用户名: 密码: 验证码:
中国野生华东葡萄抗白粉病新基因VpGLOX的表达与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄是全世界重要的经济水果,葡萄白粉病的发生严重危害其正常生长和代谢。中国野生葡萄包含众多抗病种质资源。本实验室前期从高抗白粉病的中国野生华东葡萄白河-35-1中获得一条抗白粉病新基因乙二醛氧化酶基因(Vitis pseudoreticulata glyoxal oxidase gene, VpGLOX),随后对其进行生物信息学分析、原核表达、抗体制备的研究。本研究就是在此基础上,通过semi-quantitative RT-PCR、Real Time PCR、Western Blot、胶体金免疫电镜、瞬时表达、组织化学染色等技术分析并验证VpGLOX的功能。主要取得的结果如下:
     1.白粉菌诱导后,VpGLOX在mRNA和蛋白水平的表达分析
     接种白粉菌不同时间段的不同感、抗葡萄株系或品种中,Real Time PCR分析VpGLOX在转录水平呈现有规律的表达变化,基本呈现先逐渐上调而后逐渐下调的表达趋势,并且在抗病株系白河-35-1的变化趋势远远强于感病的广西-2、佳利酿、无核白。但是,在Western Blot分析的翻译水平上,VpGLOX的表达变化没有转录水平明显,仅仅发生微弱波动。
     2. VpGLOX表达产物的亚细胞定位分析
     胶体金免疫电镜定位研究表明VpGLOX蛋白主要定位于叶片组织细胞壁上,在细胞质、液泡等没有分布;并且定位于叶片表皮细胞细胞壁的VpGLOX蛋白明显多于定位于叶片叶肉细胞细胞壁上的。
    
     3.瞬时表达研究表明VpGLOX具有产生H2O2的功能
     在白河-35-1和广西-2的叶片中,瞬时转化pWR306、pWR-VpGLOX后,进行H2O2的组织化学染色和H2O2的含量测定。结果表明,H2O2含量在瞬时转化pWR-VpGLOX的叶片明显高于瞬时转化pWR306空载体的叶片。这说明VpGLOX具有产生H2O2的功能。
     4. SA、MeJA、Et处理后,VpGLOX的表达分析
     SA、MeJA、Et分别处理白河-35-1叶片后,通过Real Time PCR检测VpGLOX的表达变化。结果表明,三种处理均引起VpGLOX的表达变化,呈现有规律的表达趋势。MeJA处理后,VpGLOX的表达变化明显,相对表达量呈现先逐渐上调后逐渐下调的趋势,只是在处理3 h时,有一峰值,并在处理24 h时达到最高;SA、Et处理后,VpGLOX的表达变化没有MeJA处理后明显。SA处理后,VpGLOX相对表达量也呈现先上调后下调的趋势,在处理12 h和48 h均有峰值出现。Et处理后,VpGLOX的相对表达量呈现逐渐上调的趋势,只是在处理24 h出现波谷。上述结果说明VpGLOX的表达受信号分子SA、MeJA、Et诱导,VpGLOX可能参与了SA、MeJA、Et的体内合成和SA、MeJA、Et介导的信号传导途径。
     5. VpGLOX在葡萄不同组织或器官的表达情况
     分别提取白河-35-1根、茎、叶、卷须和佳利酿根、茎、叶、花、果实、种子的总RNA,通过半定量RT-PCR检测VpGLOX的表达情况。结果表明,VpGLOX在白河-35-1根、茎、叶、卷须中均有不同程度的表达,叶中最强,根中次之,卷须中最弱;在佳利酿根、茎、叶、花、果实、种子中也呈不同程度的表达,花中最强,果实其次,种子再次,根、茎、叶中最弱。这说明VpGLOX在葡萄不同组织或器官的表达没有明显的组织器官特异性,属于组成型表达;生殖器官中VpGLOX的表达明显强于营养器官,推测VpGLOX具有更复杂的功能,可能在生殖器官的生长发育过程中具有更多的防御功能,这些推测仍需要进一步实验来验证。
Grape is the most economically important fruit of worldwide. Powdery mildew caused by Uncinula necator (Schw.) Burr., leads to significant losses in normal growth and metabolish. Chinese wild vitis contains a number of resistant germplasm. In our laboratory, the novel VpGLOX (Vitis pseudoreticulata glyoxal oxidase) gene was isolated from the Chinese wild Vitis pseudoreticulata accession Baihe-35-1, which is highly resistant to U. necator. Then study with VpGLOX by bioinformatics analysis, prokaryotic expression and antibody preparation in the previous studies. Based on these, to further investigate the function of the VpGLOX gene, semi-quantitative RT-PCR, Real Time PCR, Western Blot, immunogold electron microscopy, transient expression, histochemical detection, and so on were performed. The mainly results as following:
     1. Expression analysis of VpGLOX in mRNA and protein leavel after inoculation with U. necator
     The expression of VpGLOX at transcriptional level showed a certain pattern by Real Time PCR analysis after inoculation with U. necator in different resistant and susceptible grape accessions or cultivars. Firstly, up-regulated gradually and then down-regulated gradually generally. Secondly, VpGLOX expression at the transcriptional level changed more significantly in the disease-resistant V. pseudoreticulata accession Baihe-35-1 than in the susceptible V. pseudoreticulata accession Guangxi-2, V. vinifera cv. Carignane, and V. vinifera cv. Thompson Seedless. However, the expression of VpGLOX at translational level did not change as significantly as the transcriptional level, only up-regulated slightly.
     2. Subcellular localization analysis of VpGLOX expression products
     Immunogold electron microscopy analysis suggested that immunogold particles representing VpGLOX protein were predominantly localized in cell wall of leaves tissues, while no particles were found in the cytosol, vacuole and so on. The amounts of immunogold particles in cell wall of epidermal cells were much higher than that in the cell wall of mesophyll cells.
     3. The study of transient expression suggested that VpGLOX has function to produce H2O2
     Transient expression by agro-infiltration of Baihe-35-1 and Guangxi-2 leaves was performed. The empty pWR306 and pWR-VpGLOX constructs were transiently overexpressed in Baihe-35-1 and Guangxi-2 leaves. Then, histochemical detection of H2O2 and determination of H2O2 concentration were performed. The results showed that the production of H2O2 in Baihe-35-1 and Guangxi-2 leaves overexpressed VpGLOX were more than that infiltrated leaves with Agrobacterium harboring the empty vector, which suggested that VpGLOX could produce H2O2.
    
     4. Expression analysis of VpGLOX after SA, MeJA, Et treatment
     The expression of VpGLOX at transcriptional level was determined by Real Time PCR analysis after treatment with SA, MeJA, Et in leaves of Baihe-35-1. The results showed that all the three treatments could cause the change of VpGLOX expression, and certain patterns were presented. After treatment with MeJA, VpGLOX transcripts changed significantly, the relative expression of VpGLOX was up-regulated gradually and then down-regulated moderatly, with the first little peak occurring at 3 h, and the highest point at 24 h. VpGLOX transcripts did not change drastically after SA and Et treatment as MeJA treatment. After SA treatment, the relative expression of VpGLOX was also up-regulated gradually and then down-regulated gentally, with two peaks at 3 h and 24 h. After Et treatment, the relative expression of VpGLOX was up-regulated gradually, only bottomed at 24 h. The results suggested that the expression of VpGLOX was regulated by signaling molecules SA, MeJA and Et. VpGLOX may be involved in SA, MeJA and Et in vivo synthesis and SA-, MeJA-, Et-mediated signal transduction pathway.
     5. Expression analysis of VpGLOX in different tissue or organ of grape
     Total RNA were extracted from root, stem, leaf, and tendril of Baihe-35-1, and root, stem, leaf, flower, berry, and seed of Carignane.Then the expression of VpGLOX was performed by semi-quantitative RT-PCR. The results suggested that the expression of the VpGLOX mRNA was expressed at different level in root, stem, leaf, tendril of Baihe-35-1. The highest level of expression was in leaf, with lower in root, lowest in tendril. The expression of the VpGLOX mRNA was also showed at different levels in root, stem, leaf, flower, berry, and seed of Carignane. The highest level of expression was in flower, with high in berry, lower in seed, and lowest in root, stem, and leaf. All the above showed that the expression of VpGLOX in different tissues or organs of grape has no significant tissue- or organ-specific. There was a constitutive expression of VpGLOX in grape. VpGLOX expression in reproductive organs was significantly stronger than in vegetative organs, speculating that VpGLOX has more complex functions which maybe play more defensive roles during the development of the reproductive organs growth. However, the possible function still needs to be confirmed further.
引文
蔡以滢,陈珈. 1999.植物防御反应中活性氧的产生和作用.植物学通报, 16(2): 107~112
    郭泽建,李德葆. 2000.活性氧与植物抗病性.植物学报, 42(9): 881~891
    林植芳,李双顺,林桂珠,郭俊彦. 1998.衰老叶片和叶绿体中H2O2的积累与膜脂过氧化的关系.植物生理学报, 14(1): 16~22
    刘文娜,汪矛,李重九. 2002.植物细胞程序化死亡研究进展.植物学通报, 19 (5): 549~551
    邱金龙,金巧铃,王钧. 1998.活性氧与植物抗病反应.植物生理学通讯, 34(1): 56~61
    孙大业,郭艳林,马文耕. 1998.细胞信号转导. (第二版).北京:科学出版社: 245
    孙伟生. 2006.中国野生葡萄新基因转化欧洲葡萄品种的研究. [硕士学位论文].陕西杨凌:西北农林科技大学
    王西平. 2004.中国葡萄属野生种抗白粉病基因克隆与序列分析. [博士学位论文].陕西杨凌:西北农林科技大学
    王永章,张大鹏. 2002.果糖和葡萄糖参与诱导苹果果实酸性转化酶翻译后的抑制性调节.中国科学(C辑), 32(1): 30~39
    徐伟荣,王跃进,王西平,郝炜,孙马. 2005.中国葡萄属野生种抗白粉病抗逆基因植物表达载体的构建.西北植物学报, 25(5): 851~857
    张今今,王跃进,王西平,杨克强,杨进孝. 2003.葡萄总RNA提取方法的研究.果树学报, 20: 178~181
    张骁,董发才,宋纯鹏. 2000.植物细胞的氧化猝发和H2O2的信号转导.植物生理学通讯, 36(4): 376~381
    Anderson J P, Badruzsaufari E, Schenk P M, Manners J M, Desmond O J, Ehlert C, Maclean D J, Ebert P R, Kazan K. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 16: 3460~3479
    Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55: 373~399
    Apostol I, Heinstein P F, Low P S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol, 90(1): 109~116
    Asada M, Bayarmaa G A, Morohashi K, Hiratsuka K. 2007. Expression and subcellular localization of pre-rRNA processing factor homologues in higher plants. Plant Biotechnology, 24: 301~306
    Ashtamker, C, Kiss, V, Sagi M, Davydov O, Fluhr R. 2007. Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiol, 143: 1817~1826
    Bais H P, Vepachedu R, Gilroy S, Callaway R M, Vivanco J M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science, 301: 1377~1380
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar S P. 1997. Signaling in plant-microbe interactions. Science, 276: 726~733
    Beézier A, Lambert B, Baillieul F. 2002. Study of defense-related gene expression in grapevine leaves andberries infected with Botrytis cinerea. Eur J Plant Pathol, 108: 111~120
    Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet M F, Merillon J M. 2008. Ethephon elicits protection against Erysiphe necator in grapevine. J Agric Food Chem, 56: 5781~5787
    Berger S. 2002. Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta, 214: 497~504
    Blee K A, Choi J W, O’Connell A P, Schuch W, Lewis N G, Bolwell G P. 2003. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry, 64: 163~176
    Bolwell G P, Bindschedler L V, Blee K A, Butt V S, Davies D R, Gardner S L, Gerrish C, Minibayeva F. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a threecomponent system. J Exp Bot, 53: 1367~1376
    Bolwell G P, Wojtaszek P. 1997. Mechanisms for the generation of reactive oxygen species in plant defence--a broad perspective. Physiol Mol Plant Pathol, 51: 347~366
    Brader G, Tasé, Palva E T. 2001. Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol, 126: 849~860
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248~254
    Brewster A L, Chen Y, Bender R A, Yeh A, Shigemoto R, Baram T Z. 2007. Quantitative analysis and subcellular distribution of mRNA and protein expression of the hyperpolarization-activated cyclic nucleotide-gated channels throughout development in rat hippocampus. Cerebral Cortex, 17(3): 702~712
    Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu A, InzéD, Van Camp W. 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. P Natl Acad Sci USA, 95: 5818~5823
    Chang C, Shockey J A. 1999. The ethylene-response pathway, signal perception to gene regulation. Curr Opin Plant Biol, 2: 352~358
    Chen Z, Malamy J, Henning J, Conrath U, Sanchez-Casas P, Silva H, Ricigliano J, Klessig D K. 1995. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. P Natl Acad Sci USA, 92: 4134~4137
    Clought S J, Fengler K A, Yu I C, Lippok B, Smith R K Jr, Bent A F. 2009. The arabidopsis“defense, no death”gene encodes a mutated cyclic nucleotide-gated ion channel. P Natl Acad Sci USA, 97: 9323~9328
    Cohn J, Sessa G, Martin G B. 2001. Innate immunity in plants. Current Opinion in Immunology, 13: 55~62
    Cona A, Rea G, Angelini R, Federico R, Tavladoraki P. 2006. Functions of amine oxidases in plant development and defence. Trends Plant Sci, 11: 80~88
    Creelman R A, Mullet J E. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. P Natl Acad Sci USA, 92: 4114~4119
    Cullen D, Kersten P J. 2004. Enzymology and molecular biology of lignin degradtion. In: Brambl R, Marzluf G A. The Mycota III; Biochemistry and molecular biology, 2nd edition. Berlin-Heidelberg: Springer-Verlag: 13: 249~273
    Dat J F, Foyer C H, Scott I M. 1998. Changes in salicylic acid and antioxidants during inducedthermotolerance in mustard seedlings. Plant Physiol, 118: 1455~1461
    Dat J F, Lopez-Delgado H, Foyer C H, Scott I M. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard plants. Plant Physiol, 116: 1351~1357
    Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. 1994. A central role of salicylic acid in plant disease resistance. Science, 266: 1247~1250
    Delledonne M, Zeier J, Marocco A, Lamb C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. P Natl Acad Sci USA, 98: 13454~13459
    Desikan R, Reynolds A, Hancock J T, Neill S J. 1998. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effectsongene expression in Arabidopsis suspension cultures. Biochem J, 330: 115~120
    Devoto A, Turner J G. 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot, 92: 329~337
    Diaz J, ten Have A, van Kan J A. 2002. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol, 129: 1341~1351
    Doke N. 1983. Involvement of superoxide anion generation in hypersensitive response of potato tuber tissues to infection with an incompatible race of phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol, 23: 345~357
    Dong X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1: 316~323
    Durner J, Klessig D F. 1996. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem, 271: 28492~28501
    Durner J, Klessig D F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. P Natl Acad Sci USA, 92: 11312~11316
    Durner J, Klessig D F. 1996. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem, 271: 28492~28501
    Dutt M, Li Z T, Dhekney S A, Gray D J. 2008. A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci, 175: 423~430
    Ecker J R, Davis R W. 1987. Plant defense genes are regulated by ethylene. P Natl Acad Sci USA, 84: 5202~5206
    Encina A, Fry S C. 2005. Oxidative coupling of a feruloylarabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor. Planta, 223: 77~89
    Etienne P, Petitot A S, Houot V, Blein J P, Suty L. 2000. Inductionof tcl 7, a gene encoding a beta-subunit of proteasome, in tobacco plants treated with elicitin, salicylic acid or hydrogen peroxide. FEBS Lett, 466: 213~218
    Feys B J, Parker J E. 2000. Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 16: 449~455
    Fornara V, Onelli E, Sparvoli F, Rossoni M, Aina R, Marino G, Citterio S. 2008. Localization of stilbenesynthase in Vitis vinifera L. during berry development. Protoplasma, 233: 83~93
    Fung R W M, Gonzalo M, Fekete C, Kovacs L G, He Y, Marsh E, Mclntyre L M, Schachtman D P, Qiu W P. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol, 146: 236~249
    Gechev T S, van Breusegem F, Stone J M, Denev I, Laloi C. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 28: 1091~1101
    Giannetto S, Velasco R, Troggio M, Malacarne G, Storchi P, Cancellier S, De Nardi B, Crespan M. 2008. A PCR-based diagnostic tool for distinguishing grape skin color mutants. Plant Sci, 175: 402~409
    Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 43: 205~227
    Godfrey D, Able A J, Dry I B. 2007. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? Mol Plant Microbe In, 20: 1112~1125
    Greenberg J T. 1997. Programmed cell death in plant-pathogen interactions. Annu Rev Plant Biol, 48: 525~545
    Grill E, Himmelbach A. 1998. ABA signal transduction. Curr Opin Plant Biol, 1: 412~418
    Grüner R, Strompen G, Pfitzner A J P, Pfitzner U M. 2003. Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on the as-1-like element of the PR-1a promoter. European Journal of Biochemistry, 270: 4876~4886
    Hammerschmidt R. 1999. Phytoalexins: What have we learned after 60 years? Annu Rev Phytopathol, 37: 285~306
    Hammond-Kosack K E, Jones J D. 1996. Resistance gene-dependent plant defence responses. Plant Cell, 8: 1773~1791
    He Y, Fukushige H, Hildebrand D F, Gan S. 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant physiol, 128: 876~884
    Heath M C. 2000. Hypersensitive response-related death. Plant Mol Biol, 44: 321~334
    Henanff G L, Heitz T, Mestre P, Mutterer J, Walter B, Chong J. 2009. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biology, 9(54): 1~14
    Higuchi T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol, 24: 23~63
    Hoffman T, Schmidt J S, Zheng X, Bent A F. 1999. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol, 119: 935~950
    Holt B F, 3rd, Mackey D, Dangl J L. 2000. Recognition of pathogens by plants. Current Biology, 10: 5~7
    Hückelhoven R, Fodor J, Preis C, Kogel K. 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiol, 119: 1251~1260
    Hückelhoven R, Kogel K H. 1998. Tissue-specific superoxide generation at interaction sites in resistant and susceptible nearisogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis fsp hordei). Mol Plant Microbe In, 11: 292~300
    Jabs T, Tschope M, Colling C, 1997. Elicitor-stimulated ion fluxes and O2- from the oxidative burst areessential components in triggering defense gene activation and phytoalexin synthesis in parsley. P Natl Acad Sci USA, 94: 4800~4805
    Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, PèM E, Valle G, Morgante M, Caboche M, Adam-Blondon A F, Weissenbach J, Quétier F, Wincker P. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463~468
    Janse J H B, Gaskell J, Akhtar M, Cullen D. 1998. Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol, 64: 3536~3538
    Karim S, Holmstr?m K O, Mandal A, Dahl P, Hohmann S, Brader G, Palva E T, Pirhonen M. 2006. AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta, 225(6): 1431~1445
    Karkonen A, Koutaniemi S, Mustonen M, Syrjanen K, Brunow G, Kilpelainen I, Teeri T H, Simola L K. 2002. Lignification related enzymes in Picea abies suspension cultures. Physiol Plant, 114: 343~353
    K?rk?nen A, Warinowski T, Teeri T H, Simola L K, Fry S C. 2009. On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells-peroxidases after elicitation. Planta, 230(3): 553~567
    Kasprzewska A. 2003. Plant chitinases-regulation and function. Cell Mol Biol Lett, 8: 809~824
    Kersten P J. 1990. Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. P Natl Acad Sci USA, 87: 2936~2940
    Kersten P J, Cullen D, 1993. Cloning and characterization of a cDNA encoding glyoxal oxidase, a peroxide-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. P Natl Acad Sci USA, 90: 7411~7413
    Kersten P J, Kirk T K. 1987. Involvement of a new enzyme, glyoxal oxidase, in H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169: 2195~2201
    Kersten P J, Witek C, vnaden Wymelenberg A, Cullen D. 1995. Phaneorchae chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization, and heterologous expression of glxl and glx2. J Bacteriol, 177(21): 6106~6110
    Kim S H, Hong J K, Lee S C, Sohn K H, Jung H W, Hwang B K. 2004. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol, 55: 883~904
    Kim Y H, Kim C Y, Song W K, Park D S, Kwon S Y, Lee H S, Bang J W, Kwak S S. 2008 Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta, 227: 867~881
    Kirk T K. 1988. Lignin degradation by Phanerochaete chrysosporium. ISI Atlas of Science Biochem, 1: 71~76
    Kirk T K, Farrell, R L. 1987. Enzymatic‘‘combustion’’the microbial degradation of lignin. Annu RevMicrobiol, 41: 465~505
    Kombrink E, Schmelzer E. 2001. The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol, 107: 69~78
    Kunkel B N, Brooks D M. 2002. Cross talk between signaling pathways in pathogen defence. Curr Opin Plant Biol, 5: 325~331
    Lane B G, Dunwell J M, Ray J A, Schmitt M R, Cuming A C. 1993. Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem, 268: 12239~12242
    Lee S C, Kim D S, Kim N H, Hwang B K. 2007. Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses. Plant Sci, 172: 236~245
    Leuthner B, Aichinger C, Oehmen E, Koopmann E, Muller O, Muller P, Kahmann R, Bolker M, Schreier P H. 2005. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Gen Genomics, 272: 639~650
    Levine A, Pennell R I, Alvarez M E, Palmer R, Lamb C. 1996. Calcium-mediate dapoptosis in aplanthype rsensitive disease resistance response. Current Biology, 6: 427~437
    Levine A, Tenhaken R, Dixon R, Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583~593
    Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N. 2003. Down regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res, 116: 175~182
    Lin L, Wang X P, Wang Y J. 2006. cDNA Clone, fusion expression and purification of the novel gene related to ascorbate peroxidase from Chinese wild Vitis pseudoreticulata in E. coli. Mol Bio Rep, 33: 197~206
    Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar S P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121: 567~577
    Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. 2003. Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15: 165~178
    Lund S T, Stall R E, Klee H J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell, 10: 371~382
    Mechin V, Damerval C, Zivy M. 2007. Total Protein Extraction with TCA-Acetone. Methods in Molecular Biology, 335: 1~8
    Melchers L S, Stuiver M H. 2000. Novel genes for disease resistance breeding. Curr Opin Plant Biol, 3: 147~152
    Métraux J P, Nawrath C, Genoud T. 2002. Systemic acquired resistance. Euphytica, 124: 237~243
    Mithofer A, Muller B, Wanner G, Eichacker L A. 2002. Identification of defence-related cell wall proteins in Phytophthora sojae-infected soybean roots by ESI-MS/MS. Mol Plant Pathol, 3: 163~166
    Mittler R, Herr E H, Orvar B L, van Camp W, Willekens H, Inze D, Ellis B E. 1999. Transgenic tobacco plant with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. P Natl Acad Sci USA, 96: 14165~14170
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci, 9: 490~498
    Moller I M, Jensen P E, Hansson A. 2007. Oxidative modifications to cellular components in plants. AnnuRev Plant Biol, 58: 459~481
    Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H. 2006. Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. Journal of Plant Research, 119: 407~413
    Nakashima J, Endo S, Fukuda H. 2004. Immunocytochemical location of polygalacturonase during tracheary element differentiation in Zinnia elegans. Planta, 218(5): 729~739
    Norman-Setterblad C, Vidal S, Palva E T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol Plant Microbe In, 13: 430~438
    Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev, 198: 249~266
    O'Donnell P J, Jones J B, Antoine F R, Ciardi J, Klee H J. 2001. Ethylenedependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J, 25: 315~323
    Passardi E, Cosio C, Penel C, Dunand C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep, 24: 255~265
    Patterson B D, Mackae E A, Ferguson I B. 1984. Estimation of hydrogen peroxide in plant extracts using titanium (Ⅳ). Anal Biochem, 139: 487~492
    Penninkx I A M A, Yaomma B P, Buchala A, Metraux J P, Broekaert W F. 1998. Concomitant activation of of jasmonate acid and ethylene response pathway is required for induction of a plant defensin gene in Arabidopsis. Plant Cell, 10: 2103~2113
    Pieterse C M, van Wees S C, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, van Loon L C. 1998. A novel signaling pathway controlling induced systemic in Arabidopsis. Plant Cell, 10: 1571~1580
    Pieterse C M J, Ton J, van Loon L C. 2001. Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet, 3: ABN 068
    Pollmann S, Neu D, Lehmann T, Berkowitz O, Schafer T, Weiler E W. 2006. Subcellular localization and tissue specific expression of amidase 1 from Arabidopsis thaliana. Planta, 224: 1241~1253
    Reichelt M, Brown P D, Schneider B, Oldham N J, Stauber E, Tokuhisa J, Kliebenstein D J, Mitchell-Olds T, Gershenzon J. 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 59: 663~671
    Renaut J, Hausman J, Bassett C, Artlip T, Cauchie H M, Witters E, Wisniewski M. 2008. Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genomes, 4: 589~600
    Repka V, Fischerova I, Silharova K. 2004. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biol Plantarum, 48(2): 273~283
    Reymond P, Farmer E E. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol, 1: 404~411
    Rojo E, Solano R, Sanchez-Serrano J J. 2003. Interactions between signaling compounds involved in plant defence. Journal of Plant Growth Regulation, 22: 82~98
    Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. 1996. Systemic acquired resistance. Plant Cell, 8: 1809~1819
    Ryan C A. 1992. The research for the proteinase inhibitor inducing factor, PIIF. Plant Mol Biol, 19: 123~133
    Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P. 2008. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep, 27: 1053~1063
    Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C, Manners J M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. P Natl Acad Sci USA, 97: 11655~11660
    Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort I, Pec P. 2001. FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci, 160: 197~207
    Spoel S H, Koornneef A, Claessens S M, Korzelius J P, Van Pelt J A, Mueller M J, Buchala A J, Metraux J P, Brown R, Kazan K, van Loon L.C, Dong X, Pieterse C M. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate dependent defense pathways through a novel function in the cytosol. Plant Cell, 15: 760~770
    Sreekantan L, Thomas M R. 2006. VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOC1, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Funct Plant Biol, 33: 1129~1139
    Sticher L, Mauch-Mani B, Métraux J P. 1997. Systemic acquired resistance. Annu Rev Phytopathol, 35 235~270
    Tenhaken R, Levine A, Brisson L F, Dixon R A, Lamb C. 1995. Function of the oxidative burst in hypersensitive diseaseresistance. P Natl Acad Sci USA, 92: 4158~4163
    Thaler J S, Bostock R M. 2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology, 85: 48~58
    Thomma B P H J, Eggermont K, Tierrens K F, Broekaert W F. 1999. Requirement of functional eyhylene-insensitive EIN2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol, 121: 1093~1102
    Thomashow M F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol, 50: 571~599
    Thomashow M F. 2001. So what's new in the field of plant cold acclimation? Lots! Plant Physiol, 125 89~93
    Thordal-Christensen H, Zhang Z, Wei Y, Collinge D B. 1997. Subcellular localization of H202 in plants. H202 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 11(6): 1187~1194
    Ton J, van Pelt, J A, van Loon L C, Pieterse C M. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe In, 15: 27~34
    Torres M A, Dangl J L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol, 8: 397~403
    Torres M A, Jones J D G, Dangl J L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 141: 373~378
    vanden Wymelenberg A, Sabat G, Mozuch M, Kersten P J, Cullen D, Blanchette R A. 2006 Structure,organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microb, 72: 4871~4877
    van Wees S C M, de Swart E A M, van Pelt J A, van Loon L C, Pieterse C M J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. P Natl Acad Sci USA, 97: 8711~8716
    Villalobos E, Torne J M, Rigau J, OIIes I, Claparols I, Santos M. 2001. Immunogold localization of a transglutaminase related to grana development. Protoplasma, 216: 155~163
    Wang L J, Li S H. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci, 170: 685~694
    Whittaker M M, Kersten P J, Cullen D, Whittaker J W. 1999. Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem, 274: 36226~36232
    Whittaker J W. 2002. Galactose oxidase. Adv Protein Chem, 60: 1~49
    Wu G, Shortt B J, Lawrence E B, Levine E B, Fitzsimmons K C, Shah D M. 1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell, 7: 1357~1368
    Xiao H, Siddiqua M, Braybrook S, Nassuth A. 2006. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ, 29(7): 1410~1421
    Yu X C, Li M J, Gao G F, Feng H Z, Geng X Q, Peng C C, Zhu S Y, Wang X J, Shen Y Y, Zhang D P. 2006. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol, 140: 558~579
    Zhang L Y, Peng Y B, Pelleschi-Travier S, Fan Y, Lu Y F, Lu Y M, Gao X P, Shen Y Y, Delrot S, Zhang D P. 2004. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiol, 135: 574~586
    Zhou B J, Wang X P, Wang Y J. 2007. cDNA cloning, expression, protein purification, and characterization of a novel glyoxal oxidase related gene from Vitis pseudoreticulata. Biol Plantarum, 51(3): 458~466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700