用户名: 密码: 验证码:
垃圾焚烧飞灰熔融分离过程烟气中重金属迁移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾焚烧处理能有效实现垃圾的减量及资源化利用,降低垃圾对环境的危害,是目前国内外垃圾处理的主要方法之一。垃圾焚烧所产生的飞灰中含有浸出浓度超出固体废物浸出毒性鉴别标准的重金属等物质,若不经有效处置,会带来严重的环境污染。本文针对垃圾焚烧飞灰重金属污染问题,以重庆市同兴垃圾焚烧厂飞灰为研究对象,对垃圾焚烧飞灰理化性质、高温熔融分离工艺、重金属在烟气中迁移规律等进行了实验研究。结果表明:
     垃圾焚烧飞灰密度为0.6723 g/cm3,粒径分布较均匀,颗粒表面粗糙;平均热灼减率达9.185%;飞灰中各元素主要以氧化物形式存在,主要氧化物有:CaO(23.79%)、SiO2(15.24%),其次为:Al2O3、Na2O、K2O、Fe2O3、MgO。飞灰浸出毒性试验表明,飞灰的中锌、铅、镉、铬等浸出浓度均高于固体废物浸出毒性鉴别标准。
     采用高温熔融分离,袋式除尘法收集处理熔融烟气的工艺方法,结合热力学模拟计算分析,研究了焚烧垃圾飞灰高温熔融分离过程中重金属在烟气中的迁移分布规律。熔融分离的适宜工艺条件为:温度1350℃、碱度1.1、熔融时间25min左右。
     高温熔融分离过程中,迁移到烟气中的主要元素为Zn、Pb、Cl、K、Na,其中ZnS、ZnO、PbCl2、KCl、NaCl等占90%左右。其他元素Mn、Cu、Cd、Ba、As、Hg、Ti、Cr在烟气中为微量。Hg主要以氯氧化物、硫氯化物形态存在,可通过冷凝收集全部分离。
     采用铁浴进行熔融分离时, Cr、Mn、Fe、Cu等高沸点元素主要分配在铁相中,其中Mn、Fe进入铁相达到90%以上, Cr、Cu约70%进入铁相中。
     Pb、Zn的挥发率较高,在本实验条件下,熔融20分钟后,进入烟气中的Pb、Zn分别为80%、70%左右,随熔融温度、碱度增加而上升,几乎不随熔融时间发生变化;Cr的挥发率非常低,随熔融时间增加而降低。
The incineration technology has become the most popular treatment for municipal solid wastes (MSW), for it can minimize the weight and volume of solid wastes, utilize the energy released by combustion and reduce the harmfulness. However, the incineration residues and fly ash contain considerable amounts of various heavy metals , such as Cd、Pb、Cu、Zn、Cr and so on, which would bring serious environmental pollution if without effective treatment before emission. Thus the fly ash melting treatment is proposed to solve this problem.
     The properties of municipal solid wastes incineration fly ash (MSWI) produced by Tongxing MSW incineration plant in Chongqing was studied by experiment, and the results show that: the average density of MSWI fly ash is 0.6723g/cm3, and its particle size is well-distributed. The MSWI fly ash has a complex composition, with CaO、SiO2 as the major constituents , separately accounting for 23.79% and 15.24% , and Al2O3、Na2O、K2O、Fe2O3、MgO as the secondary constituents. Through the heavy-metal leaching characteristic experiment, it is found that the concentration of Zn、Pb、Cd and Cr in MSWI fly ash exceed Solid Waste Leaching Character Standard. Effective treatment should be taken for MSWI fly ash.
     Combined with thermodynamic analysis, melting experiment was taken to study the migration of heavy metals in MSWI fly ash melting process, and fabric filter bag was applied to collect melting fly ash(MFA). The optimal melting condition was abtained: temperature for 1350℃, bisicity of 1.5, and melting period 25min. The main elements of MFA are Zn、Pb、S、Cl、K. And KCl、NaCl、ZnS、ZnO、PbCl2 constitude MFA for about 90%. Mn、Cu、Cd、Ba、As、Hg、Ti、Cr are trace elements. Hg exists with its oxychloride and sulfo-chlorinated state, and can be all collectd by condensing.
     The iron bath melting system can create a reducible atmosphere, which could accelerate Cr、Mn、Fe、Cu distribute out from residues into iron phase. The proportion of Mn、Fe distributing in iron phase is beyond 90%, and about 70% of Cr、Cu distribute in iron phase.
     The evaporation rate of Pb, Zn is separately high to about 80% and 70%, under experimental condition after 25min, and is affected by basicity and melting temperature obviously, increasing both with the increasing bisicity and the increasing melting temperature, but merely changing with melting period. The evaporation rate of Cr is very low, decreasing with the rising period.
引文
[1] C S Kerby, J D Rimstidt. Minelogy and surface properties of municipal solid waste ash [J]. Environmental science & Technology, 1998, 27(4):652-660.
    [2]赵建林.城市生活垃圾处理技术初探[J].工业安全与环保, 2003,29(10):28-30.
    [3]韩怀芬.适合我国国情的城市生活垃圾处理方法[J].环境污染与防治,2000,22(6):40-41.
    [4]王雷.城市垃圾焚烧飞灰熔融处理实验研究[D],杭州:浙江大学, 2003.
    [5]张瑞娜,赵由才,许实等.生活垃圾焚烧飞灰的处理处置方法[J].苏州科技学院学报(工程技术版), 2003, 16(3): 28-35.
    [6]李润东.城市垃圾焚烧飞灰熔融处理实验研究[D],杭州:浙江大学, 2002.
    [7] A.Polettini,et al.Properties of Portland cement-stabilized MSWI fly ashes[J]. Hazardous Materials,2001,88(1):123.
    [8] Qian Jueshi Shi, Caijun, Wang Zhi. Activation of blended cements containing fly ash [J]. Cement and Concrete Research, 2001, 31:1121-1127.
    [9] T. Mangialardi,Sintering of MSW fly ash for reuse as a concrete aggregate[J].Hazardous Materials.2001,87(1-3).225-239.
    [10] Wey M.Y,Su J. L.,Yan M. H.et al. The concentration distribution of heavy metal under different incineration conditions[J]. The Science of Total Environment,1998,212:183-193.
    [11] ASTM C191-92, 04.01, 1995, pp. 158-160.
    [12] M Ishida. The demonstration test of burner type ssh melting system[J]. The Hitachi Zosen Technical Review ,1995,56(2): 57-62.
    [13] S.Sakai, S.Urano, H.Takatsuki. Leaching behavior of PCBs and PCDDs/DFs from some waste materials[J].Waste Management,2000,20:241-247.
    [14]王学涛,金保升,仲兆平.垃圾焚烧炉飞灰熔融特性及重金属的分布[J].燃料化学学报,2005,33(2): 194-198.
    [15] M.Takaoka., N.Takeda ,S.Miura .The behavior of heavy metals and phosphorus in an ash melting Process [J].Wat Sci Tech,1997,36(11):275-282.
    [16]阎常峰,林伯川,陈恩鉴等.垃圾焚烧灰渣的成分分析及其熔融特性[J].热能动力工程, 2002,17(7): 69-72.
    [17]姜永海.焚烧飞灰熔融过程特性及添加剂的研究[D].北京:北京化工大学, 2005.
    [18] D W Kirk, C C Y Chan, H Marsh. Chromium behavior during thermal treatment of MSW fly ash[J] . Journal of Hazardous Materials, 2002,90(B):39-49.
    [19]陈德珍,张鹤声.垃圾焚烧炉飞灰的低温玻璃化初步研究[J].上海环境科学,2002,21(6):344-349.
    [20] Wang Kuen-Sheng, Chiang Kung-Yuh, Tsai Chin-Chang, et al. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr and Zn in a simulated multimetal incineration system[J]. Environment International, 2001, (26):257 -263.
    [21]李润东,池涌,王雷等.城市垃圾焚烧飞灰熔融动力学研究[J].浙江大学学报(工学版), 2002,23(4):498-503.
    [22]罗春晖,刘振鸿,何深.城市生活垃圾焚烧飞灰的稳定化技术[J].东华大学学报(自然科学版), 2004,30(2): 133-136.
    [23]崔德斌,陈天军,朱利钧.生活垃圾焚烧中灰渣热灼减率的控制[J].发电设备, 2004, 3:157-158.
    [24]钱光人,危险废物管理[M].化学工业出版社, 2004.
    [25]杨福云.城市垃圾焚烧飞灰金属元素熔融分离研究[D].重庆:重庆大学, 2005.
    [26]罗宇.垃圾焚烧系统中重金属的分配及处理研究[D].重庆:重庆大学, 2004.
    [27]张衍国,武俊,李清海等.垃圾焚烧重金属迁移特性及其影响因素[J].环境污染治理技术与设备, 2005, 6(12): 6-13.
    [28]黄木生,刘清才,王里奥.垃圾焚烧飞灰综合利用研究进展[J].环境污染治理技术与设备, 2003,4(9): 14-17.
    [29]王陆军,金明吉,福田太平等.城市固体废物焚烧炉飞灰中重金属酸溶出研究[J].西南师范大学学报(自然科学版),2006,6(31):90-94.
    [30]谢涛,黄泳彤,徐旸.用ICS-MS法测定卷烟烟气中的重金属元素[J].烟草科技/烟草检验, 2003(1):27-29.
    [31]胡建杭.城市生活垃圾直接气化熔融焚烧技术的试验研究[D].昆明:昆明理工大学,2003.
    [32]朱红兵.城市生活垃圾无害化处理工艺[J].环境科学与技术, 2002 ,25 (5):8-10.
    [33]罗春晖.新型重金属固定剂处理垃圾焚烧飞灰[J].化工新型材料, 2003, 31(12):42-43.
    [34]刘晶,郑楚光,陆继东.烟气中重金属浓度的在线测量[J].化工学报, 2006,57(9): 2185-2188.
    [35]张若冰.垃圾焚烧过程中典型重金属污染物的分布特性研究[D].杭州:浙江大学, 2002.
    [36]吴桢芬.气氛对城市生活垃圾焚烧过程及重金属行为的影响研究[D].昆明:昆明理工大学,2000.
    [37]王伟,万晓.垃圾焚烧飞灰中重金属的存在方式及形成机理[J].城市环境与城市生态, 2003(16):7-9.
    [38]朱文俐,池涌,肖刚等.灰渣熔融处理技术及在城市生活垃圾气化熔融系统中的应用[J].科技通报, 2007,23(2): 282-288.
    [39]祁争健,王瑞,王宏义.原子吸收光谱法测定香烟烟气中重金属的含量[J].分析测试学报,2004, 23(4): 107-111.
    [40]陈勇,张衍国,李清海等.垃圾焚烧中硫化合物对Cd、Pb迁移和转化的影响[J].清华大学学报,2008,48,(2): 232-235.
    [41] H.Ecke, H.Sakanakura, T.Matsuto, et al. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan[J]. 2000,18:41-51.
    [42]章骅,何晶晶.城市生活垃圾焚烧灰渣及其性质分析[J].上海环境科学, 2002, 21(6):356-360.
    [43]陆胜勇,池勇,严建华等.垃圾焚烧中重金属污染物的迁移和分布规律[J].热力发电,2003,32(3):24-28.
    [44]宋立杰.城市垃圾焚烧灰渣的稳定化处理研究[D].上海:同济大学, 2000.
    [45]郭玉文,蒲丽梅,乔玮. ICS- AES在分析飞灰中重金属化学形态上的应用[J].光谱学与光谱分析, 2006, 26(8):1540-1542.
    [46]郭殿福.废弃物通用手册——处理、处置、资源化[M].科学出版社, 2004.
    [47] Shin-ichi Sakai, Masakatsu Hiraoka. Municipal solid waste incinerator residue recycling by thermal processes[J]. Waste Management, 2000(20):249-258.
    [48] H Vogg.., H Braun.,etc, The specific role of cadmium of mercury in municipal solid waste incineration[J]. Waste Management&Research, 1986, 4: 65-74.
    [49]贾学彬等.我国城市生活垃圾焚烧处理方法及设备现状与展望[J].哈尔滨商业大学学报, 2002,18(2):197-199.
    [50]黄爱军.城市生活垃圾焚烧处理初探[J].环境科学研究, 2000 , 13(3):27-30.
    [51]张益,赵由才.生活垃圾焚烧技术[M].化学工业出版社, 2000.
    [52] A Jakob, S Stucki, P Kuhn. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash[J]. Environmental Science and Technology, 1995, (29): 2429–2436.
    [53] A Jakob, S Stucki, R.Struis. Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates [J]. Environmental Science and Technology, 1996, 30(11):3275-3283.
    [54] Dirk Verhulst, Alfons Buekens, Philip J. Spencer, et al.Thermodynamic behavior of metal chlorides and sulfates.under the conditions of incinerations furnace [J] Environ.Sci. Technol, 1996, 30: 50-56.
    [55]国家环境保护局. GB 18485—2001.生活垃圾焚烧污染控制标准[S].北京:环境科学出版社, 2001.01.
    [56] C W Bale, A D Pelton, W T Thompson. FACT (Facility for the Analysis of Chemical Thermodynamics), Version 2.1-User Manual[E], Royal Military College, Canada, July, 1996.
    [57] M.Tettamanti, E.Collina, M.Lasagni,et al. Characterization of fly ash from municipal solid waste incinerators using differential scanning calorimetry[J]. Thermochimica Acta,1998, 321:133-141.
    [58] C CY Chan, D W Kirl. Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents [J].Journal of Hazardous Materials, l999, 64(1):75-89.
    [59] C H Jung, T Matsuto, N Tanaka. Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW) [J].Waste Management,2005,(25): 301-310.
    [60] S V Vassilev, D C Braekman, Lauren PH., et al. Capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste[J].Fuel,1999,78:1131-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700