用户名: 密码: 验证码:
青海祁漫塔格地区虎头崖铜铅锌多金属矿床蚀变矿化分带及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虎头崖铜铅锌多金属矿是青海祁漫塔格地区矽卡岩型多金属矿的典型代表之一,矿区内不仅岩浆侵入活动强烈、不同时代碳酸盐岩地层出露多、铁铜锡钼铅锌等金属成矿元素组合复杂,而且兼具正接触带矽卡岩亚型和外接触带矽卡岩亚型多金属矿化。正接触带矽卡岩亚型(Ⅰ、Ⅱ、Ⅲ矿带)以铁锡钼铜矿化为主,主要产于花岗岩与石炭系碳酸盐岩接触带上,严格受侵入接触构造控制;外接触带矽卡岩亚型(Ⅳ、Ⅴ、Ⅵ、Ⅶ矿带)以铅锌(铜)矿化为主,主要产于中元古界-上石炭统地层的断裂破碎带、层间构造带中。平面上,自成矿岩体内部向外具明显的金属矿化蚀变分带,即由岩体→接触带→含碳酸盐地层,金属成矿元素分别为Mo→FeSnCuCo→CuMo(PbZn)→PbZnAg,相应的蚀变由钾化、石榴子石化、透辉石化到绿帘石、金云母化、绿泥石化、碳酸盐化。
     采用锆石LA-ICPMS和SHRIMP U-Pb法,获得成矿花岗闪长岩体和二长花岗岩体的成岩年龄分别为(235.4±1.8) Ma (n=24, MSWD=1.7)和(219.2±1.4)Ma (n=11, MSWD=0.83);利用辉钼矿Re-Os法,获得矽卡岩型铜钼多金属矿石和矽卡岩型钼矿石的等时线年龄分别为(225.0±4.0)Ma(n=7,MSWD=0.24)和(230.1±4.7) Ma (n=5, MSWD=0.12),厘定矿区成岩成矿时代为中-晚三叠世。成矿花岗岩岩石地球化学研究表明,其为准铝质-弱过铝质高钾钙碱性系列岩石,以轻稀土富集、明显负铕异常、富集大离子亲石元素(Rb、K、Th、U)、亏损高场强元素(Ba、Nb、Ti、P)为特征。综合祁漫塔格地区已有年代学资料和区域地质构造演化特征,认为该区印支期大规模岩浆侵入活动和多金属成矿作用形成于后碰撞构造阶段,为区域东昆仑造山带晚古生代-早中生代构造旋回的产物。
     矿区矿石矿物硫、铅同位素研究结果表明,黄铜矿、方铅矿、闪锌矿、黄铁矿等金属硫化物634S值变化于+0.6‰~+8.3‰(集中在+3‰~+7‰),平均+4.4‰,反映成矿流体中的硫为海水硫酸盐的地层硫和深源岩浆硫的混合硫,而不同矿带硫同位素均值的差别,可能与围岩地层硫的差异及参与程度有关。矿石矿物铅同位素组成总体变化较小(206pb/204pb、207pb/204pb和208pb/204pb比值分别为18.476~18.630、15.561~15.688和38.261-38.599),主要分布于造山带和上地壳铅演化线范围内,为岩浆作用导致的上地壳和地幔混合成因。流体包裹体类型以气液两相包裹体和含子矿物多相包裹体为主,不同成矿阶段流体包裹体的均一温度和盐度变化范围大,均一温度峰值集中在250~270℃、320~360℃和420~460℃。
     总结了虎头崖多金属矿床主导控矿因素和重要找矿标志,探讨了矿床成因、成矿过程与机制,建立了成矿模式。
Hutouya Copper-Zinc-Lead Polymetallic Ore deposit is one of the largest and most typical skarn deposits in Qimantage region.Not only the strong activities of magma intrusion, the various exposed carbonate strata of different era, and the complex ore-forming elements combination such as iron, copper, zinc, tin, molybdenum,but also both ortho-contact and exocontact substyles exist in this mine area.The skarn of ortho-contact substyle (Ⅰ、Ⅱ、Ⅲ mineral belt) mainly lies between granite and carbonate-bearing strata, and the main mineralization is Fe、Sn、Mo、Cu; the skarn of exocontact substyle (Ⅳ、Ⅴ、Ⅵ、 VII mineral belt) mainly lies in the contact zone or discortant contact bctween strata of different epochs and the lithologic boundaries,dominated by Pb、Zn、(Cu).The miner area shows obvious zonation of mineralization and alteration from the intrusive rock outwards:the metal ore-forming elements variation is Mo→FeSnCuCo→CuMo(PbZn)→PbZnAg,and the appropriate alteration changes from potassium, garnetization,diopsidization to epidotization,choritization,choritization.
     The LA-ICP-MS zircon U-Pb dating shows that the age of granodiorite is (235.4±1.8) Ma (n=24,MSWD=1.7), the SHRIMP zircon U-Pb dating shows that the age of monzonite is (219.2±1.4)Ma(n=11,MSWD=0.83). The copper-molybdenite skarn ores and molybdenite skarn ore dating by molybdenite yield the Re-Os isochron age of (225.0±4.0)Ma(n=7,MSWD=0.24)and (230.1±4.7)Ma(n=5,MSWD=0.12), diagenesis and metallogeny age were confined in middle-late Triassic.Research on geochemical characteristics of metallogenic granite shows it's aluminum-peraluminous, high potassium, Calc-alkaline granite,the geochemical characteristics of granite are as follows:rich in LREE,obviously negative Eu anomaly, enrichment of LILE (Rb、K、Th、U) and depletion of HFSE (Ba、Nb、Ti、P). Combination of the geochronology, petrological geochemistry and ecolutionary of regional structure characteristics,the author holds that a large-scale magma intrusion activities and polymetallic mineralization formed during post-collisional tectonic evolution stages are the production of late palaeozoic-early mesozoic tectonic cycle of East Kunlun orogenic belt.
     The research on sulfur lead isotope of ore mineral in mine area suggest that the34S value of metal sulfide such as chalcopyrite,galena, sphalerite,pyrite,spans among+0.6‰~+8.3‰(concentrates mainly on3‰-7‰),and the average is+4.4%o. which suggest the composition of the sulfur isotope in the ores is mainly from deep seated magmatic source, coupled with surrounding-rock Sulfur.The lead isotope ratio of metal sulfide is little(206Pb/204Pb=18.333~18.728,207Pb/204Pb=15.523~15.718,208Pb/204Pb=38.040~38.815). most Pb isotope data are plot in the area between mantle evolution-trend line and upper-crustal evolution-trend, indicating the mixation of mantle and upper crust by magmaism. The type of fluid inclusions are mainly vapor-liquid phase inclusions and daughter minerals-bearing polyphase inclusions. The variation range of the uniform temperature and salinity from fluid inclusions of different metallogenic phase are big. the uniform temperature peak concentrates on250-270℃,320-360℃and420-460℃
     The paper summarizes the mainly ore-controlling factors and important ore-controlling factors of Hutouya Polymetallic Ore deposit, discusses the metallogenic types, Ore-forming process and mechanism, in the end build the mineralization model.
引文
1. Anderson J. L, Cullers.1987. Crust-enriched, mantle-derived tonalites in the early Proterozoic, Penokean orogen of wiscosin. J. Geol.95:139-154.
    2. Arculus, R.J.,1987. The significance of source versus process in the tectonic controls of mag-ma genesis. Journal of Volcanology and Geothermal Research, v.32, p.1-12.
    3. Bodnar R.J.1983. A method of calculateing fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids, Econ Geol,78:535-542.
    4. Bodnar, R. J. and M. O. Vityk.1994. Interpretation of microthermometric data for H20-NaCl fluid inclusions, in Fluid Inclusions in Minerals, Methods and Applications.117-130.
    5. Castro A, etal.1991. H-Type (Hybrid) granitoids; a proposed revision of the granite type clas sification and nomenclature. Earth Science Reviews,31:237-253.
    6. Densities of Liquids and Vapors in Boiling NACL-H2O Solutions:A PVTX Summary from 300°to 500℃, American journal of science.291(4).
    7. Eklund, O,Konopelko, D, Rutanen, H.1998. The 1.8 Ga Svecofennian post-collisional shoshon itic magmatism in the Fennoscandian shield[J]. Lithos,1998,45:87-108.
    8. El Blouseily A M, El Sokkary A A. The relation between Bb, Ba and Sr in granitc rocks[J]. Chem. Geol.,1975,1.
    9. Goldstein R H, Reynolds T J.1994. Systematics of fluid inclusions in diagenetic minerals[J]. SEPM ShortCourse.31:1-199.
    10. Hall D L. Sterner S M, Bondnar R J.1988. Freezing point depression of NaCl-KCl-H2O solusions. Econ Geol,83:197-202.
    11. Hugh R. Rollinson,1993. Book Review:Using Geochemical Data:Evaluation, Presentation, Interpretation.352 p.
    12. Irvine I N, Baragar W R A.1971. A guide to the chemical classification of the common volcanic rocks [J]. Canad. J. Earth Sci.8:523-548.
    13. Le Maitre RW.1989. A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford, p 193.
    14. Malcolm P. Roberts John D.Clemens.1993. Origin of high-potassium, calc-alkaline, I-type granitoids. GEOLOGY, v.21, p.825-828.
    15. Maniar, P. D.& Piccoli, P.M.,1989. Tectonic discriminations of granitoids. Geological Society of America Bulletin 101,635-643.
    16. Meinert, L.D.1995. Compositional variation of igneous rocks associated with skarn deposits-chemical evidence for a genetic connection between petroge nesis and mineralization. In:Thompson, J.F.H. (Ed.), Magmas, Fluids, and Ore Deposits:Mineralogical Association of Canada Short Course Series, vol.23, pp.401-418.
    17. Middlemost E. A.K.1985. Magma and magmatic rocks. London:Longman.
    18. Middlmost E A K. Naming materials in the magma/igneous rock system. Earth-ScienceReviews.1994; 37:215-224.
    19. Nigel B. W. Harris, Julian A. Pearce* and Andrew G. Tindle.1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications 1986,19:67-81.
    20. Ohmoto, H. and Rye, R.1979. Isotope of sulfur and carbon. In:Barnes, H. (Ed.). Geochemistry of Hydrothermal deposits,2°ed. Wiley, New York, p.509-567.
    21. Pearce J A, Harris N B W, Tindle A G.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol,25:956-983.
    22. Pearce J A.1996. Source and setting of granitic rocks. Episodes,19(4):120-125.
    23. Peccerillo R.and Taylor S.R.1976, Geochemistry of Eocene calc-alkaline volcanice rocks from the Kastamonu area, northern Turkey.Contrib. Mineral. Petrol,58,63-81.
    24. Sillitoe R H. Porphyry copper systems:An invited paper [J]. Economic Geology,2010,105(1):3-41.
    25. Sun,S.S. and McDonough, W.F.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Magmatism in the ocean basins. Geological Society of London, London.42:313-345.
    26. Sylvester P J.1989. Post-collisional alkaline granites[J]. J. Geol,97:261-280.
    27. Twist, D. and Harmer, R.E.J.1987. Geochemistry of contrasting siliceous magmatic suites in t he Bushveld complex:Genetic aspects and the im-plications for tectonic discrimination diagra ms:Journal of Volcanology and Geothermal Research, v.32, p.83-98.
    28. White,A.J.R, Chappell, B.W.1977. Ultrametamorphismand granitoid genesis. Tectonophysics,43: 7-22.
    29. Whalen JB,Currie KL,Chappell BW,1987. A-type granites:geochemical characteristics,discrimination and petrogenesis.Contrib, Mineral,Petrol.95:407-419.
    30. Zartman RE, Doe BR.1981. Plumbo tectonics -the model Tectonophysics,75:135-162
    31.谌宏伟,罗照华,莫宣学,等.2005.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J].岩石矿物学杂志,25(1):25-32.
    32.范丽琨,蔡岩萍,梁海川,李宏录,等.2009.东昆仑地质构造及地球动力学演化特征[J].地质调查与研究,33(3):181-186.
    33.丰成友,李东生,吴正寿,等.2009.青海东昆仑成矿带斑岩型矿床的确认及找矿前景分析[J].矿物学报,增刊:171-172.
    34.丰成友,李东生,吴正寿,等.2010.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质,43(4):10-17.
    35.丰成友,王雪萍,舒晓峰,张爱奎,肖晔,刘建楠,马圣钞,李国臣,李大新.2011.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报(地球科学版),41(6):1806-1816.
    36.丰成友,赵一鸣,李大新,等.2011.青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征[J].地质学报,85(7):1108-1115.
    37.高永宝,李文渊,谭文娟.2010.祁漫塔格地区成矿地质特征及找矿潜力分析[J].西北地质,43(4):35-43.
    38.古凤宝,姜常义.1996.东昆仑华力西—印支期花岗岩组合及构造环境[J].青海地质,5(1)18-36.
    39.郭正府,邓晋福,许志琴,等.1998.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J].现代地质,12(3):344-352.
    40.韩发,孙海田.1999Sedex型矿床成矿系统[J].地学前缘,6(1):139-158.
    41.何书跃,祁兰英,舒淑兰,尹和珍,等.2008.青海祁漫塔格地区斑岩铜矿的成矿条件和远景[J].地质与勘探,44(2):14-22.
    42.胡华伟,景宝盛,王斯林,舒林.2010.新疆若羌县维宝铅锌矿床地质特征及矿床成因浅析[J].西北地质,43(4):73-80.
    43.胡杏花,朱谷昌,刘欢.2011.祁漫塔格矿带虎头崖多金属矿矿床特征和成矿作用分析[J].地质与勘探,47(2):216-221.
    44.胡旭莉,陈文2010东昆仑西段布喀达坂峰地区昆南断裂初步研究[J].青海大学学报:自然科学版,2010(3):36-41
    45.姜春发,杨经绥,冯秉贵,等.1992.昆仑开合构造[M].北京:地质出版社.
    46.陈丹玲,刘良,车自成,等.2001.祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J].地球化学,30(6):540-546.
    47.李大新,丰成友,赵一鸣,李泽峰,刘建楠,肖晔,等.2011青海卡而却卡铜多金属矿床蚀变矿化类型及夕卡岩矿物学特征[J].吉林大学学报,41(6):1818-1831.
    48.李光明,沈远超,刘铁兵.2001.东昆仑祁漫塔格地区华力西期花岗岩地质地球化学特征[J].地质与勘探,37(1):73-78.
    49.李宏录,刘养杰,卫岗,等.2008.青海肯德可克铁、金多金属矿床地球化学特征及成因[J].矿物岩石地球化学通报,27(4):378-383.
    50.李洪普,宋忠宝,田向东,等.2010.东昆仑四角羊铅锌多金属矿床成矿地质特征及找矿意义[J].西北地质,43(4):179-187.
    51.李世金,孙丰月,王力,等.2008.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究[J].矿床地质,27(3):399-406.
    52.李智明,薛春纪,王晓虎,等.2007.东昆仑区域成矿特征及有关找矿突破问题分析[J].地球学报,53(5):708-718.
    53.刘成东,莫言学,罗照华,等.2004.东昆仑壳—慢岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,49(6):592-602.
    54.刘成东.2008.东昆仑造山带东段花岗岩岩浆混合作用[D].江西:东华理工大学核资源与环境教育部重点实验室:1-136.
    55.刘成东.2008.东昆仑造山带东段花岗岩岩浆混合作用[M].北京:地质出版社.
    56.刘云华,莫宣学,喻学惠,等.2006.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U—Pb定年及其地质意义[J].岩石学报,22(10):2457-2463.
    57.刘云华,莫宣学,张雪亭,等.2006.东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J].华南地质与矿产,3:31-36.
    58.罗照华,邓晋福,曹永清.1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质,13(1):51-56.
    59.牟保磊等,1999.元素地球化学[M].北京:北京大学出版社.
    60.马圣钞,丰成友,李国臣,舒晓峰.2012.青海虎头崖铜铅锌多金属矿床硫、铅同位素组成及成因意义[J].地质与勘探,48(2):321-331.
    61.莫宣学,罗照华,邓晋福,喻学惠,等.2007.东昆仑造山带花岗岩及地壳生长[J].高校地质学 报,13(3):403-414
    62.潘彤,孙丰月,李智明,朱谷昌.2005.青海省东昆仑钴矿成矿系列研究[M].地质出版社.
    63.青海省地质调查院.2004.布喀大板峰幅1:25万区域地质调查报告.
    64.青海省地质矿产局.1991.青海省区域地质志[M].地质出版社.
    65.青海省区调综合地质大队.1993.青海省东昆仑山中-酸性侵入岩及成矿作用研究(内部资料)[R].
    66.屈文俊,杜安道.2003.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—饿地质年龄[J].岩矿测试,22(4):254-257.
    67.佘宏全,张德全,景向阳,等.2007.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J].中国地质,34(2):306-312.
    68.宋彪,张玉海,万渝生,等.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,48(增刊):26-30.
    69.孙丰月,陈国华,迟效国,等.2003.中国地质调查局“新疆—青海东昆仑成矿带成矿规律和找矿方向综合研究”科研报告[R].
    70.孙丰月,李碧乐,赵俊伟,等.2007.青海东昆仑成矿带重大地质找矿问题疑难研究成果报告(内部资料)[R].
    71.王春艳,王小成,保守李.2010.青海省祁漫塔格中心地带铁矿成矿规律及找矿潜力分析[J].科技信息,2010(6):32-37.
    72.王松.2009.青海祁漫塔格地区卡尔却卡铜多金属矿床地球化学特征及成矿模式[D].中国地质科学院硕士论文.
    73.吴开兴,胡瑞忠,毕献武,彭建堂,唐群力.2002.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,30(3):73-81.
    74.吴庭祥,李宏录.2009.青海尕林格地区铁多金属矿床的地质特征与地球化学特征[J].矿物岩石地球化学通报,28(2):157-161.
    75.伍跃中,乔耿彪,陈登辉.2011.东昆仑祁漫塔格地区构造岩浆作用于成矿关系初步探讨[J].大地构造域成矿学,35(2):232-241.
    76.伍跃中,王战,过磊,等.2009.祁漫塔格花岗岩类时空变化的构造控制+钾钠含量变化的证据[J].地质学报,83(7):964-981.
    77.伍跃中,庄道泽,李洪茂,等.2010.新疆祁漫塔格找矿远景区重要矿产整装勘查[J]西北地质,43(3):25-34.
    78.谢玉玲,徐九华,杨竹森.2004.铜官山铜矿床矽卡岩矿物中流体包裹体及子矿物的扫描电镜
    79.徐国端.2009.青海祁漫塔格多金属成矿带典型矿床地质地区化学研究[D].昆明理工大学博士论文.
    80.殷鸿福,张克信.1997.东昆仑造山带的一些特点[J].地球科学,22(4):339-342.
    81.翟裕生.1999.论成矿系统[J].地学前缘,6(1):13-27.
    82.翟德高,刘家军,王建平,杨永强等.2011.矽卡岩矿床成矿热液演化:来自石榴子石韵律环带LA-ICPMS的证据[J].矿物学报,2011增刊:529-531.
    83.张德全,等.2002.东昆仑地区综合找矿预测与突破[R].
    84.赵斌,李院生,赵劲松.1995.岩浆成因夕卡岩的包裹体证据[J]地球化学,24(2):198-200.
    85.赵俊伟.2008.青海东昆仑造山带造山型金矿床成矿系列研究[D].吉林大学博士论文.
    86.赵一鸣,林文蔚等.2012.中国矽卡岩矿床[M].北京:地质出版社.
    87.赵一鸣,张德全,等.1997.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社,125-144.
    88.朱炳泉.1998.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化[M].北京:科学出版社:216-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700