用户名: 密码: 验证码:
表面活性剂相关系统的构效关系及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂分子结构中有典型的双亲成分——亲水基团与亲油基团,致使其易吸附在界面上并导致表面张力显著降低。这种表面活性性质与其独特的分子结构关系密切。阐明表面活性剂结构与性质之间的内在联系对于进一步了解表面活性剂行使功能的分子机制、指导表面活性剂的合成及应用意义深远。
     表面活性剂研究包括实验及理论两个方面。“物质的组成与结构决定物质的性质,性质决定用途,用途体现性质”是自然界基本的哲学思想。任何物质的组成与结构都包含了其物理、化学及生物性质的密码。利用理论计算和统计分析工具研究系列化合物结构与其效应之间的定量构效/定量构性关系(QSAR/QSPR, Quantitative Structure-Activity Relationship/Quantitative Structure-Property Relationship),即借助结构参数构建数学模型来描述化合物结构与活性或性能之间的关系属于理论研究的范畴,从大量纷繁复杂的数据中归纳、演绎得出相互依赖关系并用于解释和预测属于统计分析的范畴,理论计算则能在分子/原子层面上精确分析纯物质或体系的各种性质,例如基本物理性质、生物活性、表面活性、相互作用及电荷分布等。本文进一步拓展了QSPR和量子化学的应用范围,分别对非离子表面活性剂的浊点(cloud point)行为进行了构效关系探讨、用量子化学计算方法对非离子表面活性剂的临界胶束浓度(critical micelle concentration)行为进行相关性分析、统计分析并模拟了阴离子双子表面活性剂和阳离了双子表面活性剂的临界胶束浓度行为。基于上述统计分析结果,设计并合成了具有潜力的先导双子表面活性剂分子,表面活性实验表明其cmc值为0.83mmol/L而统计模型预测值为0.89mmol/L。实验结论确认了阳离子双子表面活性剂理论模型的预测能力。
     在这些章节中,除采用多元线性回归(MLR)和偏最小二乘(PLS)经典方法外,还将多种新型机器学习方法,即高斯过程(GP)、随机森林(RF)、支持向量机(SVM)、最小支持向量机(LSSVM)方法分别引入表面活性剂体系的统计模拟领域。采用启发式算法(heuristic algorithm)或遗传算法(genetic algorithm)筛选变量,通过留一法(LOO)/留N法(LNO)等交叉验证方法系统比较了线性与非线方法在表面活性剂统计模拟过程中预测性能的差异。论文的量子化学研究部分采用量子力学方法结合密度泛函理论(DFT)对孤立状态中的非离子表面活性剂的单点能进行计算再结合已经成功应用的拓扑和构造描述符进行相关性分析。下面对这些工作逐一加以概述:
     (1)非离子表面活性剂浊点的构效关系探讨:非离子表面活性剂广泛应用于日化、洗涤、纺织、生物大分子等领域中,尤其是近些年发展迅速的符合绿色化学(green chemistry)理念的新技术——浊点萃取(cloud point extration),即是非离子表面活性剂浊点行为应用的特例。本文采用CODESSA软件计算描述符综合研究了62个聚氧乙烯醚型非离子表面活性剂浊点的定量构效关系并推广到82个样本。研究发现:①由亲水基片段与由疏水基片段衍生的描述符所建立的MLR模型相当甚至更优,说明非离子表面活性剂浊点行为甚至更多的是与亲水部分的结构相关,打破了传统建立非离子表面活性剂的构效关系一定要从疏水基中取得的描述符的观念;②非线性的机器学习方法——GP得到比MLR、PLS、SVM(?)(?)LSSVM方法更加优越的拟合能力及预测性能,说明包含了多种成分组合协方差函数的GP更适合处理样本集中非离子表面活性剂浊点的线性和非线性混合依赖相关关系,最优模型是由亲水基片段衍生描述符拟合的GP模型,其r2和rpred2值分别为0.922和0.962;③对于结构更加复杂的非离子双子表面活性剂来说,发现非离子双子表面活性剂比含相应碳原子数和聚氧乙烯醚单元数的单体浊点更低。
     (2)非离子表面活性剂临界胶束浓度的量子化学研究:本文基于DFT理论B3LYP基组水平,采用Gaussian03软件包计算出77个非离子表面活性剂的单点能,经量化计算得到分子总能量E、最高占有轨道能量EHOMO、最低空轨道能量ELUMO、二级偶极矩D、及二级偶极矩D在x、y、z空间方向的分量等9个分子信息参数,再采用CODESSA软件计算非离子表面活性剂疏水片段的Kail-Hall零级指数(c-KH0)和疏水片段的二级平均分子信息指数(c-AIC2)两个拓扑描述符,及相对氮原子数和氧原子数(RNNO),然后对上述12个描述符进行逐步回归分析建立MLR模型。结果表明来自疏水部分的拓扑指数——c-KH0和c-AIC2,构造描述符RNNO以及由量化计算所得到的两个描述符EHOMO(?)(?)ELUMO共5个描述符是影响非离子表面活性剂临界胶束浓度的主要因素,各影响因素的统计重要性依次为:c-KH0>c-AIC2>RNNO>EHOMO>ELUMO。经深入分析发现EHOMO(?)(?)ELUMO与其它三个变量间存在多重共线性,采用主成分分析消除共线性因素后建立了四参数最佳线性模型为:log cmc=3.509+0.671X1-0.593X2-0.372X3+0.061X4其中R2=0.994,F=18.032,P=0.
     (3)双子表面活性剂临界胶束浓度的统计模拟及应用:依然使用COSESSA软件产生建模所需描述符,①先对23个阴离子硫酸盐/磺酸盐类双子表面活性剂及其部分单体进行构效关系探讨,研究发现:硫酸盐/磺酸盐类双子表面活性剂的cmc较对应单体的更低,cmc随疏水基中碳原子数变化趋势更平缓,描述符经启发式算法筛选变量后可建立MLR模型,最佳三参数模型为:1og cmc=4.4620.016PNSA-1+7.844ABIC1+1.705XY,R2=0.9142、F=67.45.s2=0.2080;其中:PNSA_1为电子描述符,即原子表面域部分电荷,反应分子疏水部分表面所带电荷的分布情况;ABIC1为拓扑描述符,即平均化学键信息常数,是一种表征分子结构的指数;XY为几何描述符,是分子在XY坐标面内的投影,体现分子大小和分子的形状特性;②再用同样的方法对120个阳离子双子表面活性剂的临界胶束浓度进行研究,最佳MLR模型为:log cmc=(3.483±0.3217)-(0.323±0.001)KH1-(1.948±0.132)NP-(0.306±0.07)BI-(0.06±0.02)HASA-2,该方程的预测集复相关系数r2=0.900、交互验证相关系数q20.88、误差RMSP=0.39:③采用GA-机器学习方法联用,即GA-GP、GA-PLS、GA-SVM、GA-LSSVM、GA-RF联用系统对比了非线性方法的拟合能力及预测能力,结果发现:GA-GP统计模型最佳,预测集复相关系数rpred2=0.975、误差(?)RMSP=0.20;④在解析120个阳离子最佳MLR模型的基础上,设计用正溴代十四烷和N,N,N’,N’-四甲基乙二胺在乙醇溶液中回流、乙醇-乙酸乙酯体系重结晶、真空干燥得到双十四烷基双子阳离子二溴化季铵盐面活性剂(C14-2-C14),采用IR、1H NMR、13C NMR、元素分析及电喷雾质谱分析方法表征结构,经电导法测定临界胶束浓度后发现其cmc为0.83mmol/L,与按模型预测值接近,约是其对应单体表面活性剂十四烷基三甲基溴化铵的五分之一,意味着其表面活性是相应单体的5倍,属于有潜在应用前景的先导双子表面活性剂。
Surfactants have a characteristic molecular structure, an amphipathic structure, consisting of hydrophilic and hydrophobic group. They are easy to be absorbed on the interface of two-phase and make their surface tension decreased significantly. These surface actives or properties are closely related to their unique molecular structure. Therefore, in order to have a good grasp of the molecular mechanism of surface activity and provide useful structure-based molecule synthesis information even applications, it is indeed extremely meaningful to illustrate the relationship between surfactant function and structure, especially from the level of molecular and electronic structure.
     A philosophy law is that material's composition and structure defines the property and then defines the usage, the usage area reflects the property. The codes of physical, chemical and biological properties involve in composition and structure. There are two ways to accomplish the research of surfactants:experimental technology and theoretical calculation. Quantitative Structure-Activity Relationship/Quantitative Structure-Property Relationship (QSAR/QSPR) is the right method based on statistic modeling and theoretical calculation. Statistic simulation methodology could assist us to extract the useful information from large quantities of data and used to explain/predict the related activities, while theoretical calculation method could provide accurate analysis of physical properties, biological active, surface active, interaction, charge distribution and so on from atomic-level. In this dissertation, the application scope of QSPR and quantum chemistry were extended to discuss cloud point (CP)-structure relationship of nonionc surfactants, analysis the critical micelle concentration (cmc)-structure relationship by quantum chemistry calculation, statistical modeling and analysising the cmc behave of Gemini surfactants. According to the best model, a lead compound was desgined and synthesized. The cmc value was0.83mmol/L compared with the predict one0.89mmol/L. This experimental result confirmed the forcast ability of the best moldel.
     Many machine learning methods including multi-linear regression (MLR), partial least squares regression (PLS), support vector machine (SVM), least-squares support vector machine (LSSVM), Gaussian process (GP) and random forest (RF) coupled with Heuristic or Genetic algorithm (GA) variable selection. Critical cross criterion, leave one out (LOO) and leave N out (LNO), was used to show the statistics result in difference models. Joint with sussessfully used topologieal and constitutional descriptors the single point energy of the nonionic surfactants was calculated by density function theory (DFT), the most polpulator quantum chemistry method to model. These details were shown as following:
     (1) Discussed the CP of nonionic surfactants by QSPR approach. Nonionic surfactants are used widely in detergents, textile, pharmacy and enhanced oil recovery. More recently, a new application area is cloud point extraction (CPE) technology. CPE is a separation and pre-concentration procedure that has been extensively applied for trace metal determination in agreement with the principles of "green chemistry' compared to organic solvent extractions. In view of that, we herein present a non-linear statistical modeling with Gaussian process to meet the gap. In present study, we first develop a linear model for a panel of62structures then extend to82structures including3Gemini molecular by various descriptors of hydrophilic or hydrophobic domain selected from heuristic algorithm, respectively. We demonstrate that (ⅰ) using the descrptors calculated from hydrophilic group can give compareable model even better than descriptors derived from hydrophobic group. This means hydrophilic group give important effect to CP and quite difference with traditional views,(ⅱ) The best moldeling was build by GP, a nonlinear model with many convariance functions, had better fitting and forcast ability than MLR and PLS, SVM and LSSVM means more sutibale to solve the CP-structure relationship of nonionic surfactants. And the best modeling was made by descriptors derived from hydrophilic group r2and rpre2was0.922and0.962, respectively.(ⅲ) Gemini nonionic surfactants had lower CP than related single tail ones.
     (2) The cmc of nonionic surfactants was studied by quantum chemistry method. Gaussian03software was used to perform quantum-chemical calculation and generated nine descriptors, such as ΔE,ΔG,ΔH, EHOMO and ELUMO, dipole moment D and related branch componment D-x, D-y and D-z. In this procedure, full geometry optimizations were performed at the B3LYP6-31g basis set in the following single-point calculations so as to check the stability of the results obtained at the different levels of DFT. Two topological descriptors, c-KHO and c-AIC2, calculated by CODESSA program were used to moldel, too. Stepwise regression was then used to create linear statistics models with experimentally determined critical micelle concention of nonionic surfactants. We demonstrate that MLR method could describe the relationship between nonionic surfactants' structure and critical micelle concention very well with the most important factors as following:c-KHO>c-AIC2> RNNO>EHOMO>ELUMO. It was found that there were multicollinearity relationship among descriptors through further discuss. The linear equation was build after the PCA and the best four parameters model was shown as following:log cmc=3.509+0.671X1-0.593X2-0.372X3+0.061X4, R2=0.994, F=18.032, P=0.
     (3) A systematic statistics study and its application of Gemini surfactants' cmc. Descriptors were generated by CODESSA, too. Investigation on the critical micelle concentration of23Gemini sulfonated/sulfated anionic surfactants and120Gemini cationic surfactants were performed coupled with variable selection by GA. The results were imparted with the following remarks:(ⅰ) Gemini had lower cmc and slower slope ratio than corresponding single tail surfactants. The best MLR model of sulfonated/sulfated surfactants shown log cmc=-4.462-0.016PNSA-1+7.844ABIC1+1.705XY, R2=0.9142、F=67.45、s2=0.2080.(ⅱ) The best MLR model of120Gemini cationic surfactants was log cmc=(3.483±0.3217)-(0.323±0.001) KH1-(1.948±0.132) NP-(0.306±0.07) BI-(0.06±0.02) HASA-2r2=0.900(R2=0.88RMSP=0.39with heuristic variable-selection.(ⅲ) Among these five models (GA-GP, GA-PLS, GA-SVM, GA-LSSVM and GA-RF), the GP model gave the best results by GA selection. Topological descriptors were very important factors which could affect the critical micelle concentration.(ⅳ) In addition, guided by the best model, a Gemini was designed and synthesized by1-bromotetradecane and N,N,N-tetramethylethylenediamine in ethanol solution followed with recrystallization in ethanol-ethyl acetate and vacuum drying. The product was characterized by IR, elenmental analysis, MS,'H NMR and13C NMR. A promising candidate, C14-2-C14Gemini cationic surfactant that possesses particularly high cmc potency as0.83mmol/L at25℃, about one fifth compared with tetradecyltri-methyl ammonium bromide means five times activity ability, was finded by conductimetric method. This experimentally measured value is in agreement with the model-predicted0.89mmol/L fairly well.
引文
1. Peter, A. F. Colloid and surface research trends. Nova Science publishers:New York,2007, p.4.
    2.夏纪鼎,倪永全.表面活性剂和洗涤剂化学与工艺学.北京:中国轻工业出版社,1996,p.1-3.
    3.张丽.表面活性剂的合成及其在钢电解的应用研究[硕士学位论文].昆明:昆明理工大学,2004.
    4. Rosen, M. J. Surfactants and Interfacial Phenomena. third ed. Wiley:Hoboken, NY,2004.
    5.姚志钢,李干佐,董风兰,胡艾希Gemini表面活性剂合成进展.化学进展,2004,16(3):349-364.
    6.陈荣圻.表面活性剂化学.上海:上海市第一纺织印染职工大学,1984,p.37-38.
    7.赵国玺.表面活性剂物理化学.北京:北京大学出版社,1984,p.13-33.
    8. Charies, T. Theory of micelle formation in aqueous solutions. J. Phys. Chem. 1974,78 (24):2469-2479.
    9. Ella, O.; Michael, M. K.; Ilya, P; Dov, L. Heat evolution of micelle formation, dependence of enthalpy and heat capacity on the surfactant chain length and head group. J. colloid interface sci.2002,246 (2):380-386.
    10. Shinoda, K. Iceberg formation and solubility. J. Phys. Chem.1977,81 (13): 1300-1302.
    11. Evangelos, K.; Paleologos, D. L.; Giokas, M. I.; Karayannis. Micelle mediated separation and cloud point extraction. TrAc Trend Anal. Chem.2005,24 (5): 426-436.
    12. GB/T 5559-1993.
    13. GB/T 11277-1989.
    14.赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2002.
    15. Griffin, W. C. Classification of surface active agents by HLB. J. Soc. Cosmet. Chem 1949,1:311-326.
    16. W. Herman de Groot (方云,崔正刚,刘学民等译).工业磺化/硫酸化生产技术.北京:中国轻工业出版社,1993.
    17.郭春伟,刘俊康,唐海江,殷福珊.P4O10杂化桥接法合成高比例单烷基磷酸酯.应用化工,2004,33(6):50-54.
    18. Biswajit, S.; Paschalis, A. Alkyl propoxy ethoxylate "graded" surfactants: micelle formation and structure in aqueous solutions. J. Phys. Chem. B 2010, 114 (13):4485-4494.
    19. Shi, W. X.; Guo, H. X. Structure, Interfacial properties, and dynamics of the sodium alkyl sulfate type surfactant monolayer at the water/trichloroethylene interface:A molecular dynamics simulation study. J. Phys. Chem. B 2010,114 (19):6365-6376.
    20. Pak, K. Y.; Daniel, B. Molecular dynamics simulation study of water surfaces: comparison of flexible water models. J. Phys. Chem. B 2010,114(43): 13786-13795.
    21. Berti, D. Self assembly of biologically inspired amphiphiles. Curr. Opin. Colloid In.2006,11 (1):74-78.
    22. Katritzky, A. R.; Pacureanu, L. M.; Slavov, S. H.; Dobchev, D. A.; Karelson. M. QSPR study of critical micelle concentrations of nonionic surfactants. Ind. Eng. Chem. Res.2008,47:9687-9695.
    23. Stevanovic, J. S.; Mosorinac, T.; Krstic, S. B.; Beric, R. D. Computer aided operation and design of the cationic surfactants production.17th Enr. Sym. Comput. Aided Process Eng.2007,1-6.
    24. Hu, J. W.; Zhang, X. Y.; Wang, Z. W. A review on progress in QSPR studies for surfactants. Int. J. Mol. Sci.2010,11:1020-1047.
    25. Katritzky, A. R.; Pacureanu, L. M.; Slavov, S. H.; Dobchev, D. A.; Shah, D. O.; Karelson, M. QSPR study of the first and second critical micelle concentrations of cationic surfactants. Comput. Chem. Eng.2009,33:321-332.
    26.李秋小,张高勇.中国表面活性剂/洗涤剂领域技术进展.日用化学品科学,2004,27(2):4-8.
    27. Du, N.; Stebe, M. J; Bleta, R.; Blin, J. L. Preparation and characterization of porous silica templated by a nonionic fluorinated systems. Colloid Surfaces 2010,357:116-127.
    28. Menger, F. M.; Littau, C. A. Gemini surfactants:synthesis and properties. J. Am. Chem.Soc.1991,(113):1451-1452.
    29.赵剑曦.新一代表面活性剂:Geminis化学进展,1999,11(04):348-357.
    30. Din, K. U.; Koya, P. A. Micellar properties and related thermodynamic parameters of the 14-6-14,2Br gemini surfactant in water organic solvent mixed media. J. Chem. Eng Data.2010,55:1921-1929.
    31. Berger, P. D.; LEE, C. H. New anionic alkylaryl surfactants basing on olefin sulfonic acids. J. Surfactants Deterg.2002,5 (1):39-43.
    32.刘忠云,李在均,殷福珊.新型芳基烷磺酸表面活性剂的合成及表化性能研究.江南大学学报,2004,3(4):419-422.
    33.北原文雄,早野茂夫,原一郎(毛培坤译).表面活性剂分析和试验法.北京:轻工业出版社,1988.
    34.陈美玲.表面活性剂的QSPR、界面吸附和自组装理论研究:[博士学位论文].无锡:江南大学,2010.
    35.徐光宪.21世纪化学的前瞻,大学化学,2001,16:1-6.
    36.许禄,胡昌玉.应用化学图论.北京:科学出版社,2000.
    37.胡俊杰.计算化学在抗癌药物研究和原子化能预测中的应用:[硕士学位论文].兰州:兰州大学,2008.
    38.王连生,韩朔睽.分子结构性质与活性.北京:化学工业出版社,1997.
    39. Murugan, R.; Grendze, M. E.; Toomey, Jr. J. E.; Katritzky, A. R.; Karelson, M.; Lobanov, V.; Rachwal, P. Predicting physical properties from molecular structure. Chemtech.1994,24:17-23.
    40. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. QSPR:The correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev.1995,24:279-287.
    41. Karelson, M.; Maran, U.; Wang, Y.; Katritzky, A. R. QSPR and QSAR models derived using large descriptor spaces. A review of CODESSA applications. Collect. Czech. Chem. Commun.1999,64:1551-1571.
    42. Katritzky, A. R.; Maran, U.; Lobanov, V. S.; Karelson, M. Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J. Chem. Inf. Comput. Sci 2000,40:1-18.
    43. Katritzky, A. R.; Petrukhin, R.; Tatham, D.; Basak, S.; Benfenati, E.; Karelson, M.; Maran, U. Interpretation of quantitative structure-property and activity relationships. J. Chem. Inf. Comput. Sci.2001,41:679-685.
    44. Katritzky, A. R.; Fara, D. C.; Petrukhin, R. O.; Tatham, D. B.; Maran, U.; Lomaka, A.; Karelson, M. The present utility and future potential for medicinal chemistry of QSAR/QSPR with whole molecule descriptors. Curr. Top. Med. Chem 2002,2:1333-1356.
    45.刘焕香.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究:[博士学位论文].兰州:兰州大学,2005.
    46. Crum, B. A.; Fraser, T. On the connection between chemical constitution and physiologic action. Part 1. On the physiological action of salts of the ammonium bases, derived from strychnia, brucia, thebia, codeia, morphia and nicotia. Trans. Roy. Soc. Edinburgh 1868,25:151-203.
    47. Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 1962,194:178-180.
    48. Hammett, L. P. Some relations between reaction rates and equilibrium constants. Chem Rev.1935,17:125-136.
    49. Taft, Jr. R. W. Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. J. Am. Chem. Soc. 1952,74:3120-3128.
    50. Hansch, C.; Fujita, T. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc.1964,86:1616-1626.
    51. Fujita, T; Iwasa, J.; Hansch, C. A new substituent constant, π, derived from partition coefficients. J. Am. Chem. Soc.1964,86:5175-5180.
    52.赵春燕QSAR研究在生命分析化学和环境化学中的应用:[博士学位论文]. 兰州:兰州大学,2006.
    53. Free, S. M.; Wilson, J. W. A mathematical contribution to structure-activity studies.J. Med. Chem.1964,7:395-399.
    54. Crippen, G. M. Distance geometry approach to rationalizing binding data. J. Med. Chem.1979,22:988-997.
    55. Hopfinger, A. J. A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J. Am. Chem. Soc.1980, 102:7196-7206.
    56. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am Chem. Soc.1988,110:5959-5967.
    57. Cramer Ⅲ, R. D.; Bunce, J. D.; Patterson, D. E.; Frank, I. E. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct.-Act. Relat.1988,7:18-25.
    58. Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative apalysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem.1994,37:4130-4146.
    59. Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism.J. Am. Chem. Soc.1997,119:10509-10524.
    60.李仁利.三维以上定量构效关系.国际药学研究杂志,2007,34:241-245.
    61. So, S. S.; Karplus, M. Evolutionary optimization in quantitative structure-activity relationship:an application of genetic neural networks. J. Med. Chem. 1996,39:1521-1530.
    62. Robinson, D. D.; Winn, P. J.; Lyne, P. D.; Richards, W. G. Self-organizing molecular field analysis:a tool for structure-activity studies. J. Med. Chem. 1999,42:573-583.
    63. Vedani, A.; McMasters, D. R.; Dobler, M. Multi-conformational ligand representation in 4D-QSAR:reducing the bias associated with ligand alignment. Quant. Struct.-Act. Relat.2000,19:149-161.
    64. Vedani, A.; Dobler, M. Multidimensional QSAR:moving from three-to five-dimensional concepts. Quant. Struct.-Act. Relat.2002,21:382-390.
    65. Vedani, A.; Dobler, M.5D-QSAR:the key for simulating induced fit. J. Med. Chem 2002,45:2139-2149.
    66. Vedani, A.; Dobler, M.; Lill, M. A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J. Med. Chem.2005,48:3700-3703.
    67. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947,69:17-20.
    68. Balaban, A. T.; Balaban, T. S. New vertex invariants and topological indices of chemical graphs based on information on distances. J. Math. Chem.1991,8: 383-397.
    69. Kier, L. B.; Hall, L. H. The kappa indices for modeling molecular shape and flexibility. In:Topological indices and related descriptors in QSAR and OSPR (Devillers, J.; Balaban, A. T. Eds.); The Netherlands:Gordon and Breach Science Publishers,1999, p.455-489.
    70. Kier, L. B.; Hall, L. H. Molecular connectivity in chemistry and drug research; New York:Academic Press,1976.
    71. Kier, L. B.; Hall, L. H. An electrotopological state index for atoms in molecules. Pharm. Res.1990,7:801-807.
    72.田菲菲.肽:结构表征及统计建模:[博士学位论文].重庆:重庆大学,2010.
    73. Amigo, J. M.; Galvez, J.; Villar V. M. A review on molecular topology:applying graph theory to drug discovery and design. Naturwissenschaften,2009,96: 749-761.
    74. Karelson, M.; Lobanov, V. S. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev.1996,96:1027-1043.
    75. Worrall, F.; Thomsen, M. Quantum vs topological descriptors in the development of molecular models of groundwater pollution by pesticides. Chemosphere 2004,54:585-596.
    76. Stanton, D. T.; Jurs, P. C. Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem.1990,62:2323-2329.
    77. Todeschini, R.; Gramatica, P. New 3D molecular descriptors:the WHIM theory and QSAR applications. In:3D OSAR in drug design (Kubinyi, H.; Folkers, G.; Martin, Y. C. Eds); The Netherlands:Kluwer/Escom, Dordrecht,1998, p. 355-380.
    78. Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani, A. MS-WHIM, new 3D theoretical descriptors derived from molecular Surface properties:a comparative 3D-QSAR study in a series of steroids. Comput,-Aided. Mol. Des.1997,11:79-92.
    79. Todeschini, R.; Moro, G.; Boggia, R.; Cosentino, U.; Lasagni, M.; Pitea, D. Modeling and prediction of molecular properties. Theory of grid-weighted holistic invariant molecular (G-WHIM) descriptors. Chemometrics Intell. Lab. Syst.1997,36:65-73.
    80. Bogdsnov, B.; Nikolic, S.; Trinnjstie, N. On the three-dimensional wiener number.J. Math. Chem.1989,3:299-309.
    81. http://www.tripos.com/.
    82. Puri, S.; Chickos, J. S.; Welsh, W. J. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs):enthalpy of sublimation. J. Chem. Inf. Comput. Sci.2002,42:109-116.
    83. Puri, S.; Chickos, J. S.; Welsh, W. J. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs):enthalpy of vaporization. J. Chem. Inf. Comput. Sci.2002,42:299-304.
    84. Duca, J, S.; Hopfinger, A. J.4D-QSPR analysis and virtual screening of calcite growth inhibitor libraries. Chem. Mater.2000,12:3821-3829.
    85. Klein, C. D.; Hopfinger, A. J. Pharmacological activity and membrane interactions of antiarrhythmics:4D-QSAR/QSPR analysis. Pharm. Res.1998, 15:303-311.
    86. Duca, J. S.; Tseng, Y. F.; Hopfinger, A. J.4D-QSPR analysis and virtual screening in materials science. Adv. Mater.2001,13:1713-1717.
    87. http://www.mdli.corn/.
    88. http://www.daylight.com/.
    89. Aoyama, T.; Suzuki, Y.; Ichikawa, H. Neural network applied to quantitative structure-activity relationship analysis. J. Med. Chem.1990,33:906-908.
    90. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating error. Nature 1986,323:533-536.
    91. Park, J.; Sandberg, J. W. Universal approximation using radial basis functions network. Neural Comput.1991,3:246-257.
    92. Cortes, C.; Vapnik, V. Support-vector networks. Machine Learn.1995,20: 273-297.
    93. Zhou, P.; Tian, F. F.; Lv, F.; Shang. Z. C. Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome. J. Chromatogr. A 2009,1216:3107-3116.
    1. O'BRIEN, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant.2007,41:673-690
    2.俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991,p.78-89.
    3. Smith, D. W.; Gill, D. S.; Hammond, J. J. Variable selection in multivariate multiple regression. J. Stat. Comput. Sim.1985,22:217-227.
    4.刘秀红.生物相关系统的统计模拟和理论研究:[博士学位论文].杭州:浙江大学,2011.
    5. Guttman I. Linear models:an introduction. New York:Wiley,1982,578-579.
    6. Wold, S.; Sjostrom, M.; Eriksson, L. PLS regression:a basic tool of chemometrics. Chemometr. Intell. Lab. Syst.2001,58:109-130.
    7. Cortes, C.; Vapnik, V. Support-vector networks. Machine Learn.1995,20: 273-297.
    8. Smith, D. W.; Gill, D. S.; Hammond, J. J. Variable selection in multivariate multiple regression. J. Stat. Comput. Sim.1985,22:217-227.
    9. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating error. Nature 1986,323:533-536.
    10.赵春燕.QSAR研究在生命分析化学和环境化学中的应用用:[博士学位论文].兰州:兰州大学,2006.
    11. Park, J.; Sandberg, J. W. Universal approximation using radial basis functions network. Neural Comput.1991,3:246-257.
    12. Zhao, Y.; Cheng, T.; Wang, R. Automatic perception of organic molecules based on essential structural information. J. Chem. Inf. Model.2007,47: 1379-1385.
    13. Kollman, P. A.; Massova, I.; Reyes, C. Calculating structures and free energies of complex molecules:Combining molecular mechanics and continuum models. Acc. Chem. Res.2000,33:889-897.
    14.邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.北京:科学出版社, 2004.
    15. Aizerman, M.; Braverman, E.; Rozonoer, L. Theoretical foundations of the potential function method in pattern recognition learning. Automation and remote control 1964,25:821-837.
    16. Suykens, J. A. K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett.1999,9:293-300.
    17. Breiman, L. Random forests. Machine Learn.2001,45:5-32.
    18.巍玉辉.化学计量学在中药复杂体系研究中的应用:[博士学位论文].兰州:兰州大学,2010.
    19. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. QSPR:The correlation and quantitative prediction of chemical and physical properties from structure. Chem.Soc. Rev.1995,24:279-287.
    20. Katritzky, A. R.; Maran, U.; Lobanov, V. S.; Karelson, M. Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J. Chem. Inf. Comput. Sci.2000,40:1-18.
    21. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA:Reference Manual; Version 2; University of Florida,1994.
    22. Katritzky, A. R.; Perumal, S.; Petrukhin, R.; Kleinpeter, E. CODESSA-Base theoretical QSPR model for hydantoin HPLC-RT. Lipophilicities. J. Chem. Inf. Comput. Sci.2001,41:569-574.
    23. Hibbert, D. B. Genetic algorithms in chemistry. Chemometr. Intell. Lab. Syst. 1993,19:277-293.
    24. Holland, J. H. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press,1975,156-159.
    25.章元,朱尔一,庄峙厦,王小如.遗传算法用于变量筛选.高等学校化学学报1999,20:1371-1375.
    26. Goldberg, D. Genetic algorithms in search, optimization, and machine learning. New York:Addison-Wesley Publishing Company, Inc.1989,49-53.
    27. O'Hagan, A. Curve fitting and optimal design for prediction.J.R. Stat. Soc. B 1978,40:1-42.
    28. Rasmussen, C. E.; Williams, C. K. I. Gaussian processes for machine learning. MA:MIT Press,2006.
    29. Zhou, P.; Tian, F. F.; Chen, X.; Shang, Z. C. Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-Gaussian processes. Biopolymers (Pept. Sci.) 2008,90:772-802.
    30. Zhou, P.; Chen, X.; Wu, Y.; Shang, Z. Gaussian process:an alternative approach for QSAM modeling of peptides. Amino Acids 2010,38:199-212.
    31. Zhou, P.; Tian, F.; Lv, F.; Shang, Z. Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome. J. Chromatogr. A 2009,1216-3107-3116.
    32.田菲菲.肽:结构-表征及统计建模:[博士学位论文].重庆:重庆大学,2010.
    33. Burden, F. R. Quantitative structure-activity relationship studies using Gaussian processes. J. Chem. Inf. Comput. Sci.2001,41:830-835.
    34. Enot, D. P.; Gautier, R.; Marouille, J. Y. L. Gaussian Process:an efficient technique to solve quantitative structure-property relationship problems. SAR QSAR Environ. Res.2001,12:461-469.
    35. Chen, T.; Morris, J.; Martin, E. Gaussian process regression for multivariate spectroscopic calibration. Chemometr. Intell. Lab. Sys.2007,87:59-71.
    36. Schlkopf, B.; Mika, S.; Burges, C. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Net.1999,10:1000-1017.
    37. MacKay, D. J. C. Introduction to Gaussian processes. In:Bishop CM (ed.) Neural networks and machine learning. Heidelberg:Springer,1998.
    38. Hestenes, M. R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. NBS,1952,49:409-436.
    39. Bernd, A. B. Markov chain Monte Carlo simulations and their statistical analysis. Singapore:World Scientific,2004.
    40. Skilling, J. Nested sampling for general Bayesiam computations. Bayesian Anal. 2006,7:833-860.
    41. Polyak, B. T. The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys.1969,9:94-112.
    42. Wolfe, P. Convergence conditions for ascent methods. SIAM Rev.1969,11: 226-235.
    43. Obrezanova, O.; Csanyi, G.; Gola, J. M. R. Gaussian processes:a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model.2007,47: 1847-1857.
    44.周鹏.定量序效模拟:[硕士学位论文].重庆:重庆大学,2007.
    45. Gramatica, P. Principles of QSAR models validation:internal and external. QSAR Comb. Sci.2007,26:694-701.
    46. Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graphics Mod.2002,20: 269-276.
    47. Polanski, J.; Gieleciak, R.; Bak, A. Probability issues in molecular design: predictive and modeling ability in 3D-QSAR schemes. Comb. Chem. High Throughput Screening 2004,7:793-807.
    48. Tropsha, A.; Gramatica, P.; Gombar, V. K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci.2003,22:69-77.
    49. Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des.2002,16:357-369.
    50.林梦海.量子化学计算方法与应用.北京:科学出版社,2004.
    51. Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, James J. P. Stewart. Development and use of quantum mechanical molecular models.76. AM1:a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985,107 (13):3902-3909
    52. Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab initio molecular orbital theory; John Wiley:New York,1986.
    53. Chong, D. P. Recent advances in density functional methods; Part Ⅰ. World Scientific:Singapore,1995,16:564-565.
    54. Chong, D. P. Recent Advances in Density Functional Methods; Part Ⅱ. World Scientific:Singapore,1997.
    55. Raghavachari, K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M. Fifth order moeller-plesset perturbation theory:comparison of existing correlation methods and implementation of new methods correct to fifth order. J. Phys. Chem.1990, 94:5579-5586.
    56. Hohenberg, P. C.; Kohn, W. Inhomogeneous electron gas. Phys. Rev.,1964, 136:864-871.
    57. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965,140:1133-1138.
    58. Slater, J. C. Quantum theory of molecular and solids. The self-consistent field for molecular and solids Me Graw-Hill:New York,1974, Vol 4.
    59. Salahub, D. R.; Zemer, M. C. The challenge of d- and f-electrons; ACS: Washington D. C.1989.
    60. Parr, R. G.; Yang, W. Density functional theory of atoms and molecules; Oxford University Press:New York,1989.
    61. Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Kohn-sham density-functional within a finite basis set. Chem. Phys. Lett.1992.199:557-560.
    62. Johnson, B. G.; Frisch, M. J. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J. Chem. Phys.1994,100: 7429-7442.
    63. Dirac, P. A. M. Exchange phenomena in the Thomas atom. Proc. Cambridge Philos. Soc.1930,26:376-385.
    64. Fermi, E. A statistical method for determining some properties of the atom. I. Rend. Accad. Naz. Lincei 1927,6:602-607.
    65. Thomas, L. H. The calculation of atomic fields. Proc. Cambridge Philos. Soc. 1927,23:542-548.
    66. Weizsacker, C. F. Z. Phys.1935,36:431.
    67. Slater, J. C. A simplification of the Hartree-Fock method. Phys. Rev.1951,81: 385-390.
    68. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis. Can. J. Phys.1980,58:1200-1211.
    69. Perdew, J. P.; Chevary, J. A. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46:6671-6687.
    70. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996,77:3865-3868.
    71. Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. Development and assessment of new exchange-correlation functional. J. Chem. Phys.1998,109: 6264-6271.
    72. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,35:3098-3100.
    73. Perdew, J. P.; Wang, Y. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986,33:8822-8824.
    74. Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:the mPW and mPWIPW models. J. Chem. Phys.1998,108:664-675.
    75. Handy, N. C.; Cohen, A. J. Left-right correlation energy. J. Mol. Phys.2001, 99-403-412.
    76. Xu, X.; Goddard, Ⅲ. W. A. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. PNAS 2004,101:2673-2677.
    77. Becke, A. D. Density functional calculations of molecular bond energies. J. Chem. Phys.1986,84:4524-4529.
    78. Becke, A. D. Density-functional thermochemistry. Ⅰ. The effect of the exchange-only gradient correction. J. Chem. Phys.1992,96:2155-2160.
    79. Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and solid-state tests of density functional approximations:LSD, GGAs, and meta-GGAs. Int. J. Quantum Chem.1999,75:889-909.
    80. Adamo, C.; Barone, V. Physically motivated density functionals with improved performances:The modified Perdew-Burke-Ernzerhof model. J. Chem. Phys. 2002,116:5933-5940.
    81. Becke, A. D. Density-functional thermochemistry. Ⅱ. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys.1992, 97:9173-9177.
    82. Becke, A. D. Correlation energy of an inhomogeneous electron gas:a coordinate-space model. J. Chem. Phys.1988,88:1053-1062.
    83. Perdew, J. P. Unified theory of exchange and correlation beyond the local density approximation. In:Electronic structure of solids (Ziesche, P., Eschig, H. Eds.); Akademie Verlag:Berlin,1991, p.11-20.
    84. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 5 1988,37:785-789.
    85. Tao, J. M.; Perdew, J. P. Test of a nonempirical density functional:short-range part of the van der Waals interaction in rare-gas dimers. J. Chem. Phys.2005, 122:114102/1-114102/7.
    86. Patton, D. C.; Pederson, M. R. Application of the generalized-gradient approximation to rare gas dimers. Phys. Rev. A 1997,56:2495-2498.
    87. Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate density functional with correct formal properties:a step beyond the generalized gradient approximation. Phys. Rev. Lett.1999,82:2544-2547.
    88. Troy, V. V.; Scuseria, G. E. A novel form for the exchange-correlation energy functional. J. Chem. Phys.1998,109:400-410.
    89. Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys.1999,110:5029-5036.
    90. Becke, A. D. Density-functional thermochemistry. IV. A new dynamic correlation functional and implications for exact-exchange mixing. J. Chem. Phys.1996,104:1040-1046.
    91. Krieger, J. B.; Chen, J.; Iafrate, G. J.; Savin, A. In:Electron Correlations and Materials Properties (Gonis, A., Kioussis, N. Eds.); Plenum:New York,1999, p.463.
    92. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder:nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett.2003,91: 146401/1-146401/4.
    93. Schmider, H. L.; Becke, A. D. Optimized density functionals from the extended G2 test set. J. Chem. Phys.1998,108:9624-9631.
    94. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. Adiabatic Connection for Kinetics. J. Phys. Chem. A 2000,104:4811-4815.
    95. Lynch, B. J.; Zhao, Y.; Truhlar, D. G. Effectiveness of diffuse basis functions for calculating relative energies by density functional theory. J. Phys. Chem. A 2003,107:1384-1388.
    96. Schultz, N. E.; Zhao, Y.; Truhlar, D. G. Density functionals for inorganometallic and organometallic chemistry. J. Phys. Chem. A 2005,109: 11127-11143.
    97. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992,45:13244-13249.
    98. Becke, A. D. A new mixing of Hartree-Fock and local-density-functional theories. J. Chem. Phys.1993,98:1372-1377.
    99. Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Development and assessment of a new hybrid density functional model for thermochemical kinetics. J. Phys. Chem. A 2004,108:2715-2719.
    100. Zhao, Y.; Truhlar, D. G. Hybrid-meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:the mpwlb95 and mpwblk models and comparative assessments for hydrogen bonding and van der waals interactions. J. Phys. Chem. A 2004,108: 6908-6918.
    101. Zhao, Y.; Gonzalez-Garcia, N.; Truhlar, D. G. Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. J. Phys. Chem. A 2005,109:2012-2018.
    1. Rosen, M. J. Surfactants and Interfacial Phenomena. Wiley:Hoboken, NY,2004.
    2. Chawla, J.; Mahajan, R. K. Cloud point studies of Tween and Glycol in the presence of salts. J. Disper. Sci. Technol.2011,32:822-827.
    3. Desbene, P. L.; Desmazieres, B.; Basselier, J. J.; Minssieux, L. Analysis of non-ionic surfactants used in tertiary oil recovery. Optimisation of stationary phase in normal phase partition chromatography. Chromatographia 1987,24: 588-592.
    4.陈建国.浊点萃取与原子光谱联用技术在痕量金属元素分析中的应用研究:[博士学位论文].杭州:浙江大学,2009.
    5. Anastas, P. T. Green chemistry and the role of analytical methodology development. Cril. Rev. Anal. Chem.1999,29:167-175.
    6. Daniel, L. G. B.; Marcia, A. M. S. da V; Vera, L, A, F.; Bernhard, W.; Adilson, J. C. Cloud-point extraction for the determination of Cd, Pb and Pd in blood by electrothermal atomic absorption spectrometry, using Ir or Ru as permanent modifiers.J. Anal. At. Spectrom.2003,18:501-507.
    7. Marcos, A. B.; Marco, A. Z. A.; Sergio, L. C. F. Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques:A review. Appl. Spectrosc. Rev.2005,40:269-299.
    8. Watanabe, H.; Tanaka, H. A nonionic surfactant as a new solvent for liquid-liquid extraction of zinc Ⅱ. With 1-2pyridylazo-2-naphtol. Talanta 1978,25:585-589.
    9. Silva, M. A. M.; Frescura, V. L. A.; Aguilera, F. J. N.; Curtius, A. J. Detemination of Ag and Au in geological samples by flame atomic absorption spectrometry after cloud point extraction.J. Anal. At. Spectrom.1998,13:1369-1373.
    10. Watanabe, H.; Kamidate, T.; Kawamorita, S.; Haraguchi, K.; Miyajima, M. Distribution of nickel (Ⅱ), cadmium (Ⅱ) and copper (Ⅱ) chelates of 2-(2-pyridylazo)-5-methylphenol in two phases separated from micellar solution of nonionic surfactant. Anal. Sci.1987,3:433-436.
    11. Saitoh, T.:Kimura, Y.; Kamidate, T.; Watanabe, H.; Haraguchi, K. Distribution equilibria of metal chelates with thiazolylazo dyes between two phases formed from an aqueous micellar solution of a nonionic surfactant. Anal. Sci.1989,5: 577-581.
    12. Hasegawa, H.; Sakurai, S.; Takenaka, M.; Hashimoto, T. Small-angle neutron scattering and light scattering studies on the miscibility of protonated polyisoprene/deuterated polybutadiene blends. Macromolecules 1991,24: 1813-1819.
    13. Fischer, V.; Borchard, W.; Karas, M. Thermodynamic properties of poly(ethylene glycol)/water systems.1. A polymer sample with a narrow molar mass distribution. J. Phys. Chem.1996,100:15992-15994.
    14. Bae, Y. C.; Lambert, S. M.; Soane, D. S.; Prausnitz, J. M. Cloud-point curves of polymer solutions from thermooptical measurements. Macromolecules 1991,24: 4403-4405.
    15.夏纪鼎,倪永全.表面活性剂和冼涤剂化学与工艺学.北京:中国轻工业出版社,1997.
    16. Gu, T.; Sjoblom, J. Surfactant structure and its relation to the Krafft point, cloud point and micellization:Some empirical relationships. J. Colloids Surf. A 1992, 64:39-46.
    17. Schott, H. A linear relation between the cloud point and the number of oxyethylene units of water-soluble nonionic surfactants valid for the entire range of ethoxylation.J. Colloid Interface. Sci.2003,260:219-224.
    18. Alain, B.; Tomer, S.; John, G. D. Polyoxyethylene alkyl ether nonionic surfactants: physicochemical properties and use for cholesterol determination in food. Talanta 2001,55:69-83.
    19. Rupert, L. A. M. J. A thermodynamic model of clouding in water/alcohol ethoxylate mixtures. J. Colloid Interface. Sci.1992,153:92-105.
    20. Huibers, P. D. T.; Lobanov, V. S.; Katritzky, A. R.; Shah, D. O.; Karelson, M. Predicting surfactant cloud point from molecular structure. J. Colloid Interface Sci.1997,193:132-136.
    21. Yao, H. L.; Shi, Y. C.; Yuan, S. L.; Li, G. Z. Quantitative structure-property relationship on prediction of cloud point of surfactants. J. Disper. Sci. Technol. 2009,38:1223-1230.
    22.王文德,陈美玲,王正武.非离子表面活性剂构效关系的研究.日用化学品科学,2008,31:21-26.
    23.李丽,张笑一,王正武,李干佐等.非离子表面活性剂定量结构-性质相关性的研究.日用化学工业,2003,33:343-345.
    24. Ghasemi, J.; Ahmadi, S. Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Annali di Chimica 2007,97:69-83.
    25. Ren, Y. Y.; Liu, H. X.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. The accurate QSPR models for the prediction of nonionic surfactant cloud point. J. Colloid Interface Sci.2006,302:669-672.
    26. Ren, Y. Y.; Zhao, B. W.; Chang, Q.; Yao, X. J. QSPR modeling of nonionic surfactant cloud points:An update. J. Colloid Interface Sci.2011,358:202-207.
    27.赵国玺,朱步瑶.表面活胜剂作用原理.北京:中国轻工业出版社,2002,p.696.
    28. Gregory, P. J.; Regismond, S.; Kwetkat, K.; Zana, R. Micellization of nonionic surfactant dimers and of the corresponding surfactant monomers in aqueous solution. J. Colloid Interface Sci.2001,243:496-502.
    29. Menger, F. M.; Keiper, J. S. Gemini surfactants. Angew. Chem. Int. Ed.2000,39: 1906-1920.
    30. Guo, C. W.; Zhou, P.; Jin, S.; Yang, X. C.; Shang, Z. C. Integrating statistical and experimental protocols to model and design novel gemini surfactants with promising critical micelle concentration and low environmental risk. Chemosphere 2011,84:1608-1616.
    31. Li, Y. M.; Xu, G. Y.; Luan, Y X.; Yuan, S. L.; Xin, X. Property prediction on surfactant on surfactant by quantitative structure property relationship:krafft point and cloud point. J. Disper. Sci. Technol.2005,26:799-808.
    32. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA Version 2.7 Reference Manual; University of Florida, Gainesville:Florida,1995-1997.
    33. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. QSPR:the correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev.1995,24:279-287.
    34.王杰,刘焕香,司宏宗,姚小军,刘满仓,胡之德.基于定量结构-性质关系方法预测氨基酸的比旋光度.分析化学,2006,34(12):1759-1762.
    35. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. Comprehensive descriptors for structural and statistical analysis; Reference Manual:Version 2.0,1994.
    36. Zhou, P.; Tian, F.; Lv, F.; Shang, Z. Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome. J. Chromatogr. A 2009,1216: 3107-3116.
    37.田菲菲.肽:结构表征及统计建模:[博士学位论文].重庆:重庆大学,2010.
    38. Suykens, J. A. K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least squares support vector machines; World Scientific:Singapore,2002.
    39. Rasmussen, C. E.; Williams, C. K. I. Gaussian processes for machine learning; The MIT Press:Massachusetts,2006.
    40. ChemoAC Calibration Toolbox, Virtual Institute of Chemometrics and Industrial Metrology, Brussels, Belgium.
    41. Hu, L.; Ai, Z.; Liu, P. Predicting the binding affinity of epitope-peptides with HLA-A*0201 by encoding atom-pair non-covalent interaction information between receptor and ligands. Chem. Biol. Drug Des.2010,75:597-606.
    42. Liu, L.; He, D.; Yang, S. Applying chemometrics approaches to model and predict the binding affinities between the human amphiphysin SH3 domain and its peptide ligands. Protein Pept. Lett.2010,17:246-253.
    43. Ren, Y.; Chen, X.; Li, X. Quantitative prediction of the thermal motion and intrinsic disorder of protein cofactors in crystalline state:a case study on halide anions. J. Theor. Biol.2010,266:291-298.
    44. Pan, Y.; Lv, F.; Tian, F. Prediction of water's mobility and disorder in protein crystals using novel local hydrophobic descriptors. Mol. Inf.2010,29:195-201.
    45. Lutgarde, M. C. B.; Theo, H. R.; Mischa, L. M. B.; Ron, W. Molecular data-mining:a challenge for chemometrics. Chemometr. Intell. Lab. Syst.1999, 49:121-133.
    46. Svante, W.; Michael, S.; Lennart, E. PLS-regression:a basic tool of chemometrics. Chemometr. Intell. Lab. Syst.2001,58:109-130.
    47. Katritzky, A. R.; Mu, L.; Lobanov, V. S.; Karelson, M. Correlation of boiling points with molecular structure.1. A training set of 298 diverse organics and a test set of 9 simple inorganics. J. Phys. Chem.1996,100:10400-10407.
    48. Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn.1995,20:273-293.
    49. Suykens, J.A.K.; Vandewalle, J. Neural Process. Lett.1999,9:293-300.
    50. Rasmussen, C. E. Evaluation of Gaussian Processes and Other Methods for Non-linear Regression. PhD thesis, University of Toronto, Canada,1996.
    51. Obrezanova, O.; Csanyi, G.; Gola, J. M. R.; Segall, M. D. Gaussian processes:A method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model. 2007,47:1847-1857.
    1.夏纪鼎,倪永全.表面活性剂和洗涤剂化学与工艺学.北京:中国轻工业出版社,1997.
    2. Rosen, M. J. J.; Cohen, A. W.; Dahanayake, M.; Hua, X. Y. Relationship of structure to properties in surfactants.10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution.J.Phys. Chem.1982,86(4):541-545.
    3. Meguro, K.; Takasawa, Y.; Kawahashi, N.; Tabata, Y.; Ueno, M. Micellar properties of a series of octaethyleneglycol-n-alkyl ethers with homogeneous ethylene oxide chain and their temperature dependence. J. Colloid Interface Sci. 1981,83:50-56.
    4. Ravey, J. C.; Gherbi, A.; Stebe, M. Comparative study of fluorinated and hydrogenated nonionic surfactants.I. Surface activity properties and critical concentrations. J. Prog. Colloid Polym. Sci.1988,76:234-241.
    5. Becher. Hydrophile-Lipopbile balance:history and recent developments Langmnir Lecture-1983.1984,5:81-96
    6. Kuwamura, T. In Structure/performance relationships in surfactants, Rosen, M. J., Ed.; American Chemical Society:Washington, DC,1984.
    7. Rosen, M. J., Surfactants and Interfacial Phenonmena. Wiley. New York. Third Edition.2004.
    8. William, M. M.; Philip, H. H. Atom/fragment contribution method for estimating octanol-water partition coefficients.J. Pharm. Sci.1995,84:83-92.
    9. Stanto, D. T.; Jurs, P. C. Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem.1990,62:2323-2229.
    10. Stanto, D. T.; Jurs, P. C. Computer-assisted study of the relationship between molecular structure and surface tension of organic compounds. J. Chem. Inf. Comput. Sci.1992,32:109-115.
    11. Stankevich, M. I.; Stankevich,I. V.; Zefirov, N. S. Topological indices in organic chemistry. Russ. Chem. Rev.1988,57:191-208.
    12. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. QSPR-The correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev.1995,24:279-287.
    13. Katritzky, A. R.; Ignatchenko, E. S.; Barcock, R. A.; Lobanov, V. S.; Karelson, M. Prediction of gas chromatographic retention times and response factors using a general qualitative structure-property relationships treatment. Anal. Chem.1994, 66:1799-1807.
    14. Katritzky, A. R.; Pacureanu, L. M.; Slavov, S. H.; Dobchev, D. A.; Karelson, M. QSPR study of critical micelle concentrations of nonionic surfactants. Ind. Eng. Chem. Res.2008,47:9687-9695.
    15. Karelson, M.; Maran, U.; Wang, Y. L.; Katritzky, A. R. QSPR and QSAR models derived using large molecular descriptor spaces. A review of CODESSA applications. Collec. Czechoslovak Chem. Commun.1999,64:1551-1571.
    16. Huibers, P. D. T.; Lobanov, V. S.; Katritzky, A. R.; Shah, D. O.; Karelson, M. Prediction of critical micelle concentration using a quantitative structure property relationship approach.1. Nonionic surfactants. Langmur 1996,12:1462-1470.
    17. Wang, Z. W.; Feng. J. L.; Wang, H. J.; Cui, Z. G. Effectiveness of surface tension reduction by nonionic surfactants with quantitative structure-property relationship approach. J. Disper. Sci. Technol.2005,26:441-447.
    18.李丽,张笑一,王正武,李干佐,朱淮武,张驭时.非离子表面活性剂定量结构-性质相关性的研究.日用化学工业,2003,33(6):343-345.
    19. Wang, Z. W.; Li, G. Z.; Zhang, X. Y.; Wang, R. K.; Lou, A. J. A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants. Colloids Surf. A:Physicochem. Eng. Aspects 2002,197:37-45.
    20.陈美玲.表面活性剂的OSPR,界面吸附和自组装理论研究:[博士学位论文].无锡:江南大学,2011.
    21. Hu, J. W.; Zhang, X. Y.; Wang, Z. W. A review on progress in QSPR studies for surfactants. Int. J. Mol. Sci.2010,11(3):1020-1047.
    22.徐光宪.21世纪化学的前瞻,大学化学,2001,16:1-6.
    23.俞汝勤.化学计量学导论.长沙:湖南教育出版社1991,p.1-180.
    24.Smith, D. w.; Gill, D. S.; Hammond. J. J. Variable selection in multivariate multiple regression. J. Statist. Comput. Simul. 1985, 22: 217-227.
    25.Jackson, J.E. Principal components and factor analysis: part Ⅰ. principal components.J. Quality Tech. 1980,12: 201-213.
    26.刘秀红.生物相关系统的纺才模拟和理论研研究:[博士学位论文].杭州:浙江大学,2010.
    27.Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.: Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T. Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C; Challacombe, M.; Gill, P. M. W.; Johnson, B.G.; Chen, W.; Wong, M. W.; Andres, J. L. Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03; Gaussian, Inc. Wallingford, CT, USA, 2003.
    28.SPSS 13.0, SPSS Inc.
    29.SIMCA DPS 2000.
    30.Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA: Reference Manual; Version 2; University of Florida. 1994.
    31.陈希孺.概率论与数理统计.北京:中国科学技术出版社,1992,p.260-262.
    32.王文德,陈美玲,王正武.非离子表面活性剂构效关系的研究.日用化学品科学,2008,31(12):21-26.
    1.赵国玺.表面活性剂科学的一些进展.物理化学学报,1997,13(8):760-768.
    2.赵剑曦.新一代表面活性剂:Geminis.化学进展,1999,11(4):348-357.
    3. Menger, F. M.; Littau, C. A. Gemini Surfactants:synthesis and properties. J. Am. Chem.Soc.1991,113:1451-1452.
    4. Rosen, M. J. Geminis:a new generation of surfactants. Chemtech.1993,23(3): 30-33.
    5. Liu, L.; Rosen, M. J. The interaction of some novel diquaternary gemini surfactants with anionic surfactants. J. Colloid Interface Sci.1996,179: 454-459.
    6.钟声,朱建民,王伟.Gemini表面活性剂的研究进展.表面活性剂技术经济文集。2003,65-70.
    7.唐善发,胡望水,苏小红.阳离子双子表面活性剂的合成和乳化性能研究.表面活性剂技术经济文集,2003,1-4.
    8.袁锐.烷基芳基磺酸钠Gemini表面活性剂的合成及性能研究:[硕士学位论文].无锡:江南大学,2007.
    9. Bunton, C. A.; Robinson, L.; Schaak, J.; Stam, M. F. Catalysis of nucleophilic substitutions by micelles of dicationic detergent. Org. Chem.1971,36: 2346-2352.
    10. Zhu, Y. P.; Masuyama. A.; Kirito, Y. I. Preparation and surface-active properties of new amphipathic compounds with two phosphate groups and two long chain alkyl groups. J. Am. Chem. Soc.1991,68:539-543.
    11. Menger, F. M.; Littau, C. A. Gemini Surfactants:A new class of self-assembling molecules. J. Am. Chem. Soc.1993,115:10083-10090.
    12.杜恣毅,游毅,赵剑曦.阴离子型Gemini表面活性剂的合成.化学通报,2003,66:1-7.
    13.王学元.横酸盐型Gemini表面活性剂的合成与表征[硕士学位论文].天津:天津大学,2004.
    14.姚志钢,李干佐,董凤兰,胡艾希.Gemini表面活性剂合成进展.化学进展,2004,16(3):349-364.
    15.李在均,刘忠云,殷福珊,方银军.甲基萘双十四烷基磺酸钠双子表面活性 剂的合成研究.日用化学工业,2005,35(5):286-288.
    16.袁锐,李在均,殷福珊,方银军.萘(苯)双十四烷基双磺酸钠Gemini表面活性剂合成及性能研究.化学研究与应用,2006,18(7):851-855.
    17.李在均,刘忠云,殷福珊.新型芳基烷磺酸表面活性剂的合成及表化性能研究.江南大学学报,2004,3(4):419-422.
    18.杜西刚,路遥,李玲,孟君,杨正宇.烷基苯磺酸盐Gemini表面活性剂的结构与界面性质.精细化工,2007,24(4):328-331.
    19.杜西刚,路遥,李玲,寇建益,杨正宇.烷基苯磺酸盐Gemini表面活性剂与非离子表面活性剂CE混合溶液的胶团化.物理化学学报,2007,23(2):173-176.
    20. Du, X. G.; Lu, Y.; Li, L.; Wang, J. B.; Yang, Z. Y. Synthesis und unusual properties of novel alkylbenzene sulfonate gemini surfactants. Colloids Surface A 2006,290:132-137.
    21. Rosen, M. J. Surfactants and interfacial phenomena. Wiley,2004, p.112-115.
    22.谭中良Gemini表面活性剂的特性及耐盐活性研究.精细与专用化学品,2006,14:50-54.
    23.谭中良,韩冬,杨普华.孪连表面活性剂的性质和三次采油中应用前景.油田化学,2003,20(2):187-191.
    24.康睿宇,徐国想,曹静雅.磺酸盐型Gemini表面活性剂的研制.精细与专用化学品,2004,14:62-64.
    25.许虎君,吕春绪,叶志文.烷基二苯醚二磺酸盐的制备与性能表征.精细化工,2005,22(1):19-22.
    26. Rosen, M. J.; Liu, L. Surface activity and premicellar aggregation of some novel diquaternary Gemini surfactants. J. Am. Oil Chem. Soc.1996,73:885-890.
    27. Dreja, M.; Hintzen, W. P.; Mays, H.; Tieke, B. Cationic gemini surfactants with oligo (oxyethylene) spacer groups and their use in the olymerization of styrene in ternary microemulsion. Langmuir 1999,15:391-399.
    28. Absalana, G.; Hemmateenejad, B.; Soleimani, M.; Akhond, M.; Miri, R. Quantitative structure-micellization relationship study of Gemini surfactants using genetic-PLS and genetic-MLR. QSAR Comb. Sci.2004,23:416-425.
    29. Kumar, A.; Alami, E.; Holmberg, K.; Seredyuk, V.; Menger, F. M. Branched zwitterionic gemini surfactants micellization and interaction with ionic surfactants. Colloids Surfaces A:Physicochem. Eng. Aspects 2003,228: 197-207.
    30. Kardanpour, Z.; Hemmateenejad, B.; Khayamian, T. Wavelet neural network-based QSPR for prediction of critical micelle concentration of Gemini surfactants. Anal. Chim. Acta.2005,531:285-291.
    31. Zhou, L. M.; Jiang, X. H.; Li, Y. T.; Chen, Z.; Hu, X. Q. Synthesis and properties of a novel class of Gemini pyridinium surfactants, Langmuir 2007,23: 11404-11408.
    32. Din, K. U.; Koya, P. A. Micellar properties and related thermodynamic parameters of the 14-6-14,2Br gemini surfactant in water organic solvent mixed media. J. Chem. Eng. Data.2010,55:1921-1929.
    33. Rosen, M. J.; Mathias, J. H.; Davenport, L. Aberrant aggregation behavior in c.ationic Gemini surfactants investigated by surface tension, interfacial tension, and fluorescence methods. Langmuir 1999,15:7340-7346.
    34. Castro, M. J. L.; Kovensky, J.; Cirelli, A. F. New family of nonionic Gemini surfactants. Determination and analysis of interfacial properties. Langmuir 2002, 18:2477-2482.
    35.丁兆云.新型表面活性剂的设计、合成与性能:[博士学位论文].济南:山东大学,2007.
    36. Menger, F. M.; Keiper, J. S.; Azov, V. Gemini surfactants with acetylenic spacers. Langmuir 2000,16:2062-2067.
    37. Rosen, M. J.; Zhu, Z. H.; Hua, X. Y. Relationship of structure to properties of surfactants:Linear decyldiphenylether sulfonates. J. Am. Oil. Chem. Soc.1992, 69(1):30-33.
    38. Huibers, P. D. T.; Katritzky, A. L.; Shah, D. O. Prediction of critical micelle concentration using a Quantitative Structure-Property relationship approach.1. Nonionic surfactants. Langmuir 1999,12:1462-1470.
    39. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. Comprehensive descriptors for structural and statistical analysis; Reference Manual:Version 2.0,1994.
    40. Huibers, P. D. T. Quantum-chemical calculations of the charge distribution in ionic surfactants. Langmuir 1999,15:7546-7550.
    41.张笑一,朱淮武,李丽等.表面活性剂的QSAR/QSPR研究进展.化学进展,2003,15:351-360.
    42.金宏.统计模拟肽及蛋白质的烂持和活性:[硕士学位论文].杭州:浙江大学,2010.
    43. Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression:a basic tool of chemometrics. Chemom. Intell Lab. SysL.2001,58(2):109-130.
    44. Zana, R.; Benrraou, M.; Rueff, R. Alkanediyl-α,ω-bis(dimethylalkyl-ammonium bromide) surfactants.1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree, Langmuir 1991,7:1072-1075.
    45.赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2002,p.701.
    46. Rosen, M. J. Surfactants and inter facial phenomena. Wiley,2004, p.128.
    47. Lianos, P.; Zana, R. Micelles of tetradecyltrialkylammonium bromides with fluorescent probes. J. Colloid Interface Sci. 1982,88:594-598.
    48. Guo, C. W.; Zhou, P.; Jin, S.; Yang, X. C.; Shang, Z. C. Integrating statistical and experimental protocols to model and design novel gemini surfactants with promising critical micelle concentration and low environmental risk. Chemosphere 2011,84:1608-1616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700