用户名: 密码: 验证码:
高速率深空通信中天线组阵关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人类对电磁波传播理论的深入研究,以及对深空探测活动的不断探索,天线组阵技术由于其低成本、高性能、高可靠性以及高灵活度等诸多优点,受到了中外学者的广泛关注,在高速率深空通信中具有良好的应用前景。本文在对国内外天线组阵研究现状进行总结后,分析了在高速率深空通信中实现天线组阵的关键难点;针对其通信频带内的相位特性,研究了子频带分割与接收信号重建技术;并在进一步完善了经典相关算法理论体系后,提出了新的高性能自适应相关算法;最终设计出了适用于高速率深空通信的天线组阵仿真系统;另一方面,针对可用于天线组阵原理样机的功分器与阻抗变换器进行了深入研究。本文所取得的主要研究成果为如下:
     1.在高速率深空通信中实现天线组阵的关键难点。经过系统的分析、推导与研究,得出了本课题中所需解决的关键问题与技术难点主要包括:在极低接收信噪比条件下快速、准确的获得各接收信号间的相位关系;消除在通信频带内上述相位值分布的2π模糊现象,及其引起的时延计算值错误;降低由时延校正残余量带来的频带内相位滑动现象,及其导致的信号间相关性下降。
     2.子频带分割与接收信号重建技术在天线组阵中的应用。针对天线组阵中高速率宽带信号合成面临的2π模糊和相位滑动现象,论述了子频带分割技术在天线组阵中的应用原理,通过理论分析与推导得出了不同条件下满足信号合成要求所需的子频带数目,并提出了相应子频带分割方法所能实现的时延差校正范围。然后,将多相滤波器组信道器应用于对接收信号的分割与重建中,设计了可重建的512路信道分解器与合成器,实现了对连续频谱信号进行有效的频带分割与重建,并通过仿真实验对比了不同子频带数目下对于QPSK调制信号的重建误差以及对子频带相位信息完成解卷绕后系统的时延差校正能力。
     3.经典相关算法理论体系的完善。首先,推导出了Matrix-Free算法的合成性能估算公式,并与文献中SUMPLE算法的合成性能估算公式做对比,得出Matrix-Free算法在相同条件下的合成损失低于SUMPLE算法。然后,通过引入天线阵接收信号的协方差矩阵,推导出了SUMPLE算法收敛速率的依赖关系,得出在相同条件下SUMPLE算法比Matrix-Free算法拥有更快的收敛速度。
     4.高性能相关算法的研究。首先,通过分析Matrix-Free算法和SUMPLE算法在运行过程中权值更新量方差的特性,找到了其随迭代计算过程运行的变化趋势,并给出了两种算法的权值更新量方差的估计方法。然后,通过引入Sigmoid函数,以权值更新量方差作为引导参数,提出了一种高性能的自适应相关算法。在不增加运算空间复杂度的情况下,SVS-MF算法具有与Matrix-Free算法接近的合成效率以及与SUMPLE算法接近的收敛速度,从而具有最优的综合性能。
     5.参数化天线组阵技术仿真系统的研究。提出了适用于高速率深空通信中天线组阵技术的信号合成方案,并基于SVS-MF相关算法以及子频带分割与重建技术设计了参数灵活可调的天线组阵仿真系统。在进行了大量仿真试验后得出,通过设置适当的相关平均间隔,仿真系统可以针对不同的组阵形式在极低的接收信噪比下实现较高的合成性能,并实时评估合成损失。
     6.可用于天线组阵技术演示验证系统的微波器件设计。针对天线组阵演示验证系统,对其中的关键器件多频带功分器以及阻抗变换器进行了深入的研究。首先,提出了一种紧凑型双频双路功率分配器设计方法,并对实物模型进行了性能评估。另一方面,提出了一种四频带阻抗变换理论以及闭合的设计公式,其可以在三个不相关频率以及一个受约束频率上实现完美的实阻抗变换。
Today, with in-depth studies of the propagation of electromagnetic waves andcontinuous exploration of deep space,antenna arraying techniques has been extensivelyconcerned and provide a good prospect of future application in deep spacecommunication at high data rate for its advantages such as low cost, high performance,high reliability and high flexibility. Based on the discussions of the present researchstatus, the author provides some analysis of key difficulties of applying antennaarraying in deep space communication at high data rate; carries out some research ontechniques for sub-band analysis and receiving signal reconfiguration according to thephase property of communication band; proposes a high performance adaptivecorrelation algorithm after providing some improvements for the classic correlationalgorithm system; presents a design of the simulation platform of antenna arraying fordeep space communication at high data rate; meanwhile, conducts a study of the powerdivider and impedance transformer for the prototype system for antenna arraying. Theauthor’s major contributions are outlined as follows:
     1. Key techniques and difficulties in applying antenna arraying into deep spacecommunication at high data rate have been systematically summarized. Major issuesneeded to be solved in this work include: getting the phase values effectively andaccurately in a low signal-to-noise ratio (SNR) condition, avoiding the fake delaycaused by the2π ambiguity error, and reducing the phase shift across the passband dueto the error in delay compensation.
     2. The application of sub-band analysis and receiving signal reconfiguration inantenna arraying has been studied. In order to avoid2π ambiguity error and phase shiftduring signal combination,the application of sub-band analyzing in antenna arrayinghas been studied. By theoretical analyses and derivations, both the amount of sub-bandthat meet the requirements of signal combination in different conditions and the rangeof delay that can be achieved have been derived. Then, polyphase filter bankchannelizer has been applied to the operation of analysis and synthesis. By selectingappropriate parameters, a512-channelizer has been designed,which realizes effectiveanalysis and synthesis for wideband signal. The reconfiguration error of quadraturephase-shift keying modulated signals in different amount of sub-band has beencompared and the calibration capability of the system with different amount of sub-bandhas been proved through simulation.
     3. The improvements of the theory system of classical correlation algorithms havebeen realized. Firstly, the combining degradation for Matrix-Free algorithm has beenderived and it also has been compared with that for SUMPLE algorithm. It has beenproved that the combining degradation for Matrix-Free is lower than that for SUMPLEin the same condition. Then, the determination of the convergence rate of SUMPLE hasbeen derived by introducing the receivable covariance matrix. This indicates that theconvergence rate of SUMPLE algorithm is higher than that of Matrix-Free in the samecondition.
     4. A high performance correlation algorithm has been studied. Firstly, the methodto calculate the trend of the variance of weight updating values from every iteration hasbeen acquired through the analysis to Matrix-Free and SUMPLE. Secondly, a highperformance adaptive correlation algorithm is presented by introducing Sigmoidfunction for the low SNR condition in deep space communication at high data rate. Itshows that the proposed SVS-MF algorithm has a combining degradation close to thatof Matrix-Free and convergence rate approaches SUMPLE's without increasing thecomputational complexity. This proves that SVS-MF algorithm has the best overallperformance.
     5. The simulation tool for antenna arraying for deep space communication at highdata rate has been studied. And based on SVS-MF correlation algorithm as well asreconfigurable channelizer, a simulation platform with flexible parameters has beendesigned. Simulation results show that, by setting an appropriate correlation averaginginterval, the system can realize a very high combining performance for differentarrangements of arrays under a very low SNR condition.
     6. The studies of multiband power divider and impedance transformer for theprototype system for antenna arraying have been carried out. Firstly, a compactdual-band power divider using a non-uniform transmission line is presented. Secondly, acompact quad-frequency impedance transformer that is composed of a two-sectioncoupled line to achieve ideal impedance matching at three arbitrary frequencies and arelated frequency.
引文
[1] HEATH T. Aristarchus of Samos, the Ancient Copernicus: A History of GreekAstronomy to Aristarchus, Together with Aristarchus's Treatise on the Sizes andDistances of the Sun and Moon [M]. Cambridge University Press,2013.
    [2] KING H C. The history of the telescope [M]. DoverPublications. com,1955.
    [3] SINGH S. Big Bang: The Origin ofthe Universe [M]. New York: HarperCollinsPublishers.2004.
    [4] DARLING D. The complete book of spaceflight: from Apollo1to zero gravity[M]. Wiley. com,2003.
    [5]刘嘉兴.飞行器测控通信工程[M].国防工业出版社,2010.
    [6] RAFFERTY W, SLOBIN S D, STELZRIED C T, et al. Ground antennas inNASA's deep space telecommunications [J]. Proceedings of the IEEE,1994,82(5):636-45.
    [7]于志坚.深空测控通信系统[M].国防工业出版社,2009.
    [8]魏文元,宫德明,陈必森.天线原理[M].国防工业出版社,1985.
    [9] MUDGWAY D J. Uplink-downlink: a history of the Deep space network1957-1997[M]. NASA,2000.
    [10] LEVY G S, BATHKER D A, HIGA W, et al. The Ultra Cone: AnUltra-Low-Noise Space Communication Ground Radio-Frequency System [J].Microwave Theory and Techniques, IEEE Transactions on,1968,16(9):596-602.
    [11]樊昌信,曹丽娜.通信原理[M].国防工业出版社,2006.
    [12] ZIEMER R, TRANTER W H. PRINCIPLES OF COMMUNICATIONS:SYSTEM MODULATION AND NOISE [M]. Wiley. com,2006.
    [13] ZIEMER R, TRANTER W.通信原理系统,调制与噪声[M].北京:高等教育出版社.2007.
    [14]夏克文.卫星通信[M].西安电子科技大学出版社,2008.
    [15] STELZRIED C T, KLEIN M J. Precision DSN radiometer systems: impact onmicrowave calibrations [J]. Proceedings of the IEEE,1994,82(5):776-87.
    [16] STELZRIED C T, KLEIN M J. Corrrections to "Precision DSN RadiometerSystems: Impact on Microwave Calibrations"[J]. Proceedings of the IEEE,1996,84(8):1187.
    [17]胡圣波,孟新,姚秀娟.频域波束合成的深空宽带阵列信号处理[J].空间科学学报,2011,31(5):670-4.
    [18] ROCHBLATT D. A methodology for diagnostics and performance improvementfor large reflector antennas using microwave holography; proceedings of theProc of AMTA, F,1992[C].
    [19] STELZRIED C. The Deep Space Network: Noise temperature concepts,measurements, and performance [J]. NASA STI/Recon Technical Report N,1982,83(13332.
    [20] REID M S, CLAUSS R C, BATHKER D A, et al. Low-noise microwavereceiving systems in a worldwide network of large antennas [J]. Proceedings ofthe IEEE,1973,61(9):1330-5.
    [21] SATO T, STELZRIED C T. An Operational960-Mc Maser System forDeep-Space Tracking Missions [J]. Space Electronics and Telemetry, IRETransactions on,1962, SET-8(2):164-70.
    [22] POTTER P. The Application of the Cassegrainian Principle to Ground Antennasfor Space Communications [J]. Space Electronics and Telemetry, IRETransactions on,1962,2):154-8.
    [23] IMBRIALE W A. Large antennas of the deep space network [M]. Wiley. com,2005.
    [24] ROGSTAD D, MILEANT A, PHAM T, et al. Antenna arraying techniques in theDeep Space Network [M]. Wiley Online Library,2003.
    [25] ABRAHAM D. User/Mission Requirements (August4,2000)[J]. JPL inter-nalwebsite), http://eis jpl nasa gov/antrep70m Accessed February,2002,
    [26] STATMAN J, BAGRI D, YUNG C, et al. Optimizing the antenna size for thedeep space network array [J]. Interplanetary Network Progress Report,2004,159(1.
    [27] RESCH G, CWIK T, JAMNEJAD V, et al. Synthesis of a large communicationsaperture using small antennas [J]. NASA STI/Recon Technical Report N,1994,95(22852.
    [28] JONES D L. Lower-cost architectures for large arrays of small antennas;proceedings of the Aerospace Conference,2006IEEE, F0-00,2006[C].
    [29] CWIK T, JAMNEJAD V, RESCH G. A Study of the Synthesis of a LargeCommunications Aperture Using Small Antennas [J].1993,
    [30] VILNROTTER V, SRINIVASAN M. Capacity of large array receivers fordeep-space communications in the presence of interference [J]. Communications,IEEE Transactions on,2008,56(2):194-200.
    [31] PHAM T T, JONGELING A P, ROGSTAD D H. Enhancing telemetry andnavigation performance with full spectrum arraying; proceedings of theAerospace Conference Proceedings,2000IEEE, F2000,2000[C].
    [32] WILLIAMS W D, COLLINS M, BOROSON D M, et al. RF and opticalcommunications: A comparison of high data rate returns from deep space in the2020timeframe [J].2007,
    [33] ABRAHAM D S. Identifying future mission drivers on the Deep Space Network;proceedings of the Space-Ops, F,2002[C].
    [34] BAGRI D. A proposed array system for the Deep Space Network [J]. IPNProgress Report,2004,42-157.
    [35]贺涛,李滚.面向天线组阵信号处理的软件仿真研究[J].系统仿真学报,2011,23(9):2029-33.
    [36] ROGSTAD D. Suppressed carrier full-spectrum combining [J]. TheTelecommunications and Data Acquisition Progress Report42-107,July¨CSeptember1991,12¨C20.
    [37] HURD W, RABKIN J, RUSSELL M, et al. Antenna Arraying of VoyagerTelemetry Signals by Symbol Stream Combining [J]. TDA Progress Report42,86(131-42.
    [38] SIMON M, MILEANT A. Performance Analysis of the DSN Baseband AssemblyReal-Time Combiner [J]. JPL Publication,84(94.
    [39] BUTMAN S, DEUTSCH L, LIPES R, et al. Sideband-Aided Receiver Arraying[J]. The Telecommunications and Data Acquisition Progress Report,1981,42(67.
    [40]周三文,卢满宏,黄建国.天线组阵全频谱合成效率分析[J].遥测遥控,2009,30(2):46-52.
    [41] MILLION S, SHAH B, HINEDI S. A comparison of full-spectrum andcomplex-symbol combining techniques for the Galileo S-band mission [J]. TheTelecommunications and Data Acquisition Progress Report42-116,October–December1993,1994,128-62.
    [42] NAVARRO R, BUNTON J. Signal Processing in the Deep Space Array Network[J]. The Interplanetary Network Progress Report,2004,42(157.
    [43]蒋俊正,周芳,水鹏朗.基于线性迭代的DFT调制滤波器组的设计算法[J].电路与系统学报,2012,17(1):71-4.
    [44]蒋俊正,王小龙,水鹏朗.一种设计DFT调制滤波器组的新算法[J].西安电子科技大学学报,2010,37(004):689-93.
    [45]王小龙,水鹏朗,孙晓云.近似完全重构交替离散傅里叶变换调制滤波器组[J].西安交通大学学报,2008,42(8):1001-5.
    [46] NGUYEN T Q, KOILPILLAI R D. The theory and design of arbitrary-lengthcosine-modulated filter banks and wavelets, satisfying perfect reconstruction [J].Signal Processing, IEEE Transactions on,1996,44(3):473-83.
    [47] XU H, LU W-S, ANTONIOU A. Efficient iterative design method forcosine-modulated QMF banks [J]. Signal Processing, IEEE Transactions on,1996,44(7):1657-68.
    [48] ARGENTI F, DEL RE E. Design of biorthogonal M-channel cosine-modulatedFIR/IIR filter banks [J]. Signal Processing, IEEE Transactions on,2000,48(3):876-81.
    [49] LU W-S, SARAMAKI T, BREGOVIC R. Design of practicallyperfect-reconstruction cosine-modulated filter banks: A second-order coneprogramming approach [J]. Circuits and Systems I: Regular Papers, IEEETransactions on,2004,51(3):552-63.
    [50] ZHANG Z-J. Efficient design of cosine modulated filter banks based on gradientinformation [J]. Signal Processing Letters, IEEE,2007,14(12):940-3.
    [51] KARP T, FLIEGE N J. Modified DFT filter banks with perfect reconstruction [J].Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactionson,1999,46(11):1404-14.
    [52] KLOUCHE-DJEDID A. Design of stable, causal, perfect reconstruction, IIRuniform DFT filter banks [J]. Signal Processing, IEEE Transactions on,2000,48(4):1110-9.
    [53] DAM H H, NORDHOLM S, CANTONI A, et al. Iterative method for the designof DFT filter bank [J]. Circuits and Systems II: Express Briefs, IEEE Transactionson,2004,51(11):581-6.
    [54] WILBUR M R, DAVIDSON T N, REILLY J P. Efficient design of oversampledNPR GDFT filterbanks [J]. Signal Processing, IEEE Transactions on,2004,52(7):1947-63.
    [55] YIU K F C, GRBIC N, NORDHOLM S, et al. Multicriteria design ofoversampled uniform DFT filter banks [J]. Signal Processing Letters, IEEE,2004,11(6):541-4.
    [56] HARRIS F J, DICK C, RICE M. Digital receivers and transmitters usingpolyphase filter banks for wireless communications [J]. Microwave Theory andTechniques, IEEE Transactions on,2003,51(4):1395-412.
    [57] HARRIS F, DICK C. Performing simultaneous arbitrary spectral translation, andsample rate change in polyphase interpolating or decimating filters in transmittersand receivers; proceedings of the Software defined radio conference, F,2002[C].
    [58] HARRIS F, LOWDERMILK W. Software defined radio: Part22in a series oftutorials on instrumentation and measurement [J]. Instrumentation&Measurement Magazine, IEEE,2010,13(1):23-32.
    [59] CHEN X, VENOSA E, HARRIS F. Polyphase synthesis filter bank up-convertsunequal channel bandwidths with arbitrary center frequencies-design II;proceedings of the SDR Conference, Washington, DC, F,2010[C].
    [60] HARRIS F, DICK C, CHEN X, et al. Wideband160-channel polyphase filterbank cable TV channeliser [J]. Signal Processing, IET,2011,5(3):325-32.
    [61] HARRIS F, VENOSA E, CHEN X, et al. Polyphase analysis filter bankdown-converts unequal channel bandwidths with arbitrary center frequencies [J].Analog Integrated Circuits and Signal Processing,2012,71(3):481-94.
    [62] HARRIS F, DICK C. Polyphase channelizer performs sample rate changerequired for both matched filtering and channel frequency spacing; proceedings ofthe Signals, Systems and Computers,2009Conference Record of the Forty-ThirdAsilomar Conference on, F1-4Nov.2009,2009[C].
    [63]乔丹.深空接收天线组阵的相关算法(correlation algorithm)研究[D];北京大学,2008.
    [64]沈彩耀,胡赟鹏,于宏毅. SUMPLE算法的合成权值相位性能分析与仿真[J].系统仿真学报,2012,24(010):2177-80.
    [65] CHEUNG K-M. Eigen theory for optimal signal combining: a unified approach[J]. The Telecommunications and Data Acquisition Progress Report42-126,April–June1996,1996,1-9.
    [66] LEE C H, KAR-MING C, VILNROTTER V A. Fast eigen-based signalcombining algorithms for large antenna arrays; proceedings of the AerospaceConference,2003Proceedings2003IEEE, F5-12March2005,2003[C].
    [67] LEE C, VILNROTTER V, SATORIUS E, et al. Large-array signal processing fordeep-space applications [J]. The Interplanetary Network Progress Report42-150,April¨CJune2002,1¨C28.
    [68] ROGSTAD D. The SUMPLE algorithm for aligning arrays of receiving radioantennas: coherence achieved with less hardware and lower combining loss [J].IPN Progress Report42-162, Jet Propulsion Laboratory, Pasadena, CA,2005,1-29.
    [69] ROGSTAD D. Aligning an Array of Receiving Radio Antennas in the Presence ofan Interfering Source: Taking Advantage of Differences in Spectral Shape [J].IPN Progress Report,2007,42-171.
    [70] LUO B, YU H, ZHANG X, et al. On eigen-based signal combining using theautocorrelation coefficient [J]. IET Communications,2012,6(18):3091-7.
    [71]史学书,洪家财,党宏杰, et al.深空组阵算法合成性能对比分析研究[J].装备指挥技术学院学报,2012,23(1):98-103.
    [72] SHANG Y, FENG X. MLC-SUMPLE Algorithm for Aligning Antenna Arrays inDeep Space Communication [J]. Aerospace and Electronic Systems, IEEETransactions on,2013,49(4):2828-34.
    [73]党宏杰,袁嗣杰,史学书.天线组阵信号Sumple与Simple算法的仿真研究[J].装备指挥技术学院学报,2008,19(14):78-82.
    [74]徐晨,陆佩忠.最大比合成中的相位对齐技术研究[J].电信技术研究,2011,2):13-20.
    [75]党宏杰,史学书,袁嗣杰, et al.应用于深空阵列信号处理的可变步长Sumple算法研究[J].飞行器测控学报,2008,27(6):27-31.
    [76] ANTON A, MARTINEZ R, SALAS M A, et al. Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking LEOsatellites with adaptive antenna arrays; proceedings of the Antennas andPropagation,2009EuCAP20093rd European Conference on, F23-27March2009,2009[C].
    [77] CAILIAN C, HONGYI Y, CAIYAO S, et al. A combining algorithm for signalarraying using MMSE estimator; proceedings of the Communications andNetworking in China,2009ChinaCOM2009Fourth International Conference on,F26-28Aug.2009,2009[C].
    [78] CAILIAN C, HONGYI Y, CAIYAO S, et al. Optimal Combining Algorithm forSignal Arraying Using MMSE Weight Estimate; proceedings of the Networkingand Digital Society,2009ICNDS '09International Conference on, F30-31May2009,2009[C].
    [79]史学书,王元钦.深空组阵Eigen算法及其低信噪比合成性能分析[J].宇航学报,2009,30(6):2347-53.
    [80]孔德厌,施许工.非均匀天线组阵SUMPLE权值信噪比及信号合成性能分析[J].宇航学报,2009,30(5):
    [81]孔德庆,施浒立.非均匀天线组阵SUMPLE合成相位补偿及信号强度估计[J].电波科学学报,2009,24(4):632-6.
    [82] JIANYE Z, XIAOYI Z, BOWEN L. A novel combining weights estimatealgorithm for short burst signals based on antenna array; proceedings of theCommunication Technology (ICCT),201012th IEEE International Conferenceon, F11-14Nov.2010,2010[C].
    [83]孔德庆,施浒立.天线组阵中相位差的递推最小二乘估计与滤波[J].宇航学报,2010,31(1):211-6.
    [84]漆雪梅,张效义.基于EM的多天线信号合成权值估计算法[J].信息工程大学学报,2011,12(3):302-6.
    [85] REID M S. Low-noise systems in the deep space network [M]. Wiley,2008.
    [86]周有喜.深空通信中的若干关键技术研究[D];西安电子科技大学,2007.
    [87]刘嘉兴.走向深空测控通信的发展方向[J].电讯技术,2006,46(2):1-8.
    [88]刘嘉兴.深空测控面临的挑战[J].地球,2009,365(152.1):147.1.
    [89]林墨.深空测控通信技术发展趋势分析[J].飞行器测控学报,2005,24(3):7-9.
    [90]柴霖,许秀玲.深空测控体系结构与技术发展[J].电讯技术,2010,50(008):1-6.
    [91] MONZON C. A small dual-frequency transformer in two sections [J]. MicrowaveTheory and Techniques, IEEE Transactions on,2003,51(4):1157-61.
    [92] WU L, YILMAZ H, BITZER T, et al. A dual-frequency Wilkinson power divider:for a frequency and its first harmonic [J]. Microwave and Wireless ComponentsLetters, IEEE,2005,15(2):107-9.
    [93] LEI W, ZENGGUANG S, YILMAZ H, et al. A dual-frequency wilkinson powerdivider [J]. Microwave Theory and Techniques, IEEE Transactions on,2006,54(1):278-84.
    [94] CHENG K K M, LAW C. A Novel Approach to the Design and Implementationof Dual-Band Power Divider [J]. Microwave Theory and Techniques, IEEETransactions on,2008,56(2):487-92.
    [95] FENG C, ZHAO G, LIU X F, et al. Planar three-way dual-frequency powerdivider [J]. Electronics Letters,2008,44(2):133.
    [96] FENG C, ZHAO G, LIU X-F, et al. A novel dual-frequency unequal Wilkinsonpower divider [J]. Microwave And Optical Technology Letters,2008,50(6):1695-9.
    [97] YONG-LE W, HUI Z, YA-XING Z, et al. An Unequal Wilkinson Power Dividerfor a Frequency and Its First Harmonic [J]. Microwave and Wireless ComponentsLetters, IEEE,2008,18(11):737-9.
    [98] YONGLE W, YUANAN L, YAXING Z, et al. A Dual Band Unequal WilkinsonPower Divider Without Reactive Components [J]. Microwave Theory andTechniques, IEEE Transactions on,2009,57(1):216-22.
    [99] KE L. An efficient method for analysis of arbitrary nonuniform transmission lines[J]. Microwave Theory and Techniques, IEEE Transactions on,1997,45(1):9-14.
    [100] KHALAJ-AMIRHOSSEINI M. Analysis of nonuniform transmission lines usingTaylor's series expansion [J]. International Journal Of Rf And MicrowaveComputer-aided Engineering,2006,16(5):536-44.
    [101] KHALAJ-AMIRHOSSEINI M. To Analyze The Nonuniform Transmission LinesBy Cascading Short Linear; proceedings of the Information and CommunicationTechnologies: From Theory to Applications,2008ICTTA20083rd InternationalConference on, F7-11April2008,2008[C].
    [102] KHALAJ-AMIRHOSSEINI M. Nonuniform transmission lines as compactuniform transmission lines [J]. Progress In Electromagnetics Research,2008,4(205-11.
    [103] KHALAJ-AMIRHOSSEINI M. An approximated closed form solution fornonuniform transmission lines; proceedings of the Microwave Conference,2009APMC2009Asia Pacific, F7-10Dec.2009,2009[C].
    [104] KUZNETSOV D. Efficient circuit simulation of nonuniform transmission lines[J]. Microwave Theory and Techniques, IEEE Transactions on,1998,46(5):546-50.
    [105] NEVELS R, MILLER J. A simple equation for analysis of nonuniformtransmission lines [J]. Microwave Theory and Techniques, IEEE Transactions on,2001,49(4):721-4.
    [106] RANZANI L, RONDINEAU S, BOFFI P, et al. Nonuniform transmission linesfor broadband dispersion compensation; proceedings of the MicrowaveConference (EuMC),2010European, F28-30Sept.2010,2010[C].
    [107] STARR A T. The Nonuniform Transmission Line [J]. Proceedings of the Instituteof Radio Engineers,1932,20(6):1052-63.
    [108] TE-WEN P, CHING-WEN H. Modified transmission and reflection coefficientsof nonuniform transmission lines and their applications [J]. Microwave Theoryand Techniques, IEEE Transactions on,1998,46(12):2092-7.
    [109] YAO-WEN H, KUESTER E F. Direct Synthesis of Passband ImpedanceMatching With Nonuniform Transmission Lines [J]. Microwave Theory andTechniques, IEEE Transactions on,2010,58(4):1012-21.
    [110] AL SHAMAILEH K, QAROOT A, DIB N, et al. Design and analysis ofmultifrequency Wilkinson power dividers using nonuniform transmission lines [J].International Journal Of Rf And Microwave Computer-aided Engineering,2011,21(5):526-33.
    [111] KHALAJ-AMIRHOSSEINI M, MOGHAVVEMI M, AMERI H. MultifrequencyWilkinson power divider using microstrip nonuniform transmission lines [J].International Journal Of Rf And Microwave Computer-aided Engineering,2011,21(3):295-9.
    [112] YUKAWA H, OH-HASHI H, MIYAZAKI M. A Broadband Directional Couplerusing Nonuniform-Coupled Transmission Lines with Uniform-Coupled endSections; proceedings of the Microwave Conference,199828th European, F Oct.1998,1998[C].
    [113] JONES E M T. Coupled-Strip-Transmission-Line Filters and Directional Couplers[J]. Microwave Theory and Techniques, IRE Transactions on,1956,4(2):75-81.
    [114] KIAN SEN A, CHEE HOW L, YOKE CHOY L. Analysis and design of coupledline impedance transformers; proceedings of the Microwave Symposium Digest,2004IEEE MTT-S International, F6-11June2004,2004[C].
    [115] BAHL I J. Broadband and compact impedance transformers for microwavecircuits [J]. Microwave Magazine, IEEE,2006,7(4):56-62.
    [116] ZHURBENKO V, KROZER V, MEINCKE P. Broadband Impedance TransformerBased on Asymmetric Coupled Transmission Lines in Nonhomogeneous Medium;proceedings of the Microwave Symposium,2007IEEE/MTT-S International, F3-8June2007,2007[C].
    [117] JENSEN T, ZHURBENKO V, KROZER V, et al. Coupled Transmission Lines asImpedance Transformer [J]. Microwave Theory and Techniques, IEEETransactions on,2007,55(12):2957-65.
    [118] MING-GUANG C, CHING-WEN T, TENG-BANG H, et al. Adopting thebroadside coupled line for the design of an impedance transformer; proceedingsof the Microwave Symposium Digest (MTT),2011IEEE MTT-S International, F5-10June2011,2011[C].
    [119]刘振华.基于火星探测的Ka波段深空通信信道建模[D];苏州大学,2012.
    [120]中国科学院地质与地球物理研究所.电离层TEC现报[M].
    [121]舒逢春,张秀忠.相关处理软件系统中模型计算的精度分析[J].中国科学院上海天文台年刊,2001,1):100-6.
    [122] YUEN J H. Deep space telecommunication systems engineering [J]. New York,Plenum Press,1983,623p,1983,1(
    [123] OHLSON J E, LEVY G S, STELZRIED C T. A Tracking Polarimeter forMeasuring Solar and Ionospheric Faraday Rotation of Signals from Deep SpaceProbes [J]. Instrumentation and Measurement, IEEE Transactions on,1974,23(2):167-77.
    [124]张津舟,梁显锋,谢闽, et al.深空通信Ka频段数传发射机基带电路单元实现[J].电讯技术,2012,52(5):668-73.
    [125] MYSOOR N R, KAYALAR S, LANE J P, et al. Performance of a Ka-bandtransponder breadboard for deep space applications; proceedings of the AerospaceConference,1997Proceedings, IEEE, F1-8Feb1997,1997[C].
    [126] CESARONE R J, ABRAHAM D S, DEUTSCH L J. Prospects for aNext-Generation Deep-Space Network [J]. Proceedings of the IEEE,2007,95(10):1902-15.
    [127] DEUTSCH L, PRESTON R, GELDZAHLER B. F t Pl f Future Plans forNASAˉs Deep Space Network [J]. National Aeronautics and SpaceAdministration,2008,
    [128] SCHULZE R, WALLIS R E, STILWELL R K, et al. Enabling Antenna Systemsfor Extreme Deep-Space Mission Applications [J]. Proceedings of the IEEE,2007,95(10):1976-85.
    [129] DAVARIAN F, SHAMBAYATI S, SLOBIN S. Deep space Ka-band linkmanagement and Mars Reconnaissance Orbiter: long-term weather statisticsversus forecasting [J]. Proceedings of the IEEE,2004,92(12):1879-94.
    [130] IMBRIALE W, BHANJI A, BLANK S, et al. Ka-Band (32GHz) Performance of70-Meter Antennas in the Deep Space Network [J]. TDA Progress Report42,1986,88(126-34.
    [131] COMPARINI M C, DE TIBERIS F, NOVELLO R, et al. Advances inDeep-Space Transponder Technology [J]. Proceedings of the IEEE,2007,95(10):1994-2008.
    [132] SIMON M K. Bandwidth-efficient digital modulation with application todeep-space communications [M]. John Wiley&Sons,2005.
    [133] HARRIS F J. Multirate signal processing for communication systems [M].Prentice Hall PTR,2004.
    [134] WOZENCRAFT J M, JACOBS I M. Principles of communication engineering[M]. Wiley New York,1965.
    [135] VIDYANATHAN P. Multirate systems and filter banks [M]. Prentice Hall,Englewood Cliffs.1993.
    [136] RAPUANO S, HARRIS F J. An introduction to FFT and time domain windows[J]. Instrumentation&Measurement Magazine, IEEE,2007,10(6):32-44.
    [137] HJELLMING R. An Introduction to the NRAO Very Large Array [M]. NationalRadio Astronomy Observatory,1983.
    [138] SEUNGWON C, DONGUN Y. Design of an adaptive antenna array for trackingthe source of maximum power and its application to CDMA mobilecommunications [J]. Antennas and Propagation, IEEE Transactions on,1997,45(9):1393-404.
    [139] HAN J, MORAGA C. The influence of the sigmoid function parameters on thespeed of backpropagation learning [M]//MIRA J, SANDOVAL F. From Natural toArtificial Neural Computation. Springer Berlin Heidelberg.1995:195-201.
    [140] ITO Y. Representation of functions by superpositions of a step or sigmoidfunction and their applications to neural network theory [J]. Neural Networks,1991,4(3):385-94.
    [141] FAULKNER A, KANT D, ALEXANDER P, et al. Aperture Arrays for the SKA:the SKADS White Paper [J]. SKA2010, Mar,2010,
    [142]清华大学《微带电路》编写组.微带电路[M].人民邮电出版社,1976.
    [143] POZAR D M,张肇仪,周乐柱, et al.微波工程[M].电子工业出版社.2006.
    [144] KLOPFENSTEIN R W. A Transmission Line Taper of Improved Design [J].Proceedings of the IRE,1956,44(1):31-5.
    [145]梁昌洪,谢拥军,官伯然.简明微波[M].高等教育出版社,2006.
    [146] REED J, WHEELER G J. A Method of Analysis of Symmetrical Four-PortNetworks [J]. Microwave Theory and Techniques, IRE Transactions on,1956,4(4):246-52.
    [147]吴万春,梁昌洪.微波网络及其应用[M].国防工业出版社,1980.
    [148] POZAR D M. Microwave engineering [M]. Wiley-India,2009.
    [149] SCHIFFMAN B M. A New Class of Broad-Band Microwave90-Degree PhaseShifters [J]. Microwave Theory and Techniques, IRE Transactions on,1958,6(2):232-7.
    [150] TANG X, MOUTHAAN K. Compact dual-band power divider with single allpasscoupled lines sections [J]. Electronics Letters,2010,46(10):688.
    [151] SCHIEK B, KOHLER J. A Method for Broad-Band Matching of MicrostripDifferential Phase Shifters [J]. Microwave Theory and Techniques, IEEETransactions on,1977,25(8):666-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700