用户名: 密码: 验证码:
咪唑类离子液体的合成、对纤维素和木粉的溶解性能及其在高分子中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了一系列咪唑类离子液体,研究了其对纤维素和杉木粉的溶解性能;以离子液体为介质,用丙烯酰胺接枝溶解的微晶纤维素或杉木粉制备了改性絮凝剂,考察了絮凝剂对污水的絮凝性能;采用原位方法制备了离子液体/杉木粉/酚醛树脂复合胶粘剂,探讨了离子液体和杉木粉对复合胶性能的影响。主要研究内容如下:
     1.以N-甲基咪唑、N-乙基咪唑、N-乙烯基咪唑和氯丙烯、氯乙醇等为原料,采用一步法合成了一系列咪唑类离子液体:[BMIM]Cl、[AMIM]Cl、[HeMIM]Cl、[AEIM]Cl、[HeEIM]Cl和[HeVIM]Cl等,并用红外和氢核磁表征了离子液体的化学结构。侧链基团对离子液体物理性质有很大的影响,侧链越长,粘度越大,电导率和表面张力越小;侧链含有双键基团的离子液体,电导率较高;含有羟基的离子液体表面张力较大。与水或一般有机溶剂相比,合成的咪唑类离子液体的密度、粘度和沸点都比较高,表面张力都比较低。
     2.采用不同浓度的碱溶液在不同工艺条件下(常温常压、微波和高压罐)分别对纤维素和杉木粉进行预处理。处理后的纤维素和杉木粉的氢键作用均被削弱,相对结晶度均被降低。在高压罐(140℃)中分别浸渍棉纤维、微晶纤维素和杉木粉的最佳NaOH溶液浓度分别是30%、15%和25%。处理前后棉纤维聚合度由1180降低到632,结晶度由82.6%降到53.3%,微晶纤维素聚合度由306降到153,结晶度由92.0%降到49.2%,杉木粉相对结晶度由61.0%降到2.4%。
     3.采用微波加热法或传统加热法对处理过的纤维素和杉木粉进行溶解,考察了离子液体的溶解性能,探讨了溶解工艺、溶解温度等对纤维素和杉木粉的溶解率的影响。以N-乙基咪唑、氯乙酸和氯化亚砜为原料,合成带有酰氯基团的离子液体中间体,再与棉纤维酰氯酯化制备了离子化纤维素酯,并考察其溶解性能。微波加热法的溶解效果远远优于传统加热法,且最佳溶解温度为90℃左右。离子液体[HeVIM]Cl的溶解效果最好,溶解后得到的再生纤维素或木粉残渣相对结晶度变小,热稳定性降低,表观形貌发生变化。与离子液体相比,制备的离子化纤维素酯对纤维素的溶解能力更佳,但对纤维素的降解作用也很大。
     4.以离子液体为介质,用微波(400w, 90℃)溶解过的微晶纤维素或杉木粉和单体丙烯酰胺接枝共聚分别制备了改性的纤维素絮凝剂和木素絮凝剂,考察了改性絮凝剂对煤泥水和陶土污水的絮凝性能。离子液体为介质制备的絮凝剂性能远远优于水介质。当离子液体与纤维素的质量比为25:1,聚合温度为45℃时,制备的纤维素絮凝剂(AM-g-MCC)性能最优。当单体质量百分数为25%,离子液体与木粉的质量比为30:1,木粉与单体质量比为1:4时制备的木素絮凝剂(AM-g-Wood)性能最好。改性絮凝剂均具有较好的絮凝效果,其中木素絮凝剂更适合处理细粒级的陶土污水。
     5.用离子液体在微波条件下(400w, 90℃)预先溶解杉木粉,再与苯酚甲醛共混制备了离子液体/杉木粉/酚醛树脂的复合胶粘剂,探讨了杉木粉对复合胶游离醛的捕捉作用及离子液体对胶合性能的影响。侧链带有羟基的离子液体制备的复合胶的性能最佳,当离子液体[HeVIM]Cl与木粉质量比为10:1时,复合胶粘剂游离醛从1.76%降低到0.16%,拉伸剪切强度从2.16MPa提高到8.38MPa,随着离子液体的量的增加,复合胶粘剂的强度也逐渐增大,且固化后复合胶不龟裂,透明度高,光泽性好,热分解温度提高,但残碳率降低。
A series of imidazolium ionic liquids were synthesized and their solubilities for cellulose and fir powder were discussed; Modified flocculants were prepared by grafting dissolved cellulose or fir powder with acrylamide (AM) in ionic liquids and the flocculations for waste water were studied. Besides, ionic liquid/fir powder/phenol-formaldehyde composite adhesive was prepared in situ and the effects of the ionic liquids and fir powder on the performance of the composite adhesive were researched.
     The main contents as follows:
     1. A series of imidazolium ionic liquids, [BMIM]Cl, [AMIM]Cl, [HeMIM]Cl, [AEIM]Cl, [HeEIM]Cl and [HeVIM]Cl, were synthesized using N-methyl imidazolium, N-ethyl imidazolium, N-ethylene imidazolium, allyl chloride and chloroethanol as raw materials, and chemical structures of the ionic liquids were characterized by FTIR and 1H NMR. The side chains had great effects on ionic liquids’physical properties. The longer side chain of the ionic liquid was, the greater was its viscosity and the smaller was its conductance rate and surface tension. Ionic liquids containing double bond on its side chain had a higher conductance rate, while the ionic liquids containing hydroxyl group had a higher surface tension. It was shown that the ionic liquids had higher density, viscosity, boiling point and lower surface tension compared with water or organic solvents.
     2. Cellulose and fir powder were pretreated with different concentrations of NaOH under various technologies (normal temperature and pressure, microwave and high pressure pot) respectively. Hydrogen bonding actions of cellulose and fir powder were all weakened greatly after treatment and the crystallinity of them were also decreased. The most effective concentrations of NaOH were 30%, 15% and 25% to dip cotton fibre, microcrystalline (MCC) and fir powder respectively in the high pressure pot (140℃). Degree of polymerization (DP) of cotton fibre after treatment was decreased from 1180 to 632 and crystallinity was changed from 82.6% to 53.3%, DP of MCC was decreased from 306 to 153 and crystallinity was changed from 92% to 49.2%, relative crystallinity of fir powder was degreased from 61.0% to 2.4%.
     3. Cellulose and fir powder after treatment were dissolved in ionic liquids by microwave heating and traditional heating. The solubilities of the ionic liquids were studied, the effects of dissolving methods and temperatures on dissolving rate of cellulose were discussed. Intermediate of ionic liquid with carbonyl group was synthesized with thionyl chloride, N-ethyl imidazolium and chloroacetic acid, and then reacted with cellulose to prepare ionization cellulose ester, whose solubility was also examined. The soluble effect of microwave heating was far superior to traditional heating, and the most suitable temperature was 90℃. The solubility of [HeVIM]Cl was best, crystallinity and thermostability of regenerated cellulose and fir powder residue after dissolved were decreased and morphology of them was changed greatly. Compared with ionic liquids, ionization cellulose ester had better solubility for cellulose due to its strong degradation of cellulose.
     4. Modified flocculants were prepared in ionic liquids by grafting AM onto MCC or fir powder, which were dissolved by microwave heating at first. The flocculations of the flocculants were studied by treating with coal slurry water and argil waste water. The performances of the flocculants prepared in ionic liquid were far superior to aqueous medium. The performance of cellulose flocculant (AM-g-MCC) was best when the polymerization temperature was 45℃and the mass ratio of ionic liquid to MCC was 25:1. While the performance of wood flocculant (AM-g-Wood) was best when the mass fraction of AM was 25%, the mass ratio of ionic liquid to fir powder was 30:1 and the mass ratio of wood to AM was 1:4. Both cellulose flocculants and wood flocculant had good flocculations, the wood flocculant was more suitable for treating with tiny particles of argil waste water.
     5. Fir powder was dissolved in ionic liquids by microwave heating (400w, 90℃) at first, then reacted with phenol and formaldehyde to prepare ionic liquid/fir powder/phenol-formaldehyde composite adhesive. Effects of fir powder and ionic liquids on performances of the adhesive were studied. The performance of the adhesive prepared by ionic liquid with hydroxyl was best, free formaldehyde of the adhesive decreased from 1.76% to 0.16% compared to common PF, the tensile shear strength increased from 2.16MPa to 8.38MPa when the mass ratio of [HeVIM]Cl to fir powder was 10:1. Besides, the tensile shear strength increased with the mass of ionic liquid increasing, and the cured composite adhesive had higher transparence and better luster, its thermal decomposition temperature was increased, while the content of residual carbon was decreased.
引文
[1] Zhao H, Xia S Q, Ma P S. Use of ionic liquids as‘green’solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005, 80: 1089-1096
    [2] Selvakumar K, Zapf A, Beller M. New Palladium Carbene Catalysts for the Heck Reaction of Aryl Chlorides in Ionic Liquids. Organic letters, 2002, 4(18): 3031-3033
    [3] Jain N, Kumar A, Chauhan S and Chauhan S M S. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 61: 1015-1060
    [4] Kubisa P. Application of Ionic Liquids as Solvents for Polymerization Processes. Progress in Polymer Science, 2004, 29(1): 3-12
    [5] Weuster-Botz D, Process intensification of whole-cell biocatalysis with ionic liquids. Chemical Record, 2007, 7(6): 334-340
    [6] Kragl U, Eckstein M, Kaftzik N. Enzyme catalysis in ionic liquids. Current Opinion in Biotechnology, 2002, 13: 565-571
    [7] Sheldon R A, Lau R M, Sorgedrager M J, Rantwijk F and Seddon K R. Biocatalysis in Ionic Liquids.Green Chemistry, 2002, 4: 147-151
    [8] Nakashima K, Kubota F, Maruyama T and Goto M. Ionic Liquids as a Novel Solvent for Lanthanide Extraction Analytical Sciences. Analytical Sciences, 2003, 19(8): 1097-1098
    [9] Visser A E, Swatloski R P, Griffin S T, Hartman D H, Rogers R D. Liquid-liquid extraction of metal ions in room -temperature ionic liquids. Separation Science and Technology, 2001, 36(5-6): 785-804
    [10] Zein El-Abedin S, Endres F. Electrodeposition of Metals and Semiconductors in Air- and Water-Stable Ionic Liquids. Chemphyschem, 2006, 7(1): 58-61
    [11] Lu X B, Hu J Q, Yao X, Wang Z P, Li J H. Composite System Based on Chitosan and Room-Temperature Ionic Liquid: Direct Electrochemistry and Electrocatalysis of Hemoglobin. Biomacromolecules, 2006, 7(3): 975-980
    [12] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 2002, 124(18): 4974-4795
    [13] Cuissinat C, Navard P, Heinze T. Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydrate Polymers, 2008, 72: 590–596
    [14]马洪洋,宛新华,陈小芳,周其凤.烯类单体在室温离子液体中的自由基聚合反应研究进展.化学通报, 2004, 6: 397-402
    [15] Heinze T, Liebert T. Unconventional methods in cellulose functionalization. Prograss inPolymer Science, 2001, 26(9): 1689-1762
    [16] Wilkes J S. Properties of ionic liquid solvents for catalysis. Journal of Molecular Catalysis A: Chemical, 2004, 214(1): 11-17
    [17]胡雪生,余江,夏寒松,等.离子液体的绿色合成及环境性质.化学通报, 2005, 12: 906-910
    [18]王久模,覃永黔. NR基高吸水材料的研究、应用及现状.弹性体, 2004, 14(6): 74-78
    [19]刘建树,邹黎明.国外可生物降解高吸水材料的研究状况.合成技术及应用, 2001, 16(4): 27-29
    [20]单军,刘占军.辐射合成PAM水凝胶吸附水状态研究.高分子材料科学与工程, 1997, 13(2): 35-38
    [21]邹黎明.高吸水材料的制备以及制备工艺对吸水倍率的影响.中国纺织大学学报, 2000, 26(6): 17-20
    [22] Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 2000, 72(12): 2275–2287
    [23] Wellon T. Room-Temperature Ionic Liquids; Solvents for Synthesis and Catalysis. Chemical Reviews, 1999, 99: 2071-2083
    [24]阎立峰,朱清时.离子液体及其在有机合成中的应用.化学通报, 2001, 11: 673-679
    [25]李雪辉,徐建昌,王乐夫.室温离子液体.现代化工, 2001, 21: 58-63
    [26]李汝雄,王建基.离子液体的合成与应用.化学试剂, 2001, 23: 211-215
    [27]赵东滨,寇元.室温离子液体:合成,性质及应用.大学化学, 2002, 17: 42-50
    [28] Fraga-Dubreuil J, Bazureau J P. Efficient combination of task-specific ionic liquid and microwave dielectric heating applied to one-pot three component synthesis of a small library of 4-thiazolidinones. Tetrahedron, 2003, 59(32): 6121-6130
    [29] Ishida T, Sasaki Y. Synthesis and Application of Chiral Ionic Liquids. Tetrahedron Letters, 2004, 45: 9455-9459
    [30] Kim K S, Choi S, Demberelnyamba D, Lee H. Ionic liquids based on N-alkyl–N–methyl -morpholinium salts as potential electrolytes. Chemical Communications, 2004, 10: 828-829
    [31] Fei Z F, Zhao D B, Geldbach T J, Scopelliti R, Dyson P J. Br?nsted Acidic Ionic Liquids and Their Zwitterions: Synthesis, Characterization and pKa Determination. Chemistry- A European Journal, 2004, 10(19): 4886-4893
    [32] Audic N, Clavier H, Mauduit M, et al. Ring-closing metathesis in biphasic BMI·PF6 ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process. Chemical Communications, 2004, 10: 2282-2283
    [33] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. ChemicalReviews, 1999, 99: 2071-2083
    [34] Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 1982, 21: 1263-1264
    [35] Freemantle M. Designer solvents: Ionic liquids may boost clean technology development. Chemcal & Engineering News, 1999, 4: 23-24
    [36] Doyle M, Choi S K, Proulx G. High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites. Journal of Electrochemical Society, 2000, 147: 34-37
    [37] Noda A, Watanabe M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 2000, 45: 1265-1270
    [38] Earle M J, Seddon K R. Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 2000, 72(7): 1391-1398
    [39] Fraga-Dubreuil J, Bourahla K, Rahmouni M, et al. Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media. Catalysis Communications, 2002, 3(5): 185-190
    [40] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 2002, 124 (18): 4974-4795
    [41]郭明,虞哲良.咪唑类离子液体对微晶纤维素溶解性能的初步研究.生物质化学工程, 2006, 40(6): 9-12
    [42] Zhang H, Wu J, Zhang J, He J S. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005, 38(20): 8272-8277
    [43]罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究.高分子材料科学与工程, 2005, 21(2): 233-235
    [44] Hardacre C, Holbrey J D, Katdare S P, Seddon K R. Alternating copolymerisation of styrene and carbon monoxide in ionic liquids. Green Chemistry, 2002, 4(2): 143-146
    [45] Zhang J W, Hong K L, Mays J W. Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macromolecules, 2002, 35(15): 5738-5741
    [46]熊键,叶君,梁文芷,彭纪南.绿色革命中纤维素科学的战略地位.大自然探索, 1998, 17(2): 14-17
    [47] Uhlin K I, Atalla R H, Thompson N S. Influence of hemicelluloses on the aggregation patternsof bacterial cellulose. Cellulose, 1995, 2: 129-144
    [48] Woodward J, Hayes M K, Lee N E. Hydrolysis of Cellulose by Saturating and Non?Saturating Concentrations of Cellulase: Implications for Synergism. Bio/Technology, 1988, 6: 301-304
    [49]任强.纤维素在离子液体中的溶解性能研究.北京航天航空大学,硕士论文, 2003: 10-12
    [50]左铁镛.材料产业可持续发展与环境保护.科学中国人, 1997, 5: 7-12
    [51]王恺,丁美蓉,潘海丽. 21世纪我国木材工业展望.林产工业, 2000, 27(3): 3-6
    [52]申宗圻.木材学(第二版).中国林业出版社, 1993
    [53]任俊莉,孙润仓,刘传富.半纤维素的化学改性研究进展.现代化工, 2006, 26: 68-73
    [54]蒋挺大.木质素.北京:化学工业出版社, 2001
    [55]戈进杰.生物降解高分子材料及其应用.北京:化学工业出版社, 2002
    [56] Shiraishi N, Kishi H. Wood-phenol adhesives prepared from carboxymethylated wood. Journal of Applied Polymer Science, 1986, 32: 3189-3209
    [57] Maldas D, Kokta B V, Daneault C. Influence of coupling agents and treatments on the mechanical properties of cellulose fiber-polystyrene composites. Journal of Applied Polymer Science, 2003, 37:751-775
    [58] Lin L, Yoshio M, Yao Y, et al. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. Journal of Applied Polymer Science, 1994, 52: 1629-1636
    [59] Yamada T, Ono H. Characterization of the products result- ing from ethylene glycol liquefaction of cellulose. Journal of Wood Scicence, 2001,47(6): 458-464
    [60]任雪梅.聚丙烯酰胺的生产与应用现状.湿法冶金, 2005, 24(3): 128-131
    [61]巫拱生等.丙烯酰胺介质玉米淀粉絮凝剂的合成与应用[J].吉林自然科学学报.1988, 3: 121-122
    [62]朱瑞宜等.淀粉一丙烯酰胺接枝共聚物的合成及其污水絮凝试验研究.环境保护科学, 1989, 11: 495-498
    [63]陈思莉,汪晓军,顾晓扬,万小芳.丙烯酰胺-阳离子瓜尔胶接枝共聚物的絮凝性能研究.工业水处理, 2007, 27(8): 28-31
    [64]胡子恒等.水溶性接枝聚多糖的研究.中山大学学报, 2001, 40(1):51-53
    [65]杨芳,黎刚,任凤霞,等.羧甲基纤维素与丙烯酰胺接枝共聚及共聚物的性能.高分子材料科学与工程, 2007, 23(4):78-81
    [66] Mckague A B. Flocculating agent derived from kraft lignin. Chemical Biotechnology, 1974, 24(10): 607-610
    [67]朱建华.木质素阳离子表面活性剂的合成及应用.精细化工, 1992 , 9(4): 1-3
    [68]吴冰艳.新型脱色絮凝剂木素季铵盐的研制及其絮凝性能与机理.化工环保, 1997, 17(5):268-272
    [69] Dizhbite T, Telyshera G. Multifunctional activity of lignin derivatives in pulp/filler compositions. Advances in Lignocellulose Chemical Ecology Friendly Pulping Bleaching Technology, European Workshop Lignocellulose Pulping, 1998, 97-100
    [70]乔吉超,胡小玲,管萍.酚醛树脂胶粘剂的研究进展.中国胶粘剂, 2006, 15(7): 45-48
    [71]陶毓博,李鹏,陆仁书,等.尿素改性酚醛树脂胶粘剂的研究.林产工业, 2005, 32(1): 13-16
    [72]郑志峰,张宏健,温明明.粉状酚醛树脂胶粘剂性能指标体系建立及评价.西南林学院学报, 2004, 24(23): 51-54
    [73]欧阳兆辉,伍林,易德莲,等.钼改性酚醛树脂胶粘剂的研究.化工进展, 2005, 24(8): 901-904
    [74]王继刚,郭全贵,刘郎,等.陶瓷改性酚醛树脂胶粘剂的高温性能.机械工程材料, 2005, 29(2): 24-26
    [75] Cetin N S, ?zmen N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production. International journal of Adhesives, 2002, 22(6): 477-480
    [76]时君友.改性酚醛树脂胶粘剂的研究.北华大学学报(自然科学版), 2004, 5(1): 75-79
    [77]庞金兴,黄可知,李曦,等.常温固化耐高温酚醛树脂胶粘剂的研制.武汉工业大学学报, 2000, 22(3): 6-8
    [78]黎明.用碎木材制胶粘剂.粘接, 2002, 24(2): 48-49
    [79]蒋剑春.生物质能源应用研究现状与发展前景.林产化学, 2002, 22(2): 75-80
    [80]柳海兰,张南哲.木材工业用酚醛树脂胶粘剂的现状及研究进展.延边大学学报(自然科学版), 2006, 32(2): 118-121
    [1]王久模,覃永黔. NR基高吸水材料的研究、应用及现状.弹性体, 2004, 14(6): 74 -78
    [2]刘建树,邹黎明.国外可生物降解高吸水材料的研究状况.合成技术及应用, 2001, 16(4): 27-29
    [3] Howarth J, Dalas A. Moistuer Stable Ambient Temperature Ionic Liquids: Solvents for the New Milennium I - The Heck Reaction. Molecules, 2000, 5: 851-855
    [4]顾彦龙,彭家建,乔琨等.室温离子液体及其在催化和有机合成中的应用.化学进展, 2003, 14(3): 222-241
    [5]张普玉,娄帅,柴云.在离子液体介质中聚合反应的研究进展.石油化工, 2005, 34(4): 388-393
    [6] Adams C J, Earle M J, Roberts G, et al. Friedel-Crafts Reactions in Room Temperature Ionic Liquids. Chemical Communications, 1998, 19: 2097-2098
    [7]张所波,丁孟贤,高连勋.离子液体在有机反应中的应用.有机化学, 2002 , 22(3): 159-163
    [8]阎立峰,朱清时.离子液体及其在有机合成中应用.化学通报, 2001, 11: 673- 679
    [9] Zhang H W, Hong K L, Mays J W. Systhesis of Block Copolymers of Styrene and Methyl Methacrylate by Conventional Free Radical Polymerization in Room Temperature Ionic Liquids. Macromolecules, 2002, 35(15): 5738-5741
    [10] Kubisa P A. Application of Ionic Liquids as Solvents for Polymerization Processes. Prograss in Polymer Science, 2004, 29: 3-12
    [11] Vygodskii Y S, Lozinskaya E I, Shaplov A S. Ionic Liquids as Novel Reaction Media for the Synthesis of Condensation Polymers. Macromolecular Rapid Communications, 2002, 23(12): 676-680
    [12]翟蔚,陈洪章,马润宇.离子液体中纤维素的溶解及再生特性.北京化工大学学报, 2007, 34(2):138-141
    [13] Carlin R T, Robert A, Osteryoung R A, et al. Studies of Titanium (IV) Chloride in a Strongly Lewis Acidic Molten Salt: Electrochemistry and Titanium NMR and Electronic Spectorscopy. Inorganic Chemistry, 1990, 29(16): 3003-3009
    [14] Heinze T, Schwikal K, Barthel S. Ionic Liquids as Reaction Medium in Cellulose Functionalization. Macromolecules Bioscience, 2005, 5: 520-525
    [15] Hardacre C, Holbrey J D, Katdare S P, Seddon K R. Alternating copolymerisation of styrene and carbon monoxide in ionic liquids. Green Chemistry, 2002, 4(2): 143-146
    [16] Zhang H, Wu J, Zhang J, He J S. 1-Allyl-3-methylimidazolium chloride room temperature ionicliquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005, 38(20): 8272-8277
    [17]罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究.高分子材料科学与工程, 2005, 21(2): 233-235
    [18] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 2002, 124(18): 4974-4795
    [19]卢泽湘,袁霞,吴剑,等.咪唑类离子液体的合成与光谱表征.化学世界, 2005, 46: 148-150
    [20]关烨第,李翠娟,葛树丰.有机化学实验,第二章.北京:北京大学出版社, 2002: 29-30
    [1] Zhao H, Xia S Q, Ma P S. Use of ionic liquids as“green“solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005, 80: 1089-1096
    [2] Sheldon R. Catalytic reactions in ionic liquids. Chemical Communications, 2001, 23: 2399-2407
    [3] Zhang H, Wu J, Zhang J, He J S. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005, 38(20): 8272-8277
    [4]罗慧谋,李毅群,周长忍.功能化离子液体对纤维素的溶解性能研究.高分子材料科学与工程, 2005, 21(2): 233-235
    [5]刘瑞刚. Lyocell纤维成形理论的研究和计算机模拟. [硕士学位论文].上海:东华大学, 1998: 16-21
    [6] K?hler S, Heinze T. Efficient synthesis of cellulose furoates in 1-N-buty-3-methylimidazolium chloride. Cellulose, 2007, 7(3): 307-314
    [7]王海云,朱永年,储富祥,蔡智慧.溶解纤维素的溶剂体系研究进展. 2006, 40(3): 54-58
    [8] Kilpel?inen I, Xie H B, King A, et al. Dissolution of wood in ionic liquids. Journal of Agricultural and Food Chemistry, 2007, 55: 9142-9148
    [9] Diego A. Fort, Richard C. Remsing, Richard P. Swatloski. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-N-butyl-3-methylimidazolium chloride. Green Chemistry, 2007, 9: 63-69
    [10]郭立颖,史铁钧,李忠,段衍鹏.两种咪唑类离子液体对杉木粉溶解性能的研究.化工学报, 2008, 59(5): 1299-1304
    [11]彭园花,曾祥钦,卢红梅.木质素的提纯及其在脲醛树脂胶粘剂中的应用.当代化工, 2006, 35(6): 377-379
    [12] Weise U. Hornification mechanisms and terminology. Paperi ja Puu-Paper and Timber, 1998, 80(2):110-115
    [13]熊犍,叶君,梁文芷,范佩明.微波对纤维素Ⅰ超分子结构的影响.华南理工大学学报, 2000, 28(3):84-89
    [14]沈隽.木材构造特征与振动特性参数关系的研究. [博士学位论文].哈尔滨:东北林业大学, 2001: 19-20
    [15] Nada A, Abou Y H, El-Gohary S. Thermal Degradation of Hydrolyzed and Oxidized Lignins. Journal of Thermal Analysis and Calorimetry, 2002, 68: 265-273
    [16] Nguyen T, Zavrin E, Barrall E M. Thermal Analysis of Lignocellulosic Materials. Journal ofMacromolecular Science-Reviews in Macromolecular Chemistry & Physics, 1981, 20: 1-65
    [17] Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 2003, 52: 151-160
    [18]张俐娜.天然高分子改性材料及应用.化学工业出版社,2006, 4: 109-111
    [1] Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules, 2004, 5: 266-268
    [2] Barthel S. Heinze T. Acylation and carbanilation of cellulose in ionic liquids. Green Chemistry, 2006, 8(3): 301-306
    [3]朱建华.木质素阳离子表面活性剂的合成及应用.精细化工, 1992 , 9(4): 1-3
    [4]吴冰艳.新型脱色絮凝剂木素季铵盐的研制及其絮凝性能与机理.化工环保, 1997, 17(5) :268-272
    [5] Dizhbite T, Telyshera G. Multifunctional activity of lignin derivatives in pulp/filler compositions, Advances in Lignocellulose Chemical Ecology Friendly Pulping Bleaching Technology, European Workshop Lignocellulose Pulping, 1998, 97-100
    [6] Canche′-Escamilla G, Pacheco-Catala′n D E, Andrade-Canto S B. Modification of properties of rayon fibre by graft copolymerization with acrylic monomers. Journal of Materials Science, 2006, 1: 7296-7301
    [7] Seven P, Coskun M, Demirelli K. Synthesis and characterization of two-armed graft copolymers prepared with acrylate and methacrylate using atom transfer radical polymerization. Reactive & Functional Polymers, 2008, 68: 922–930
    [8]杨芳,黎刚,任凤霞,禹雪晴,等.羧甲基纤维素与丙烯酰胺接枝共聚及共聚物的性能.高分子材料科学与工程,2007, 23(4): 48-85
    [9]王存国,何丽霞,董献国,等.富含纤维素类农作物秆与丙烯酸接枝共聚制备高倍率吸水树脂.高等学校化学报, 2007, 28(9): 1787-1790
    [10] Zhang H W, Hong K L, Mays J M. Free radical polymerization in room temperature ionic liquids. Polymer Preparation, 2001, 42:583-584
    [11] Hong K L, Zhang H W, Mays J M. Conventional free radical polymerization in room temperature ionic liquids: a green approach to commodity polymers with practical advantages. Chemical Communications, 2002, 13: 1368-1369
    [12] Zhang H W, Hong K L, Mays J M. Synthesis of Block Copolymers of Styrene and Methyl Methacrylate by Conventional Free Radical Polymerization in Room Temperature Ionic Liquids. Macromolecules, 2002, 35: 5738-5741
    [13]徐初阳,罗慧,聂容春,等.聚丙烯酰胺的性质对煤泥水絮凝效果的影响.煤炭技术, 2004, 23(1):63-65
    [1] Jain N, Kumar A, Chauhan S, et al. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 61: 1015-1060
    [2] Kubisa P. Application of ionic liquids as solvent for polymerization Processes. Progress in Polymer Science, 2004, 29(1): 3-12
    [3] Scurtoa M, Leitner W. Expending the useful range of ionic liquids: melting point depression of organic salts with carbon dioxide for biphasic catalytic reactions. Chemistry Communication, 2006, 35: 3681-3683
    [4] Weuster-Botz D. Process intersification of whole-cell biocatalysis with ionic liquids. Chemical Record, 2007, 7(6): 334-340
    [5] Nakashima K, Kubota F, Maruyama T, et al. Ionic liquids as a novel solvent for lanthanide extraction. Analytical Sciences, 2003, 19(8): 1097-1098
    [6] Visser A E, Swatloski R P, Griffin S T, et al. Liquid-liquid extraction of metal ions in room temperature ionic liquids. Separation Science and Technology, 2001, 36(5-6): 785-804
    [7] Zein El-Abedin S, Endres F. Electrodeposition of metals and semiconductors in air- and water-stable ionic liquids. Chemphyschem, 2006, 7(1): 58-61
    [8] Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochemistry Communications, 2006, 8(5): 874-878
    [9] Scott M P, Rahman M, Brazel C S. Application of ionic liquids as low-volatility plasticizers for PMMA. Eourpean Polymer Journal, 2003, 39: 1947-1953
    [10]娄帅,刘晓霞,李文斌,张普玉.离子液体对PMMA绿色增塑性能.应用化学, 2006, 23(8): 930-932.
    [11] Xie C X, Li H L, Li L, Yu S T, Liu F S. Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst. Journal of Hazardous Materials, 2008, 151: 847-850
    [12] Peng B, Zhu J W, Liu X J, Qin Y. Potentiometric response of ion-seletive membranes with ionic liquids as ion-exchanger and plasticizer. Sensors and Actuators B: Chemical, 2008, 133: 308-314
    [13]苏光耀,李朝晖,王霞瑜,高德淑.离子液体增塑的聚合物电解质.应用化学, 2004, 21(9): 900-904
    [14]李屹,姚进,周元康,王满立.复合改性酚醛树脂及其在摩擦材料中的应用.非金属矿, 2005, 28(4): 57-58
    [15]王超,黄玉东,姜丽华,郑立威.四马来酰亚胺改性有机硅酚醛树脂性能的研究.复合材料学报, 2004, 21(4): 50-53
    [16] Wang J G, Jiang N, Guo Q G, et al. Study on the structural evolution of modified phenol formaldehyde resin adhesive for the high-temperature bonding of graphite. Journal of Nuclear Materials, 2006, 348(1-2): 108-113
    [17]张巧玲.蒸馏妥尔油改性酚醛树脂的合成与应用.应用化工, 2005, 34(9): 579-581
    [18]李爱阳,唐有根.木质素改性酚醛树脂胶的研究.中华纸业, 2006, 27(3): 76-77
    [19]郭立颖,史铁钧,李忠,段衍鹏.两种咪唑类离子液体对杉木粉溶解性能的研究.化工学报, 2008, 59(5): 1299-1304
    [20] Diego A. Fort, Richard C. Remsing, Richard P. Swatloski. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-N-butyl-3-methylimidazolium chloride. Green Chemistry, 2007, 9: 63-69
    [21] Kilpel?inen I, Xie H B, King A, et al. Dissolution of wood in ionic liquids. Journal of Agricultural and Food Chemistry, 2007, 55: 9142-9148
    [22]季庆娟,刘胜平,刘敏,马源,赵春秋.酚醛树脂/木粉复合体系的固化动力学,高分子材料科学与工程, 2008, 24(3): 41-44
    [23]彭园花,曾祥钦,卢红梅.木质素的提纯及其在脲醛树脂胶粘剂中的应用.当代化工, 2006, 35(6): 377-379
    [24] Manfredi L B, Osa O, Fernandez N G, Vazquez A. Structure2 properties relationship for resols with different formaldehyde Phenol molar ratio. Polymer, 1999, 40(13): 3867-3876
    [25]钱军民,金志浩,王继平.酚醛树脂/木粉复合材料制备木材陶瓷结构变化过程研究.复合材料学报, 2004, 21(4): 18-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700