空电子学分会第15界学术年会暨军用微波管研讨会, 336-339
    [64]杨中海,黄桃,李斌,等.行波管电子光学系统CAD技术进展.真空电子技术, 2004, 3:12-15
    [65] B. Li, Z. H. Yang, J. Q. Li, et al. Recent developments to TWTCAD Integrated Framework. 2006 Int. Vacuum Electronics Conf. (IVEC2006), 2006, 293-294
    [66] B. Li, Z. H. Yang, J. Q. Li, et al. Recent advances of microwave tube simulator suite. 2008 Int. Vacuum Electronics Conf. (IVEC2008), 2008, 229-230
    [67] Bin Li, Zhong Hai Yang, Jian Qing Li, Xiao Fang Zhu, Tao Huang,Quan Hu, et al. Theory and Design of Microwave Tube Simulator Suite. IEEE Trans. Electron Devices, 2009, 56(1): 919-927
    [68] T. Huang, Q. Hu, Z. H. Yang et al. Microwave tube simulator suite-part II: electron optics simulator. 2007 Int. Vacuum Electronics Conf. (IVEC2007), 2007, 385-386
    [69]赵玉清.电子束离子束技术.西安:西安交通大学出版社, 2002:180-183
    [70]傅慈海,杨英杰.物理电子技术原理.广州:华南理工大学出版社, 1991:第3-第4章
    [71]贺庆,寇建勇,孙瑜,等.多级降压收集极中次级电子的研究.真空电子技术, 2004, (1)25-27. (He Q, Kou J Y, Sun Y, et al. Study on secondary electron in multistage depressed collector. Vacuum Electronics, 2004, 1:25-27)
    [72] Vaughan J R M. A new formula for secondary emission yield. IEEE Trans. on ED, 1989, 36(9):1963-1967
    [73] Vaughan J R M. Secondary emission formulas. IEEE Trans. on ED, 1993, 40(4):830
    [74] Valfells A, Singh A, Kolander M J, et al. Advancements in codes for computer aided designof depressed collectors and tracing of backscattered electrons - part 2: improvements in modeling of the physics of secondary electron emission and backscattering. IEEE Trans. on PS. 2002, 30(3):1271-1275
    [75] Reimer L. Scanning electron microscopy, physics of image formation and microanalysis. Germany:Springer-Verlag, 1985, 45:135-169
    [76] Werner U, Bethge H, Heydenreich J. An analytic model of electron backscattering for the energy range of 10-100keV. Ultramicroscopy, 1982, 8:417-428
    [77]电子管设计手册编辑委员会.强流电子枪优选系列.北京:国防工业出版社,1979
    [78] P. P. Silvester and R. L. Ferrari. Finite elements for electrical engineers (2nd edition). Cambridge: Cambridge University Press, 1990
    [79] O. C. Zienkiewicz and R. L. Taylor. The finite element methode (4th edition). Vol.1: Basic Formulation and Linear Problems. New York: McGraw-Hill, 1989
    [80]王勖成,邵敏.有限单元基本原理与数值方法.北京:清华大学出版社,1988
    [81]刘长学.超大规模稀疏矩阵计算方法.上海:上海科学技术出版社, 1991
    [82]丁丽娟.数值计算方法.北京:北京理工大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700