用户名: 密码: 验证码:
热力管道泄漏光纤光栅检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热力管道属生命线工程,一旦发生破坏,将会对取暖和热力生产造成严重的影响,产生直接经济损失和不良社会影响。管道的泄漏,特别是微小泄漏,如能及时发现,将为管道的及时维修、保养提供科学的预测信息,以便预防大的泄漏发生。因此,对管道泄漏的检测研究具有极为重要的现实意义。热力管道泄漏时,泄漏出的热水与周围环境存在温度差,通过关键点处的光纤光栅温度传感器可感知温度变化,从而判断泄漏的发生。该项研究可为石油、天然气、热力等管道的泄漏检测提供一种新方法。
     在总结管道泄漏检测的研究现状和发展趋势的基础上,论文针对热力管道泄漏,进行了实验研究、理论分析和仿真计算,并结合实际工程应用,为建立管道泄漏光纤光栅温度监测系统提供了理论依据和应用经验。研究表明,这一系统可推进管道运行的现代化管理、减少故障判定时间、减小泄漏事故的经济损失及社会影响,并能够实现管网的终身功能监测。
     论文进行的研究工作如下:
     一、介绍了光纤光栅传感技术的特点、应用情况及光纤光栅的工作原理,分析了光纤光栅对应力和温度的敏感特性,叙述了光纤光栅的解调方法和光纤光栅组成准分布式系统的工作原理,阐述了光纤光栅温度传感系统检测热力管道泄漏的可行性。
     二、设计了检测埋地热力管道泄漏的室内实验装置,测试了实验模型泄漏前、后的埋地管道周围土壤温度场,研究了管道泄漏后热水的渗流和温度场的耦合,得到了热力管道周围土壤温度场的变化规律。实验表明可通过周围土壤温度场的变化判断热力管道的泄漏,实验结果为数值计算模型的建立及数值模拟提供了依据。
     三、根据前人的研究成果,给出了热力管道泄漏前土壤温度场的物理和数学模型,将土壤这一半无限大区域简化为有界的区域。泄漏前管道周围土壤温度场将作为管道泄漏后非稳态土壤温度场计算的初始条件。
     在此基础上,建立了热力管道发生点泄漏后的三维非稳态的管道周围土壤温度场的物理和数学模型,以及热力管道发生线泄漏后的二维非稳态管道周围土壤温度场的物理和数学模型,并给出了相应的边界条件。
     四、确立了数值仿真计算模型及具体的计算参数,应用Fluent软件进行了管道泄漏前、后的管道周围土壤温度场的实验室模型和某一实际供热工程的仿真计算。利用数值仿真对泄漏前、后管道周围非稳态土壤温度场的分布变化规律进行总结,建立了泄漏量与温度影响区域的关系,进行曲线拟合。与实验数据对比分析,仿真效果较好。
     五、结合光纤光栅温度传感系统在大庆市某段10公里长热力管道工程的实际应用,总结了泄漏监测系统的设计和施工经验,并为检验该监测系统的工程应用效果创造了条件。
Thermal Pipeline is a lifeline. The production of heat supply will be seriously affected, direct economic losses and social affection will be caused by pipeline leakage. Scientific information to pipeline maintenance is provided by discovering pipeline leakage, especially tiny leakage, the serious leakage can be prevented. So there is crucial practical significance to study on leak detection to pipeline. The leakage can be determined by monitoring the change of temperature through optical fiber sensor if the leaking hot water and surroundings have different temperature. A new method is offered to pipeline leakage detection on petroleum, nature gas, heat supply, etc in this paper.
     On the summary of study condition and developing trend of pipeline leaking detection, experimental research, theoretical analysis and numerical simulation on thermal pipeline leakage are made in this paper. The theoretical basis and applying experience are offered by application to practical project. The research indicates that the system can advance the modern management on pipeline course, lessen the time on fault determination, prevent economic losses and social affection and realize the continual monitor to the pipeline.
     The main studies in the paper are follows:
     1. The characteristic of sensing technique of optical fiber grating, practice application and optical fiber grating working theory is introduced; the sensitivity characteristic of optical fiber grating with stress and temperature is analyzed; demodulation method of optical fiber grating and working theory of optical fiber grating distributed system is described; the feasibility of temperature sensor system of optical fiber grating applying to thermal pipeline leakage detection is expatiated.
     2. The in-house experimental devices for leak detection of buried thermal pipelines is established; the temperature field of the earth on experimental model before and after leakage of buried pipelines is tested; the seepage and temperature field coupled with the leakage of pipeline is researched, and the change of earth temperature field are mapped. The experiment indicates that the leakage of thermal pipeline can be determined through the change of earth temperature field, and the results provide the basis to numerical simulation.
     3. Physical and mathematical models of temperature field before the leakage of the thermal pipeline are provided basing on other achievements, and infinite earth distinct is simplified to finite distinct. The temperature field of earth before leakage is used as the initial condition on calculating the unsteady temperature field of earth after leakage.
     On the basis, the physical and mathematical models of unsteady temperature field around pipeline in three and two dimensions after point leakage are established and corresponding boundary condition is provided.
     4. The model and parameter of numerical simulation is ascertained; software Fluent is applied to numerical simulation of the temperature field of earth around pipeline in both experimental model and practical project before and after pipeline leakage; a conclusion is made on the change of unsteady temperature field of earth before and after leakage according to the numerical simulation and the relationship between quantity of leakage and the district influenced by temperature is established. Curve imitation is done. After being compared with experimental statistics, the effect is acceptable.
     5. According to the practical application of temperature sensor system of optical fiber grating in 10km thermal pipeline in Daqing, the design and construction experience of leak detection system are summarized, and the application effect of the detection system is proved to be possible.
引文
[1]白冰,赵成刚.温度对粘性土介质力学特性的影响[J].岩土力学,2003,24(4):533-537.
    [2]蔡正敏,吴浩江,黄一恒,等.小波变换在管道泄漏在线监测中去噪的应用[J].机械科学与技术,2001,20(2):253-256.
    [3]柴军瑞.大坝及其周围地质体中渗流与应力场耦合分析[D].陕西省:西安理工大学博士学位论文,2000.
    [4]柴军瑞.混凝士坝渗流场与稳定温度场耦合分析数学模型有限元解法[J].水力发电学报,2000,1:27-35
    [5]陈春刚,王毅,杨振坤.长输油气管道泄漏检测技术综述[J].石油与天然气化工,2002,31(1):52-54.
    [6]陈聪,李定国.光纤布拉格光栅的光学特性及其应用[J].海军工程大学学报,2000(4):11-15.
    [7]陈华波,涂亚庆.输油管道泄漏检测方法综述[J].管道技术与设备,2000(1):38-41.
    [8]陈建余.非饱和渗流场数值计算关键技术及其应用研究[D].江苏省:河海大学水利水电工程学院博士学位论文,2003.
    [9]池宝亮,黄学芳,张冬梅,等.点源地下滴灌土壤水分运动数值模拟及验证[J].农业工程学报,2005,21(3):56-59.
    [10]崔慧,吴长春.热油管道非稳态工况传热与流动的耦合计算模型[J].石油大学学报(自然科学版),2005,29(3):101-105.
    [11]崔晓龙,吴国忠,万妮丽.非稳态环境对理地管道传热的影响[J].油气储运,2003,22(7):11-13.
    [12]崔秀国,张劲军.埋地热油管道稳定运行条件下热力影响区的确定[J].石油大学学报(自然科学版),2004,28(2):75-78.
    [13]董东,王桂增,方崇智.基于Kullback信息测度的长输管线的故障诊断[J].清华大学学报(自然科学版),1989,29(4):37-43.
    [14]樊洪明,史守峡,何钟怡.地下直埋管道的温度场分析[J].哈尔滨建筑大学学报,1999,32(5):60-65.
    [15]冯宝平,陈守伦,汪志荣,等.温度对点源入渗影响的实验研究[J].河海大学学报(自然科学版),2002,30(6):108-111.
    [16]冯宝平.入渗条件下温度对土壤水分运动及参数影响的实验研究[D].陕西省:西安理工大学硕士学位论文,2001.
    [17]韩晓非,柳云龙,吕军,等.土壤水热耦合运移数值模型研究进展[J].土壤通报,2001,32(4):151-154.
    [18]胡晓东,刘文晖,胡小唐.分布式光纤传感技术的特点与研究现状[J].航空精密制 造技术,1999,35(1):28-31.
    [19]胡志新,张陵,乔学光,等.分布式光纤布拉格光栅在油气管道检测中的应用[J].应用光学,2000,21(4):4-7
    [20]黄尚廉.分布式光纤温度传感器系统的研究[J].仪器仪表学报,1991,12(4):359-364.
    [21]J.贝尔.多孔介质流体动力学[M].李竞生陈崇希译.北京:中国建筑工业出版社,1983.
    [22]姜德生,何伟.光纤光栅传感器的应用概况[J].光电子·激光,2002,13(4):420-430.
    [23]靳世久,唐秀家,王立宁,等.原油管道泄漏检洲与定何[J].仪器仪表学报,1997,16(4):343-347.
    [24]雷树业,杨荣贵,杜建华.非饱和含湿多孔介质传热传质的渗流模型研究[J].清华大学学报(自然科学版),1999,39(6):74-77.
    [25]李长俊.埋地输油管道的温度场计算[J].国外油田工程,1999,2:59-62.
    [26]李光永,曾德超,郊耀泉.地表点源滴灌土壤水分运动的动力学模型与数值模拟[J].水利学报,1998(11):21-25.
    [27]李光永,郊耀泉,曾德超,等.地埋点源非饱和土壤水运动的数值模拟[J].水利学报,1996(11):47-52.
    [28]李明思,康绍忠,孙海燕.点源滴灌滴头流量与湿润体关系研究[J].农业工程学报,2006,22(4):32-35.
    [29]李伟,张劲军.埋地热油管道停输后周围土壤温度场的数值模拟[J].西安石油大学学报(自然科学版),2005,20(6):27-29.
    [30]刘思春,白锦鳞,张一平,等.温度梯度对非饱和土壤水分运动的影响[J].西北农业大学学报,1994,22(1):44-49.
    [31]刘晓波,华祖林,何国建.计算流体力学的科学计算可视化研究进展[J].水动力学研究与进展,2004,19(1):120-125.
    [32]刘晓燕,王振.寒区埋地长输管道热工参数计算及停输安全性研究报告[R].大庆石油学院,2000.
    [30]刘晓燕,赵军,石成.埋地集油管道周围径向土壤温度场数值模拟[J].油田地面工程,2006,25(12):3-4.
    [34]卢涛,孙军生,姜培学.埋地热油管道预热启输过程外界气温及预热水温对土壤温度场的影响[J].太阳能学报,2006,27(10):1053-1057.
    [35]马贵阳,刘晓国,郑平.埋地管道周围土壤水热耦合温度场的数值模拟[J].辽宁石油化工大学学报,2007,27(1):40-44.
    [36]马娟娟,孙西欢,李占斌.入渗水头对土壤入渗参数的影响[J].灌溉排水学报,2004,23(5):53-55.
    [37]毛宁林,李新军,刘鸿升.海底管道泄漏的在线检测技术[J].石油工程建设,2001,27(3):8-11.
    [38]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49.
    [39]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005(1):8-12
    [40]庞丽萍,王浚.热介质直埋管道周围温度场仿真研究[J].系统仿真学报,2004,16(3):485-487.
    [41]荣冠.岩七介质非饱和渗流分析及工程应用研究[D].湖北省:武汉大学博士学位论,2005.
    [42]孙跃.水管网络泄漏检测技术的新发展[J].给水排水,2002,28(11):35-37.
    [43]孙东亚.光纤智能材料、器件与智能锚索结构系统的研究[D].湖北省:武汉理工大学博士学位论文,2002.
    [44]孙海燕,李明思,于振华,等.滴灌点源入渗湿润锋影响因子的研究[J].灌溉排水学报,2004,23(3):14-16.
    [45]孙世梅,张红.热管换热器流动与传热的CFD模拟及试验[J].南京工业大学学报,2004,26(2):62-66.
    [46]孙洪,骆建德,姚成林.塘沽-燕山输油管道泄漏监测系统[J].油气储运,2007,26(9):42-45.
    [47]唐秀家,颜人椿.基于神经网络的管道泄漏检测方法及仪器[J].北京大学学报(自然科学版),1997,33(3):3 19-327.
    [48]唐秀家.不等温长输管道泄漏定位理论[J].北京大学学报(自然科学版),1997,33(5):575-579.
    [49]唐秀家.供水管网泄漏检测定位方法及仪器[J].水利学报,1997,(9):19-26.
    [50]唐秀家.管道系统泄漏检测神经网络与模式识别方法[J].核科学与工程,1998,18(3):220-226.
    [51]田石柱,赵雪峰,欧进萍,等.结构健康监测用光纤Bragg光栅温度补偿研究[J].传感器技术,2002,21(12):8-10.
    [52]汪志荣,张建丰,王文焰,等.温度影响下土壤水分运动模型[J].水利学报,2002(10):46-50.
    [53]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社2004.
    [54]王桂增,董东,方崇智.基于Kullback信息测度的长输管线的泄漏检测[J].信息与控制,1989(1):4-17.
    [55]王海生,叶吴,王桂增.基于小波分析的输油管道泄漏检测[J].信息与控制,2002,31(5):456-460.
    [56]王可非,王桂增,杨军,等.基于负压波的管道泄漏诊断[J].信息与控制,1992,21(4):217-221.
    [57]王立坤.原油管道泄漏检测若干关键技术研究[D].天滓市:天津大学博士学位论文,2003.
    [58]王立宁,李健,靳世久.热输原油管道瞬态压力波法泄漏点定位研究[J].石油学报,2000,21(4):93-96.
    [59]王镛根,曹箐,夏红云.液体管道小泄漏检测和定位[J].信息与控制,1988(4):24-27.
    [60]王占山,张化光,冯健,等.长距离流体输送管道泄漏检测与定位技术的现状与展望[J].化工自动化及仪表,2003,30(5):5-10.
    [61]吴明,江国业,安丙威.输油管道土壤温度场的数值计算[J].石油化工高等学校学报,2001,14(4):54-57.
    [62]吴国忠,庞丽萍,卢丽冰,等.埋地输油管道非稳态热力计算模型研究[J].油气田地面工程,2002,21(1):92-93.
    [63]吴国忠,张九龙,王英杰.埋地管道传热计算[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [64]吴明等.输油管道土壤温度场的数值计算[J].石油化工高等学校学报,2001,14(4):54-56.
    [65]吴强,余重秀,王葵如.光纤光栅切趾技术[J].光子技术,2004(2):71-76.
    [66]吴顺生.输油管线泄漏监测技术研究[D].黑龙江省:黑龙江大学硕士学位论文,2003.
    [67]夏海波,张来斌,王朝晖,等.小波分析在管道泄漏信号识别中的应用[J].石油大学学报(自然科学版),2003,27(2):78-81.
    [68]夏海波,张来斌,王朝辉.国内外油气管道泄漏检测技术的发展现状[J].油气储运,200l,20(1):1-5.
    [69]徐元利,徐元春,梁兴,等.FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械,2005,27(1):39-41.
    [70]薛燕,胡娜.输油管道泄漏检测技术及应用探讨[J].石油与天然气化工,2002,31(2):106-108.
    [71]严大凡.输油管道设计与管理[M].北京:石油工业出版社,1986.
    [72]杨杰,王桂增.输气管道泄漏诊断技术综述[J].化工自动化及仪表,2004,31(3):1-5.
    [73]杨筱蘅,张国忠.输油管道设计与管理[M].北京:石油工业出版社,1995,62-68.
    [74]于昌铭.热传导及数值分析[M].北京:清华大学出版社,1982.
    [75]袁寿其,朱兴业,李红,等.全射流喷头内部流场计算流体动力学数值模拟[J].农业机械学报,2005,36(10):46-49.
    [76]张布悦,王桂增。刘吉东,等.输油管线泄漏检测和定位技术综述[J].上海海运学院学报,2001,22(3):13-16.
    [77]张东辉.多孔介质扩散、导热、渗流分形模型的研究[D].江苏省:东南大学博士学位论文,2003.
    [78]张国忠.埋地热油管道准周期运行温度研究[J].油气储运,2001,20(6):4-7.
    [79]张华,陈善雄,陈守义.非饱和土入渗的数值模拟[J].岩土力学,2003, 24(5):715-718.
    [80]张记龙,曾光宁.光纤光栅(FGB)传感技术及其应用[J].华北工学院测试技术学报,2001.15(4):214-220.
    [81]张静,吴明.用有限元法计算埋地热油管道土壤温度场[J].辽宁石油化工大学学报,2004,24(2):38-41.
    [82]张兴周.Bragg光纤光栅与光纤传感技术[J].光学技术,1998(4):70-74.
    [83]张在宣,刘天夫,张步新,等.激光喇曼型分布光纤温度传感系统[J].光学学报,1995,15(11):1585-1589.
    [84]张住:宣,王剑锋,郭宁,等.分布式光纤光子传感器与测量网络的进展.中国计量学院学报,2001,12(2):77-85.
    [85]张振华,蔡焕杰,杨润亚,等.点源入渗等效半球模型的推导和实验验证[J].灌溉排水学报,2004,23(3):9-13.
    [86]张振华,蔡焕杰,杨润亚.点源入渗理论及其模型研究进展[J].水土保持研究,2005,12(6):159-163.
    [87]章熙民.传热学[M].北京:中国建筑工业出版社,1993,66-69.
    [88]赵会军,张青松,张国忠,等.热油管道停输过程土壤温度场PHOENICS数值模拟[J].石油化工高等学校学报,2006,19(4):76-79.
    [89]赵永涛,殷敏谦.埋地热油管道周围温度场数值模拟[J].承德石油高等专科学校学报,2007,9(1):1-4.
    [90]郑平,马贵阳,顾锦彤.带有伴热管的输油管道土壤温度场的数值计算[J].辽宁石油化工大学学报,2006,26(3):46-49.
    [91]郊晓京,曹柳林.相关分析在原油管道泄漏监测的应用[J].自动化与仪表,2003(3):5-7.
    [92]周雪漪.计算流体力学[M].北京:清华大学出版社,1995
    [93]周智,武湛君,赵雪峰,等.混凝土结构的光纤光栅智能监测技术.功能材料,2003,34(3):344-348.
    [94]朱军,刘光廷,陆述远.饱和非饱和三维多孔介质非稳定渗流分析[J].武汉大学学报(工学版),2001,34(3):5-8.
    [95]邹新军.考虑应力场耦合作用的均质土堤渗流场理论分析与模型试验研究[D].湖南省:湖南大学硕士学位论文,2001.
    [96]Alexander,Chris;Pordal,Harbi.Modeling leakage in a fuel transfer pipeline using computational fluid dynamics techniques[J].PVP,Proceedings of the ASME Pressure Vessels and Piping Conference,2005,5:195-203.
    [97]American Society of Mechanical Engineers,Pressure Vessels and Piping Division(Publication) PVP,Emerging Technology in Fluids,Structures,and Fluid-Structure Interactions,2004,485(1):79-83.!98]Andreas Othonos.Fiber Bragg gratings[J].Review of Scientific Instruments. 1997(68):4309-4341.
    [99] B.Culshaw. J. Dakin 著,李少慧等译.光纤传感器,武汉:华中理工大学出版社,1997:692.
    [100] Bakhtiyarov, Sayavur I; Siginer, Dennis A. CFD simulations of flow dynamics in porous media of variable permeability arranged in series [J].American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, Rheology and Fluid Mechanics of Nonlinear Materials,2000, 255: 25-28.
    [101] Bernhard Vogel, Christian Cassens, Andrea Graupner. Leakage detection systems by using Distributed Fiber OpticalTemperature Measurement [A].Proceedings of SPIE, 2001, 4328: 23-34.
    [102] Bourbon, C. Milisic, V. Numerical simulation of boiling in a porous medium by using two-phase approach [J]. International Conference on Modeling and Simulation of Microsystems, 1999, 562-567.
    [103] Butlen N C. Pipeline leak detection technique [J]. Pipes and Pipelines Int,1982, 4:434-447.
    [104] C. Wieners M. Ammann T. Graf W. Ehlers. Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics [J]. Comput Mech, 2005, 654-666.
    [105] C. Wieners, M. Ammann, S. Diebels, W. Ehlers. Parallel 3-d simulations for porous media models in soil mechanics [J]. Computational Mechanics, 2002.29:75-87
    [106] Carrillo, Antonio; Gonzalez, Enrique; Rosas, Armando; Marquez. A New distributed optical sensor for detection and localization of liquid leaks.Part I[J]. Experimental studies. Sensors and Actuators, A: Physical, 2002,99(3):229-235.
    [107] Changzhi Li; Wei Zhang; Yidong Huang; Jiangde Peng Numerical study on Bragg fibers for infrared applications[J]. International Journal of Infrared and Millimeter Waves, 2005, 26(6):893-904.
    [108] Chen, Huabo; Tu, Yaqing; Luo, Ting. A method for oil pipeline leak detection based on distributed fiber optic technology[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1998, 3555:77-82.
    [109] Dakin. Distributed optical fiber sensors. Proc. SPIE. 1797,1992, 76-108.
    [110] Dr Crispin Doyle. Fibre Bragg Grating Sensors-An Introduction to Bragg gratings and interrogation techniques [J]. Senior Applications Engineer,Smart Fibres Ltd. 2003:89-97.
    [111] Dr Jun Zhang & Dr Ling Xu. Real Time Pipeline Leak Detection on Shell's North Western Ethylene Pipeline [J]. IMechE, 1999:69-77.
    [112]Depypere,F;Pieters,J.G:Dewettinck,K.CFD analysis of air distribution in ftuidised bed equipment[J].Powder Technology,2004,145(3):176-189.
    [113]E.Udd,K.Corona,K.r.Slattery and D.J.Dorr,Fiber Grating Systems Used to Measure Strain in Cylindrical Structures[J].Optical Engineering,1997,37:1893-1900,
    [114]F P Mechd,et al.用相关分析法检测泄漏[J].声学技术,1986,5(4):43-45.
    [115]Farries,et al,Distributed sensing using stimulated Raman interaction in a monomode optical fibre[J].Proc.2nd Int Conf Optical Fibre Sensors OFS 84 Stuttgart,1984,121-132.
    [116]FLUENT 6.2 Tutorial Guide.Fluent Inc,2005.
    [117]FLUENT User'Guide.Fluent Inc,2005.
    [118]Friebele P,et al.Fibre Bragg grating strain sensors:present and future applications in smart structures[J].Optics and Photonics News,1998,9:33-37.
    [119]G.Meltzetal.Formation of Bragggratings in optical fibers byatransverse holographic method.Opt.Lett.1989,14(15):823-825.
    [120]G.T.Yeh.3DFEMWATER饱和-非饱和介质水流三维有限元模式[J].辐射防护通讯,1999,14(2):1-60.
    [121]Garus D,etal.Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements[]].Lightwave technol,1997,15(4):654-662.
    [122]Grosswig,S.;Hurtig,E.:Luebbecke,S.:Vogel,B.Pipeline leakage detection using distributed fiber optical temperature sensing[J].Proceedings of SPIE,17th International Conference on Optical Fiber Sensors,OFS-17,2005,5855(1):226-229.
    [123]H.K.Versteeg,W.Malalasekera.An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M].Wiley,New York,1995
    [124]Hameed,Abdul Malhotra V N.Detection of leak from processpipes[J].Pipes and Pipelines Int,1999,44(5):23-32.
    [125]Hennigar G W.Advances in gas leak detection[J].Pipe and Gas Journal,1985,212(ll):39-42.
    [126]Hooer P.R.Temperature and Heat Transfer along Buried Liquids pipeline [J].Journal of Petroleum Tecjnology,1978,30:756-769.
    [127]Horiguchi T,Tateda M.Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave [J].Opt.Lett.,1990,2:352-357.
    [128]JunZhang,Ling Xu.Real time pipeline leak detection shell's north western ethylene pipeline[J].Technical Paper from Rel Instrumentation Limited, 1999.
    [129] K. O. Hilletal. Photo sensitivity in optical fiber waveguides: application filter fabrication [J]. Appl. Phys. Lett., 1978, 32:647-649.
    [130] Kasch, M. ; Hurtig, E. ; Grosswig, S. ; Schubart, P. Leak detection and online surveying at underground gas pipelines using fiber optic temperature sensing [J]. Oil Gas-European Magazine, 1997, 23(3):17-18,20-21.
    [131] L. L. Zhang, D. G. Fredlund, L. M. Zhang, and W. H. Tang. Numerical study of soil conditions under which matric suction can be maintained [J].The NRC Research, Canada, 2004,5:63-74.
    [132] Li, Shaoping; Becker, Ulrich. A three dimensional CFD model for PEMFC [J].Fuel Cell Science, Engineering and Technology, 2004:157-164.
    [133] Lien, Fue-Sang; Yee, Eugene .Numerical modeling of the turbulent flow developing within and over a 3-D building array, part III: A distributed drag force approach, its implementation and application[M]. Boundary-Layer Meteorology, 2005, 114(2):287-313.
    [134] M. G. Shlyagin, s. v. Miridonov, V. V. Spirin, E. Mitrani, J. Mendieta. Fiber Bragg grating sensor for liquid hydrocarbon detection [A]. In Applications of Optical Fiber Sensors, Proceedings of SPIE, 2000, 4074:108-115.
    [135] Marc Nikles, Bernhard Vogel, Fabien Briffod, Leakage detection using fiber optics distributed temperature monitoring [A]. Smart Structures and Materials Smart Sensor Technology and Measurement Systems, Proceedings of SPIE ,2004, 5384:18-25
    [136] Marian Marciniak. Solving Present and Future Problems in Optical Telecommunications with PBGs [J]. CP560, Nanoscale Linear and Nonlinear Optics, American Institute of Physics, 200., 77-88.
    [137] Mendez A, Morse T F, Mendez F. Application of embedded optical fiber sensors in reinforced concrete buildings and structures[C]. In: The International Society for Optical Engineering. SPIE, 1989, 1170:60—69.
    [138] Miguel v. Andres, jose 1. Cruz, Antonio diez. Fabrication of Optical Fiber Devices [J]. Fiber and Integrated Optics, 2004, 23: 85-95.
    [139] Mr. Jerry Myers. Six Month Technical Progress Report for the Airborne,Optical Remote Sensing of Methane and Ethane for Neural Gas Pipeline Leak Detection[R]. Semi-Annual, May, 2003.
    [140] Nikles, M. ; Vogel, B. ; Briffod, F. ; Grosswig, S. ; Sauser, F. ; Luebbecke,S. ; Bals, a. ; Pfeiffer, T. Leakage detection using fiber optics distributed temperature monitoring[J]. Proceedings of the SPIE - The International Society for Optical Engineering, 2004, 5384(1):18-25.
    [141] Niu, Yi; McFadden, Greg; Simon, Terry; Ibrahim, Mounir; Rong, Wei. Measurements and computation of thermal dispersion in a porous medium[J] 3rd International Energy Conversion Engineering Conference,2005,1:641-656.
    [142] Osama Hunaidi, Wing T Chu. Acousical characteristics of leak signals in plastic water distribution pipes[J]. Applied acoustics, 1999, 58:235-254.
    [143] Paranjape, R. ; Liu, N.; Rumple, C. ; Hara, E.H. Distributed fiber optic system for oil pipeline leakage detection[J]. Proceedings of the SPIE - The International Society for Optical Engineering, 2002, 4833:206-213.
    [144] Parker T. R, etal. Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers [J]. optics letters,1997, 22(11):787-789.
    [145] Periasamy, Chendhil; Chinthamony, Sathish K. Sankara; Gollahalli, S. K.Modeling liquid spray evaporation in heated porous media with a local thermal non-equilibrium model[J]. Energy Conversion and Resources 2004:Fuels and Combustion Technologies, Energy, Nuclear Engineering,2004:123-130.
    [146] Polanco, G; Holdo, A.E. Modeling of a gas leakage including droplet transport [J]. PVP, Emerging Technology in Fluids, Structures, and Fluid-Structure Interactions, 2004, 485(1):79-83.
    [147] R. Normann, J Weiss, and J. Krumhansl. Development of Fibers Optic Cables for Permanent Geothermal Wellbore Deployment [A]. Twenty-Sixth Workshop on Geothermal Reservoir Engineering, January, 2001.
    [148] Rogers A, et al, Distributed optical fiber sensing. Proc. SPIE.1991,1511:2-24.
    [149] S. Grosswig, E. Hurtig, S. Luebbecke, B. Vogel. Pipeline leakage detection using distributed fibre optical temperature sensing [A]. 17th International Conference on Optical Fibre Sensors, Proceedings of SPIE,2005, 5855.
    [150] Salaheldin, Tarek M. ; Imran, Tasini; Chaudhry, M. Hanif. Numerical modeling of three-dimensional flow field around circular piers [J].Journal of Hydraulic Engineering, 2004, 130(2):91-100.
    [151] Sensfelder, E. ; Buerck, J. ; Ache, H.-J. Characterization of a fiber-optic system for the distributed measurement of leakages in tanks and pipelines [J]. Applied Spectroscopy, 1998, 52(10):1283-1298.
    [152] Shlyagin, M. G. ; Miridonov, S. V. ; Spirin, V. V. ;Mitrani, E. ; Mendieta, J.Fiber Bragg grating sensor for liquid hydrocarbon detection[J].Proceedings of SPIE - The International Society for Opti;^.l Engineering,2000, 4074:108-115.
    [153] Sobera, M. P. ; Kleijn, C. R. ; Brasser, P. . Van Den Akker, H. E. A. Multiscale CFD of the flow, heat and mass transfer THROUGH a porous material with application to protective garments[M]. PVP, Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications,2004, 491(1):187-196.
    
    [154] Trouillet, Alain; Marin, Emmanuel; Veillas, Colette; Gagnaire,Henri. Optical fibre sensors for hydrogen leak detection[J] 2005 AIChE Spring National Meeting, Conference Proceedings, 2005, p 1649-1658.
    
    [155] Vogel, B. ; Cassens, C. ; Graupner, A.. Leakage detection systems by using distributed fiber optical temperature measurement [J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2001, 4328: 23-34
    
    [156] Xiao-Jian Wang; Martin F. Lambert; Angus R. Simpson, M. ASCE. Leak Detection in Pipelines using the Damping of Fluid Transients [J]. Journal of Hydraulic Engineering, 2002. 128(7):688-711.
    
    [157] XieZhenghui, Dai Yongjiuand, Zeng Qingcun. An Unsaturated Soil Water Flow Problem and Its Numerical Simulation [J]. Advances in Atmospheric Sciences.1999, 16(2):183-196.
    
    [158] Zhang X J. Statistical leak detection in gas and liquid pipeline. Pipes and Pipelines International, 1993, 38(4):26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700