用户名: 密码: 验证码:
湖南大义山锡矿田构造控矿作用与成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大义山锡矿田位于南岭成矿带中段北缘,属北西向邵阳—郴州锡多金属成矿带的南东段,是湖南省内重要的有色金属成矿区,以李四光教授所命名的“大义山式构造”和“大义山式花岗岩”特殊的北西向构造型式而确立了该区在南岭地区地质找矿研究方面的重要地位。区内锡多金属矿受构造控制明显,研究区内构造控矿作用具有重要意义。
     本文在总结近年来取得的勘查成果基础上,结合勘查实践,从区域地质特征入手,以白沙子岭、狮形岭及铜盆岭等典型矿区为代表,采用区域成矿综合研究、成矿构造数值模拟及矿石气液包裹体与氢、氧、硫、铅同位素测量等手段,研究了矿田构造控矿作用特征及成矿机理,总结了区内成矿规律,对区内勘查工作的部署有直接的指导作用。
     1、研究和总结了区域及矿田地质特征
     区内出露震旦—第四纪地层,其中与锡成矿关系密切的主要为泥盆—石炭纪碳酸盐岩。区域性北西向邵阳——郴州走滑断裂带具多期次构造活动,具有控岩、控相和控矿作用,控制了大义山岩体、大义山式断裂带及与其相关的锡多金属矿的展布。断裂带发生于加里东期,印支期发生强烈左旋活动,定型于燕山晚期。大义山岩体沿断裂带呈多期多阶段被动侵位,依岩石谱系单位自早至晚划分为中三叠世双凤庵、早侏罗世关口、中侏罗世汤市铺、晚侏罗世泥板田等4个超单元及16个单元,在空间上沿邵阳—郴州走滑断裂带呈北西向展布,侵位时代属于印支期(278-210Ma)至燕山期(185~154Ma,148~128Ma),并呈自南东往北西渐次变新的特点,岩性自早至晚主要为角闪石花岗岩、二长花岗岩、二云母二长花岗岩等。其中与区内锡矿关系密切的为汤市铺超单元晚次介头单元细粒花岗岩。
     2、研究了区内主要锡矿化类型特征及空间分布
     区内主要发育云英岩脉型、岩体型和矽卡岩型等锡矿类型。云英岩脉型受大义山式断裂带控制,呈带、呈组集中分布,多与岩体型锡矿相伴产出,主要分布于猫仔山、藤山坳、狮形岭、花山岭等矿区。岩体型锡矿受成矿岩体上凸构造控制,呈透镜状产于汤市铺超单元介头单元顶部,代表性矿床主要有台子上、白沙子岭、师茅冲等。矽卡岩型锡矿依产状分为接触交代矽卡岩和层间矽卡岩两个亚型,受岩体接触带构造控制,主要有铜盆岭、鼎新窿、新生等矿床。
     区内矿化受邵阳——郴州走滑断裂带控制呈北西向展布,自东向西分为东、中、西三个矿化带,其中东带产于大义山岩体东接触带,矿化类型以矽卡岩型为主;中带分布于大义山岩体内,主要分布云英岩脉型和岩体型;西带分布于大义山岩体西接触带,以中低温矿化类型为主。在垂向上,自下而上分布有岩体型、云英岩脉型及矽卡岩型锡矿化。
     3、采用计算机数值模拟研究了矿田内构造形成机制和控岩控矿作用,认为该构造带控制了大义山复式花岗岩体及与其相关的锡多金属矿的展布。
     从模拟结果综合分析可以得出,大义山地区在区域构造活动背景下,呈NW走向的区域走滑断裂的左行压扭作用控制了大义山岩体及大义山锡矿田的区域构造应力场的特征。最大主压应力的异常区控制了该区域节理裂隙的发育及其分布方向,剪切应力的异常高值区域控制了次级断裂和节理裂隙的发育,以及后续矿脉的发育。该区域的局部应力场特征也控制了研究区岩石裂隙和孔隙中流体的压力,进而控制了流体的运移规律,即成矿流体由高应力区向低应力区运移和聚集。由于流体压力的降低,更有利于流体中所溶解矿质的沉淀和析出。
     4、解剖典型矿床,研究了主要锡矿化类型的矿床地质、地球化学特征,总结了区内锡矿成矿物理化学条件
     以白沙子岭、狮形岭及铜盆岭等典型矿床,重点研究了区内岩体型、云英岩脉型及矽卡岩型等三个主要锡矿化类型的地质、地球化学特征。白沙子岭矿区主要发育岩体型和云英岩脉型两个矿化类型,岩体型锡矿不仅与成矿岩体介头单元演化有关,而且与构造作用密切相关,云英岩脉型锡矿脉分布其顶部。狮形岭锡矿床主要发育云英岩脉型锡矿,在空间上呈雁列产出。铜盆岭锡矿床以矽卡岩型锡矿为主,主要分布于岩体接触带的垂凹部位。
     研究了白沙子岭、狮形岭及铜盆岭主要锡矿化类型的流体包裹体,氢、氧、硫、铅等同位素特征。岩体型和云英岩脉型锡矿石中矿物流体包裹体类型较简单,以气液两相包裹体为主。均一温度主要分布于中高温范围(180~300℃),并存在130~140℃,160~200℃,250~290℃等3个峰值区。岩体型锡矿石包裹体流体盐度变化范围为1.40%~11.22%,平均值为4.61%。云英岩脉型锡矿石包裹体流体盐度变化范围为1.40%~10.22%,较岩体型矿石略高。两类矿石包裹体流体盐度较低且变化范围相对较大,ω(NaCleq)一般均<10%,属低盐度流体。成矿流体可能存在中高温、低—较高盐度和高温、低盐度2种流体源,即A-的流体;B-的流体。云英岩脉型和岩体型矿体具有相似的成矿流体源。岩体型锡矿石流体包裹体均一压力相差较大,为(67~537)×105Pa,平均170×105Pa。云英岩脉型锡矿石包裹体均一压力为(89~637)×105Pa,平均277x105Pa,较岩体型矿石高。
     岩体型矿石δ34S值为0.3‰~2.8‰,平均1.59‰;云英岩脉型矿石δ34s值为0.1‰-0.7‰,平均0.40%‰。矿石中硫的来源相对单一。矽卡岩型锡矿石中δ34S值出现负值,为-0.2~+2.4‰,平均0.06%‰,但硫同位素变化范围较小,略偏离零值,组成较稳定,可能为混合来源硫。
     白沙子岭矿区的岩体型锡矿石与铜盆岭矿区的矽卡岩型锡矿石等3类矿石的铅同位素组成基本一致。在铅同位素构造模式图中,铅同位素数据落在造山带与上地壳之间,表明铅的来源可能是岩浆来源的造山带与地层中铅相互作用的结果。
     岩体型锡矿石δD为-79‰,δ18OH2O为6.64‰。云英岩脉型锡矿石δD为-128‰~-54‰,δ18OH2O为3.64‰~5.34‰。矽卡岩型锡矿石δD为-68‰~-48‰,δ18OH2O为3.64‰~5.34‰。氢氧同位关系图显示,区内成矿流体主要有:正常岩浆水和大气降水与岩浆水混合型两种。
     5、研究了大义山矿田成矿机理
     由氢、氧、硫、铅同位素示踪,结合成岩成矿时代和成矿空间分布特征等表明,区内成矿物质主要来源于岩浆,其次有少量的地层物质参与。构造和成矿热力系统是驱动流体运移的主要动力。在此基础上建立了区内成矿地质模式。
     6、总结了区内成矿规律,指出了区内找矿方向
     成矿规律主要有:(1)等间距分布规律。区内东、中、西三个矿化带中矿床(点)呈等间距分布,间距一般为5-7km。(2)水平与垂向分布规律。区内锡矿化在水平方向上,自东往西分为东、中、西三个矿化带;在垂向上,自岩体往围岩依次发育岩体型、云英岩脉型、构造蚀变带型锡矿及接触带矽卡岩型、似层状矽卡岩锡矿等类型。(3)成矿界面倾斜规律。矿田内中矿化带主要发育云英岩脉型和岩体型锡矿,其矿化富集具有明显的矿化界面。矿田内自北西往南东矿化标高依次降低,中矿化带由北西部花山岭矿区的500-700m标高逐渐变为南东部猫仔山矿区的100-300m标高。东矿化带由北西部鼎新窿矿区的400~500m标高逐渐变为南东部万金窝矿区的-100-200m标高。
     通过对大义山地区构造控矿作用和成矿机理的研究,总结了今后找矿的方向,提出了藤山坳北部一带、铜盆岭——塔下一带等多个有利找矿靶区。
     本文的创新之处在于:(1)本次研究发现了岩体型锡矿是在成矿构造-岩浆动态复合控制作用下形成;(2)采用数值模拟方法研究了区内锡矿的控矿作用和形成机制。
The Dayishan tin ore field is located at the northern margin of the middle Nanling metallogenic belt. It is also located at the south-eastern segment of the Shaoyang-Chenzhou tin polymetallic metallogenic belt. It is one of important metal ore deposits in the Hunan province. The north-west trending structural type, including' Dayishan type Structure' and 'Dayishan type granite massif' named by Professor G. S.Lee, makes the region an important position in the geological prospecting in the Nanling area. It is obvious that the tin polymetallic deposits are controlled by the structures in this region. Therefore, to study the tectonic ore-controlling is of great significance.
     Based on recent results of exploration and the regional geological features, combined with the fluid inclusions and isotope studies (hydrogen, oxygen, sulfur, lead, et al.), this dissertation performs several case studies on typical mining areas, for example the Baishaziling, Shixingling, and Tongpenling, to investigate the tectonic structures that controlled the ore formation and the mineralization regime of the tin deposits in the Dayishan area. The results would be indicative for the future ore explorations in this area.
     Several results and conclusions are obtained as follows:
     (1) Summarized the geological features in both the ore field and the region.
     In the research area, Sinian-Quaternary sediments are predominant, among which the Devonian-Carboniferous carbonates are closely related with the tin mineralization. This dissertation summarized the regional geological features, including the stratum, tectonic structures, and magmatic rock characteristics and have gotten a conclusion that the Chenzhou-Shaoyang strike-slip fault (called as CZSY Strike-slip fault) with a multi-stage tectonic activity controls the distribution of magmatic rocks and the distribution of the associated tin polymetallic deposits in the Indosinian-Yanshanian period. The fault zone started development in the Caledonian period and occurred strong left-lateral activities in the Indosinian period. The associated magmatic activity was strong in the Mesozoic.
     The Dayishan granite massif that intruded along the faults during multi-stages is divided into four super-units and16sub-units according to the lithodemic units. The four super-units are called as the Middle Triassic Shuangfengan unit, the Early Jurassic Guankou unit, the Middle Jurassic Tangshipu unit, and the Late Jurassic Nibantian unit, respectively in time sequence. These units are distributed along the Shaoyang-Chenzhou strike-slip faults striking NW, and their emplacement time is from the Indosinian (278~210Ma) to Yanshanian period (185154Ma,148~128Ma). The lithology of these units is composed of hornblende granite, monzonitic granite, and muscovite-biotite monzonitic granite. The age of these units becomes smaller from south-east to north-west gradually. The fine-grained granite in the Tangshi super unit is closely related to the tin deposits in the Dayishan area.
     (2) Studied the characteristics and spatial distribution of the major tin mineralization in the research area.
     The tin deposits in our research area mainly include the greisen-vein type, granite-massif type, and skarn type. The greisen-vein type tin deposits are controlled by fault zones, called the Dayishan style faults. Such type of tin deposits occur in belts and groups, generally accompanied by granite-massif type tin deposits, and are mainly distributed in the Maozaishan, Tengshanao, Shixing ridge and Huashan ridge ore districts, et al. The granite-massif type tin deposits are controlled by the'convex structures'developed in the granite massif and distributed in the Tangshipu super unit as lenticular shapes. The typical granite-massif type of tin deposits in this area are Taishangzi, Baishazi hill, and Shimaochong ore deposits. The skarn type tin deposits can be divided into the contact metasomatism and interlamination two sub types. They are controlled by the structures developed in the contact zone. Typical deposits are the Tongpen hill, Dianxinlong, and Xinsheng tin deposits, el al.
     The mineralized zone is elongate in NW trending and controlled by the Shaoyang Chenzhou strike-slip fault. From east to west, this zone can be divided into the eastern, central and western mineralized segments. The eastern mineralized segment is developed in the eastern contact belt between the Dayishan granite massif and the country rocks, and is related to the skarn type mineralization. The central segment is located in the Dayishan granite massif and is related to both the greisen-vein type and granite-massif type mineralization. The western zone is located in the west contact belt between the granite massif and the country rocks and is related to low-temperature mineralization. Vertically, from the bottom to up, the mineralization type of the tin deposits is the greisen-vein type, granite-massif type, and the skarn type, respectively.
     (3) A numeric modeling is performed to investigate the formation mechanism of tectonic features and its controlling on the petrology and ore formation in this region, which reveals that the distribution of the Dayishan Composite granite body and its associated tin-polymetallic deposits is controlled by the CZSY Strike-slip fault.
     The simulation results reveals that the regional tectonic activity and the left-lateral slip of the NW trending strike-slip fault, the Shaoyang-Chenzhou strike-slip fault, controls the tectonic stress field in the Dayishan tin ore field. The maximum principal compressive stress anomalies controlled the development, distribution and direction of regional joints and fractures. The abnormally high shear stresses control the development of the secondary fractures in this region, and the subsequent development of veins. The local stresses also influenced the pore fluid pressure among rock fractures, thereby controlling the fluid migration. The metallogenic fluid migrates from the high pressure area to the low pressure area and accumulates in the low pressure areas. When the high pressure fluid migrates to the low stress areas, the fluid pressure is reduced, and the dissolved minerals in the fluid are more conducive to deposit and fulfill the mineralization.
     (4) Analyze three typical tin deposits to study the geological and geochemical features of the tin deposits and to summarize the physical and chemical conditions of the tin mineralization.
     As typical deposit examples, the spatial distribution and relationships of three mineralization types, including the massif-type, the greisen-vein type, and the skarn type mineralization in the Baishazi Hill, Shixing Hill and Tongpen Hill districts are studied respectively. By the fluid inclusions and isotope studies (including hydrogen, oxygen, sulfur, lead, et al.), this paper summarizes the physical and chemical conditions of the tin ore formation and discusses the material source and dynamics of mineralization in the research area.
     In the Baishazi hill ore field, two types of mineralization, the granite massif type and greisen vein type, are developed. The granite massif type tin mineralization is not only related to the evolution of the Jietou granite unit, but also related to the tectonic frame of this region. The greisen type tin veins are distributed on its top. The Tin greisen veins are mainly developed as en echelon in space in the Shixing hill tin deposits. The skarn type tin deposits are developed in the Tongpen hill area. These deposits are mainly distributed in the vertical contact parts between the granite massif and wall rock.
     Furthermore, this paper also studied the fluid inclusions and isotopes (including hydrogen, oxygen, sulfur, lead, et al.) of the primary types of tin mineralization in the Baishazi hill, Shixing hill, and Tongpen hill areas. The type of fluid inclusions in both the granite-massif type and greisen-vein type tin ores is relatively simple, mainly as the gas-liquid two-phase inclusions. Homogenization temperatures are mainly in the high temperature range (180~300℃), and with3peak temperatures of130~140℃,160~200℃,250~290℃.. The salinity in the granite massif type tin ore fluid inclusions ranges from1.40%to11.22%, with an average value of4.61%. And the salinity in the Greisen vein type tin ore fluid inclusions range from1.40%to10.22%, slightly higher than the granite massif type tin ores. The salinity range in the two types of fluid inclusions is relatively large, ω(NaCleq) are generally<10%, which is low-salinity fluids.
     The metallogenic fluid may come from two different sources:medium-high temperature and low-high salinity fluid source, called A-fluid; and high temperature and low salinity fluid source, called B-fluids. The greisen vein type and granite massif type ore-forming fluids have similar sources.
     The homogenization pressure in the granite massif type tin ore fluid inclusions varies within the scope of-67-537×105Pa and the average value is170×105Pa. The homogenization pressure in the greisen vein type tin ore fluid inclusions varies within the range of89~637×105Pa, with an average of277×105Pa, which is higher than in the granite massif type.
     The δ34S value in the granite massif type ores is range from-0.3‰to2.8‰and the average is~1.59‰. The δ34S value in the greisen vein type ores ranges from-0.1‰~0.7‰with an average value of0.40‰. The sources of sulfur in the ore deposits are relatively simple. The δ34S values in tin skarn ore contains negative values ranging from-0.2~+2.4‰and the average value is0.06‰, but with a smaller range of sulfur isotopic variations, slightly deviate from the zero. Its components are more stable. The sulfur may have mixed sources.
     The Baishazi granite massif type tin deposit and the Tongpen hill skarn type tin deposit have the same isotopic Pb composition. In the Pb isotopic structure model, the Pb isotope data falls between orogenic belt and upper crust, indicating that the source of Pb comes from both the orogenic magma and the sediments.
     The8D in the granite massif type ores is-79%o, and the δ18OH2O is6.64‰. The δD value in the greisen vein type ores is in the range of-128‰--54‰, and the δ18OH2O of3.64‰~5.34‰. The8D value in the skarn type ores is range from-68‰~-48‰, and the δ18OH2O of3.94‰~7.64‰. Hydrogen isotope diagram shows that the forming fluids in this region have two forms: normal magmatic water, and a mixture of reception water and magmatic water.
     (5) Studied the mineralization mechanism of the Dayishan tin ore field.
     Based on the isotopes tracing data (hydrogen, oxygen, sulfur, and Pb), the age of diagenesis and ore mineralization, and the spatial distribution characteristics of the ore deposits, we conclude that the minerals mainly come from the magma, and a small amount from sediments. Structures and mineralization thermal system are the main driving force promoting fluid migration. Then, a metallogenic model in this area is proposed. The hydrothermal fluids come from the mix of mantle and crust sources. The Shaoyang-Chenzhou strike-slip fault activity provides the impetus for the mineralization.
     (6) Summarized the metallogenic regularity and pointed out the future prospecting direction.
     The main metallogenic regularities of our research area are:(1) The ore deposits occur in equally space. The eastern, central and western segments of mineralized zones in this region were equally spaced for a distance of5-7km;(2) Regularity in the horizontal and vertical distribution. In the horizontal direction, the tin mineralization zone can be divided into the eastern, central and western segments; in the vertical direction, from the granite massif to the country rock, the granite massif, greisen vein, structural alteration zone, the contact zone skarn, the stratoid skarn and other types of tin deposits developed.(3) Regularity in the tilted ore interface. The mineralized zones in the ore field are mainly developed as greisen tin vein type and granite massif type tin deposits, which have significant mineralization enrichment interface. From the northwest to southeast, the magnitude of mineralization interface decreases. In the central mineralized zone, from the northwestern Huashan hill mine to the southeastern Maozai mountain, the elevation gradually turned from500~700m to100~300m. In the eastern mineralized zone, from the northwest Dianxinlong mine to southeastern nest million gold mine, the elevation gradually turned from400~500m to-100~200m.
     Based on the above conclusions about the tectonic controls and metallogenic mechanism in the Dayishan district, several advanced prospecting targets are proposed, including the northern part of the Tenshanao and the region from the Tongpen hill to Taxia. At present, these targets have already achieved some good prospecting results.
     The innovations of this dissertation include:(1) this study found that the formation of the massif-type tin deposit is controlled by both the tectonic and magmatic dynamics, and resolved its possible metallogenic mechanism;(2) applying numerical simulations to study the formation mechanism of the massif-type tin role deposits.
引文
[1]李四光.地质力学概论.北京:科学出版社,1973.35-40.
    [2]韩润生.初论构造成矿动力学及其隐伏矿定位预测研究内容和方法.地质与勘探.2003,39(1):5-9.
    [3]柏道远,黄建中,王先辉,等.湖南邵阳—郴州北西向断裂左旋走滑暨水口山—香花岭南北向构造成因.中国地质.2006,33(6):56-63.
    [4]周厚祥,杨贵花,,蒋中和,等.大义山锡矿田矿床地质特征及矿床成因.华南地质与矿产,2005,2:87-94.
    [5]刘铁生.大义山矿田岩体型锡矿地质特征及矿床成因.中国地质,2002,29(4):411-415.
    [6]RogerG.Taylor著.云南省地质科学研究所情报室、西南冶金地质勘探公司地质研究所情报室合译.锡矿床地质学.北京:地质出版社,1983.1-70.
    [7]陈裕淇,陈毓川,赵一鸣,等.初论成矿系列问题.中国地质科学院院报,1979,第1号:33-58.
    [8]陈裕淇,陈毓川,赵一鸣,等.再论成矿系列问题.中国地质科学院院报,1983a,第6号:1-33.
    [9]张生辉,陈富文,魏道芳.南岭中段锡矿主要类型及找矿.地质与勘探.2005,41(4):18-22.
    [10]蔡明海,汪雄武,何龙清,等.南岭中段锡矿床主要类型及找矿模式.华南地质与矿产,2005,2:22-29.
    [11]羊士赣,王瑞湖.南岭西段锡矿类型与找矿前景.矿产与地质,2004,18(3):207-211.
    [12]孟良义.花岗岩与成矿.科学出版社,1993.46-65.
    [13]季克俭,吴汉学.热液矿床的三元成矿模式及其应用[J].中国地质科学院矿床地质研究所刊,1980:25-26.
    [14]韩发.大厂锡多金属矿床地质及成因.北京:地质出版社,1997.
    [15]雷良奇.广西大厂超大型锡-多金属矿床的成矿机理.广西师范大学出版社,1998.61-62.
    [16]Oftedahl, C., On exhalat ive-sediment ary ores. Geol[J].St ock hoim Forth,1958,(4) 80:1-19.
    [17]Emmons,W.H.,On the mechanicsm of the deposition of certain metalliferous lode systems associated with granitic batholiths. in:Ore Deposits of the Western States,New York,Amer.Inst.Mining Engineers,1933.327-349
    [18]王昌烈,罗仕徽,胥友志,等.柿竹园钨多金属矿床地质.北京:地质出版社.1987.29-30.
    [19]於崇文,鲍征宇,岑况,等.热液成矿作用动力学.中国地质大学出版社,1993.
    [20]莫柱孙,叶伯丹,潘维祖,等.南岭花岗岩地质学.北京:地质出版社,1980.231-232.
    [21]南京大学地质系.华南不同时代花岗岩类及其与成矿关系.北京:科学出版社.1981.279-281.
    [22]N.J.Jackson.Geological Review of Cornubian Tin Area[J].Gel. Soc. Malaysia. Bulletin.11.Dec.1979:211.
    [23]朱炎龄,李崇佑,朱运淮.赣南钨矿地质.南昌:江西人民出版社.1981,88-89.
    [24]贺同兴,卢良兆,李树勋,等.变质岩岩石学.北京:地质出版社.1988,84-85.
    [25]王增润,罗贤昌,吴延之.香花岭有色稀有多金属矿田综合成矿模式.见(in):湖南省国土资源厅,湖南省地质学会著.湖南地学新进展.长沙:湖南科学出版社,1995.56-58.
    [26]付建明,李华芹,屈文俊,等.湘南九嶷山大坳钨锡矿的Re-Os同位素定年研究.中国地质,2007,34(4):651-656.
    [27]丰成友,丰耀东,许建祥,等.赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学学证据.中国地质,2007,34(4):642-650.
    [28]陈富文,付建明.南岭中生代主要成锡花岗岩地质地球化学特征与锡矿成矿规律.华南地质与矿产,2005,2:13-21.
    [29]黄革非,龚述清,蒋希伟,等.湘南骑田岭锡矿成矿规律探讨.地质通报,2003,22(6):445-450.
    [30]#12
    [31] Jacksun K. J. et al.,1985, Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin:calculation of the solubility of cassiterite at high pressures and temperature. Geochimicaand Cosmochimica Acta,Vol.49,1-22.
    [32]管士平.川西若洛隆-措莫隆复式花岗岩体岩石学及其有关锡矿成矿的物理化学条件.特提斯地质,2009,23:58-72.
    [33] Thiery, R., Vidal, J., Dubessy, J.. Phase equilibria modeling applied to fluid inclusions:liquid-vapour equilibria and calculation of the molar volume in the CO2-CH4-N2-system. Geochim. Cosmochim,1994, Acta 58:1073-1082.
    [34] Stemprok, M.. Solubility of tin, tungsten and molybdenum oxides in felsic magmas.Mineralium Deposita,1990,25:205-212.
    [35] Taylor, J.R., Wall, V.J.. The behavior of tin in granitoid magmas. Economic Geology 87,1992:403-420.
    [36] Robie, R.A., Hemingway, B.S.. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull,1995,21(31):461.
    [37] A. Moura, A. D'oria, A.M.R. Neiva, etc.Metallogenesis at the Carris W-Mo-Sn deposit (Geres, Portugal):Constraintsfrom fluid inclusions, mineral geochemistry, Re-Os and He-Ar isotopes. Ore Geology Reviews,2013,08(001):1-14.
    [38] Art A. Migdisov, A.E. Williams-Jones. An experimental study of cassiterite solubility in HCl-bearingwater vapour at temperatures up to 3508C.Implications for tin ore formation. Chemical Geology,2005,217:29-40.
    [39]徐文炘.我国锡矿床的同位素地球化学的研究.矿产与地质,1995,9(1):1-11.
    [40]李桃叶,刘家齐.湘南骑田岭芙蓉锡矿田流体包裹体特征和成分.矿产与地质,2005,3:44-49.
    [41]沈冰,金明霞.花岗岩中沸腾包裹体的找矿意义.四川地质学,2003,23(2):103-105.
    [42]陆琦,刘惠芳.柿竹园多金属矿床的分形时-空结构——以矽卡岩矿物中Sn等成矿元素分布特征为例.地球科学——中国地质大学学报,2001,26(2).
    [43]陈省临,陈子龙,陈旭,等.钨、锡液态分离的新证据.中南工业大学学报,1995,26(2):143-146.
    [44]Deckart, K., Clark, A.H., Aguilar, C., Vargas, R., Bertens, A., Mortensen, J.K., Fanning, M.. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile:implications of an integrated U-Pb and 40Ar/39Ar database.Econ. Geol,2005,100,905-934.
    [45]Stemprok, M.. The origin and mineralization of the tin-bearing granites of the Krusne hory Province:a 3-D approach with new data on ore deposit zoning around a granite batholith. Glob. Tectonics Metall.2003,8:1-4.
    [46]Graney, J.R., Kesler, S.E., Gas composition of inclusion fluid in ore deposits:is there a relation to magmas In:Thompson, J.F.H. Ed.., Magmas, Fluids, and Ore Deposits.Short Course, Vol.23.Mineralogical Association of Canada, Victoria, British Columbia, 1995,:221-245.
    [47]Geological Party. Geology of Tin Deposit in Gejiu Area. Metallurgical Industry Publishing House, Beijing,1984.50-90 (in Chinese with English abstract).
    [48]Ahlfeld, F.. Zoning in the Bolivia tin belt. Econ. Geol.1941,36:569-588.
    [49]Baumgartner, R., Fontbote,L., Vennemann,T.,Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Econ. Geol.2008,103:493-537.
    [50]Cheng, Y.B., Mao, J.W.. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China:constraints on their petrogenesis and corresponding tectonic setting. Lithos 2010,120:258-276.
    [51]Cheng, Y.B., Mao, J.W.. Petrogenesis and geodynamic setting of the Gejiu igneous complex from the western Cathaysia block, South China:Lithos, in revision.2012,212-213.
    [52]李林,罗郧.华南地区锡多金属矿床空间数据统计分析.地质科技情报,2004,23(2):94-98.
    [53]李祖斌.中国东部北西向构造.北京:地震出版社,1992.
    [54]王甫仁.试论湖南省北西向构造及其与成岩成矿的关系.湖南地质,2000,(2):1-10.
    [55]彭和求,伍光英.湘南“大义山式构造”的厘定及地质意义.湖南地质,2000,19(2):87-89.
    [56]李建威,李先福,李紫金,等.走滑变形过程中的流体包裹体研究—以湘东地区为例.大地构造与成矿,1999,23(3):240-247.
    [57]傅昭仁,李紫金,郑大瑜.湘赣边区NNE向走滑造山带构造发展样式.地学前缘,1999,6(4):263-272.
    [58]李先福,李建威,傅昭仁.湘赣边鹿井矿田与走滑断层有关的铀矿化作用.地球科学——中国地质大学学报,1999,24(5):476-479.
    [59]李先福,晏同珍,傅昭仁.湘东—赣西NNE向走滑断裂与地震、地热的关系.地质力学学报,2000,6(4):73-78.
    [60]姜端午,李大明,李文辉.湖南省北西向构造遥感地质特征初探.湖南地质,2000,19(4):229-233.
    [61]伍光英,彭和求,贾宝华.湘南大义山岩体地质特征及其侵位机制分析[J].华南地质与矿产,2000,3:1-7.
    [62]贾宝华,伍光英,何江南,等.湖南花岗岩体侵位机制初步研究[J].长沙:湖南地质出版社,1998.
    [63]刘耀荣,邝军,马铁球,等.湖南大义山花岗岩南体黑云母40Ar-39Ar定年及地质意义[J].资源调查与环境,2005,24(4):244-249.
    [64]湖南地质矿产勘查开发局.湖南花岗岩单元—超单元划分及其成矿专属性.湖南地质(增刊8),1995.
    [65]陈毓川,裴荣富.南岭地区与中生代花岗岩有关的有色及稀有金属矿床地质[M].北京:地质出版社,1985.1-70.
    [66]陈必河,肖冬贵,周国祥.湖南邵阳-郴州北西向构造带花岗岩成岩与成矿[J].华南地质与矿产,2001,2:58-61.
    [67]吴迎春,郑伯仁,唐朝晖.湖南大义山地区锡矿床特征及找矿前景分析.地质与勘探,2008,44(4):14-19.
    [68]曾志方,曾佐勋,曾永红,等.湖南省桂阳县白沙子岭锡矿床地质、地球化学及成因.中国地质.2008,35(4):726-737.
    [69]费利东,全铁军,孔华,等.湖南省永兴县新生矿区隐伏岩体地质地球化学特征及其与成矿的关系.地质与勘探,2012,48(1):14-19.
    [70]湖南省地质矿产局.湖南省区域地质志.北京:地质出版社,1988..534-596.
    [71]彭振安.含锡花岗岩类地质地球化学特征及成矿性评价.矿产与地质.1991,5(23):240-246.
    [72]伍光英,潘仲芳,李金冬,等.湘南大义山花岗岩地质地球化学特征及其与成矿的关系.中国地质,2005,32(3):434-442.
    [73]蔡宏渊.稀土元素地球化学在锡矿成因及找矿研究中的应用.矿产与地质.1991,5(4):262-271.
    [74]李福顺,符海华.大义山云英岩脉型锡矿容矿构造特征.华南地质与矿产,2002,(1):29-33.
    [75]高秉章,兴大卫,郑基俭,等.花岗岩类区1:5万区域地质填图方法指南.武汉:中国地质大学出版社,1991.49.
    [76]杜方权,王伏泉,王开怡,等.构造成矿与找矿—以香花岭至千里山一带及其邻侧地区为例.北京:地质出版社,1991:75-77.
    [77]裴荣富,王永磊,王浩琳.南岭钨锡多金属矿床成矿系列与构造岩浆侵位接触构造动力成矿专属.中国地质,2009,36(3):483-489.
    [78]翟裕生.矿田构造学概论.北京:冶金工业出版社,1984.198-232.
    [79]梁祥济,张仲明,李德兴.侵人岩与碳酸盐岩接触形成交代岩的实验研究.中国地质科学院地质研究所所刊,1986,15:166-182.
    [80]於崇文,岑况,鲍征宇,等.热液成矿作用动力学.武汉:中国地质大学出版社,1993.265-266.
    [81]Burnham,C.W.,Ohmoto,H..Late-stage processes of felsic magmtism.Ishihara,S.,Takenouchi,S.,1980.2787-2794.
    [82]Potter R W II,Clynne M A,Brown D L.Freezing Point depression of aqueous sodium chloride solution,Geol.,1978,73 (2):284-285.
    [83]Roedder E.Fluid inclusions as samples of ore fluids[C]//Barnes H L ed.Geochemistry of Hydrothermal Ore Deposits (2nd edn).New York:John Wiley & Sons,1979:684-737.
    [84]Geological Party. Geology of Tin Deposit in Gejiu Area. Metallurgical Industry Publishing House, Beijing,1984,50-90 (in Chinese with English abstract).
    [85]Ahlfeld, F.. Zoning in the Bolivia tin belt. Econ. Geol.1941,36:569-588.
    [86]Baumgartner, R., Fontbote,L.Vennemann,T.. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Econ. Geol. 2008,103:493-537.
    [87]刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999:47.
    [88]陈柏林,杨屹,王小凤,等.阿尔金北缘大平沟金矿床成因.矿床地质,2005,24(2):168-175.
    [89]Sinclair W D. Tungsten-molybdenum and tin oleposits at mountpleasant,new brunswick,Canada. Publication in Czech geological Survey,Germany,1994,410-417.
    [90]Holland H D.1972. Granites, so lut ions, and base metal depo sits. Econl Geol.,67 (3): 281-3011.
    [91]Taylor J.R, W all V. J.1992. The behavio r oft in in granito id magmas. Econ. Geol.,87 (2):403-4201.
    [92]Yue Shucang, L ei Xinyong, Xu Xiaochun.1995. T in and tungsten depo sits in eastern Guangdong P rovince, China.
    [93]Discussions based on fluid in clusions and isotopes. Scient ia Geo lgica Sinica,4 (2): 221-2371.
    [94]Ohmoto.H. Systematics of sulfur and carbor isotopes in hydrothermal ore desposits. Econ Geol,67,1975.
    [95]Ohmoto.H.Geochemistry of hydrothermal ore desposit and edition.H.L Barnes eds.fohe wiley.New York,1979.
    [96]Doe B R,Zartman R E.plumbotectonics 1.the phanerozoic[C]//Barnes H L.Geochemistry of Hydrothermal ore deposit 2nd. Wilev interscience:1979,Chap 2:22-70.
    [97]徐晓春,岳书仓.粤东锡(钨、铜)多金属矿床的成矿物质来源和成矿作用.SC IENTIA GEOLOGICA SINICA,1999,34 (1):78-89.
    [98]孙雄,马宗晋,洪汉净.初论“构造流体动力学”.地学前缘,3(3,4):138-143.
    [99]Harms U, Figgemeier C, Huenges E, et al. Recent results of 7 km ultradeep drilling, KTB. Fluids and their pathways in the Variscan basement of Germany.Geofluid'93-Contributions to an International Conference onfluid evolution,migration and interaction in rock. Printed by British Gas Exploration and Production.1993.37-39.
    [100]吕新彪,姚书振,周宗桂.江西九瑞地区岩浆系统与成矿.华南地质与矿产,1997(1):27-36.
    [101]卢树东,杜杨松,肖锷,等.江西彭山锡(铅锌)多金属矿田构造地质特征及成矿机理探讨.大地构造与成矿学,2004,28(3):297-305.
    [102]金明霞,王洁民,高锦曦.残浆沸腾与锡钨成矿作用.地球学报,1999,20(3):265-271.
    [103]伍光英,潘仲芳,侯增谦,等.湖南大义山锡多金属矿田矿体分布规律、控矿因素及找矿方向.地质与勘探,2005,41(2):6-11.
    [104]孙国胜,姚凤良,胡瑞忠,等.玲珑金矿田矿体富集规律及其控制因素.大地构造与成矿学,2001,25(4):464-470.
    [105]董和金.论成矿台阶.矿床地质,2002,21(增刊):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700