用户名: 密码: 验证码:
深度运动问题的脑机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对深度运动(motion-in-depth,MID)过程的研究是视运动知觉研究中非常重要的课题。对自然界的动物来讲,判断接近的物体对自己是否具有威胁性及精确判断出飞来物体何时会到达(即计算碰撞时间TTC,time-to-collision)是攸关观察者生命与生活的关键问题。尽管在动物电生理方面有很多好的工作,但目前未见带有明显生理意义且符合神经元特性的成熟脑机制模型的报道。对人类来说,研究“人脑如何处理运动过程中的视觉信息”以及“怎样通知运动系统以躲避即将到来的危险”是非常有意义的工作。现代先进的神经成像技术的应用,如正电子发射断层成像(positron emission computerized topography,PET)、功能磁共振成像(functional magnetic resonance imaging,fMRI)、脑电图(electroencephalogram,EEG)和脑磁图(magnetoencephalography,MEG)等为人类的深度运动问题提供了一些解答,但仍有很多问题待解决。
     本论文围绕深度运动过程的视觉脑机制问题,从数学模型、脑电事件相关电位(event-related potential,ERP)时-空分析等几个方面进行了深入、细致地有创新性的研究。所作的主要工作与成果如下:
     1、动物检测碰撞过程的视觉脑机制研究
     用模型方法阐述了动物(鸽子)检测碰撞过程的脑机制,并用神经网络的方法进行仿真,得到了较好的结果。模型的简单性与动物的简单反应原则一致,且在生理性、稳健性、延展性、适用性等方面均有良好表现,证明在解释鸟类从初始的视网膜成像到大脑最终获得准确的碰撞时间(TTC)信息的整个视觉信息处理过程中,它可能是一种比较合理的视觉脑机制模型。
     2、人类知觉深度运动过程的视觉脑机制研究
     通过更接近人类视觉经验的实验范式,结合人的ERP与fMRI数据,系统地研究了人在知觉深度运动过程中的视觉脑机制问题。多种时-空分析方法的结果表明,人的深度运动感知与平面运动感知是有差异的,且人的深度运动ERP受运动方向、接近物体的大小和运动速度的强烈影响。深度运动的感知过程激活了三个主要的脑区,并呈现了五个主要的脑电时间成分,本文详细探讨了这些时-空动力学响应在深度运动感知中的意义与作用。在这些成果的基础上,我们提出了一个简单的多区域同步整合模型,以解释人类知觉深度运动的信息处理过程。
     3、大脑信息整合的研究
     从大脑信息整合的角度,探讨了动物与人在知觉深度运动过程中的视觉信息处理问题,渗透于以上两个有关的动物与人的视觉脑机制研究中,我们提出了动物检测碰撞过程的时-空整合模型和人知觉深度运动过程的多区域同步整合模型。这些模型都具有明确的生理意义,在解释知觉深度运动过程中的大脑视觉信息处理中显示了较好的效果,并可望用于人工智能机器人的视觉系统中,以仿生的方式达到深度运动视觉中的感知和碰撞避免。
Motion-in-depth (MID) is an important issue in study of visual motion perception. For animal, it is a critic problem to observer's survival and life in judging whether a looming object be dangerous and computing accurately when the looming object arrives, i.e. computing time-to-collision (TTC) exactly as soon as possible. Although there were many good works on animal electrophysiological studies, there was no reported mature brain mechanism model with significant physiological meanings and be consistent with the neurons characteristics. For human, to investigate how the brain processes the visual information of this motion and how it informs the motion system for escaping the impending danger object is also a meaningful project. Modern advanced neuroimaging techniques such as positron emission computerized topography (PET)、functional magnetic resonance imaging (fMRI)、electroencephalogram (EEG) and magnetoencephalography (MEG) provide some answers to questions in motion perception. But as a current important and hot issue, there are still many problems to be solved.
     This paper descibes deeply and detaily the novel studys on brain mechanism of MID course in many aspects in cognitive neural science, including mathematical model, event-related potential (ERP) spatio-temporal analysis and so on. Our main works and achievements are follows:
     1. The study on animal's brain mechanism on detecting collision course
     It expatiate the animal's (pigeon) brain mechanism on detecting collision course from model field simulated by neural network method with good results. The simple and convenient property of the model is consistent with animal's simple response principal. And the good representations of the model on physiology, robustness, extensibility and applicability manifest it might be a very potential and reliable brain mechanism on explaining the whole visual information process on pigeon brain from initial retinal imaging to obtaining final accurate TTC information.
     2. The study on human's brain mechanism on percepting MID course
     Through an experimental paradigm more close to human's visual experience, combined with human's ERP and fMRI data, we study the human's brain mechanism on MID course systematically. Multiple spatial and temporal analysis methods are adopted to analyse the ERP signals. The results indicate that the perception of MID and motion-in-plane (MIP) is different, and the MID ERPs are strongly affected by the motion direction, impending object's size and moving speed. The perception of MID activates three main brain areas and showes five main temporal components. This paper discusses the significances and roles of these spatio-temporal dynamic responses on the perception of MID in detail. Basing on these achievements, we propose a simple multi-areas synchronous integrated model on interpreting how the visual information processed in the perception of MID.
     3. The study on integration of brain information
     From the viewpoint of integration of brain information, this paper explores the visual information process in MID course on animal and human by participating in the study of different animal's and human's brain mechanism to propose more rational brain mechanism solution. The proposed spatio-temporal integrated model on animal's detecting collision course and the multi-areas synchronous integrated model on human's percepting MID course have definite physiological meanings and might be very possible visual brain mechanisms on interpreting the visual information process in the perception of MID. And they might be expected to apply in visual system on artificial intelligent robotics to achieve the perception of MID and avoid collision by bionics manner.
引文
[1]罗跃嘉主编.认知神经科学教程.北京:北京大学出版社,2006
    [2]Zhou XL,Luo YJ.Cognitive neuroscience in China.Intern J Psychol,2003,38(4):50-61
    [3]Chen L.Topological structure in visual perception.Science,1982,218:699-700
    [4]Tang SM,Guo AK.Choice behavior of l)rosophila facing contradictory visual cues.Science,2001,294:1543-1547
    [5]Yao HS,Li CY.Clustered organization of neurons with similar extra-receptive field property in the primary visual cortex.Neuron,2002,35:547-553
    [6]Luo YJ,Wei JH.Cross-modal selective attention to visual auditory stimuli modulates endogenous ERP components.Brain Research,1999,842:30-38
    [7]Luo YJ,Greenwood PM,Parasuraman R.Dynamics the spatial scale of visual attention revealed hy brain Event-related Potentials.Cognitive Brain Research,2001,12:371-381
    [8]Han S,He X.Modulation of neural activities by enhanced local selection in the processing of compound stimuli.Human Brain Mapping,2003,19(4):273-281
    [9]Mai XQ,Luo J,Wu JH,Luo YJ."Aha!~ Effects in Guessing Riddle Task:An ERP Study.Human Brain Mapping,2004,22(4):261-270
    [10]Peng DL,et al.Automatic phonological activation of Chinese characters:An fMRI study.Cognitive Brain Research,2004,20(2):156-164
    [11]章海军编著.视觉及其应用技术.杭州:浙江大学出版社,2004.7
    [12]Marr D.Vision.NewYork,W.H.Freeman and Company,1982
    [13]Levine M.Man and Machine Vision.NewYork,McGraw-Hill,1985
    [14]Grusser-Cornehls U.The neurophysiology of the amphibian optic rectum.In:Comparative neurology of the optic tectum(Vanegas H,ed),New York,NY:Plenum Press,1984,211-245
    [15]Ewert JP.Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads.In:Comparative neurology of the optic rectum(Vanegas H,ed),New York,NY:Plenum Press,1984,247-416
    [16]寿天德.视觉信息处理的脑机制,上海科技教育出版社,1997(12)
    [17]梁冰,洪炳熔,曙光.自主机器人视觉与行为模型及避障研究.电子学报,2003,31(12A):2197-2200
    [18]李建波,潘振宽,孙志军。基于包围盒与空间分解的碰撞检测算法.计算机科学,2005,32(6):155-157
    [19]Wang Y,Frost BJ.Time to collision is signalled by neurons in the nucleus rotundus of pigeons.Nature,1992,356:236-238
    [20]Sun HJ,Frost BJ.Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons.Nature Neurosci.1998,1:296-303
    [21]Schlotterer GR.Response of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli.Canadian Journal of Zoology,1977,55:1372-1376
    [22]Judge S,Rind FC.The Locust DCMD,a movement-detecting neurone tightly tuned to collision trajectories.Journal of Experimental Biology,1997,200:2209-2216.
    [23]Rind FC.Collision avoidance:from the locust eye to a seeing machine.In:From Living Eyes to Seeing Machines(Srinivasan MV,Venkatesh S,eds),Oxford:Oxford University Press,1997,105-125
    [24]Berezovskii VK,Born RT.Specificity of projections from wide-field and local motion-processing regions within the middle temporal visual area of the owl monkey.Nurosci.,2000,20(3):1157-1169
    [25]Seidemann E,Poirson AB,Wandell BA,Niwsome WT.Color signals in area MT of the macaque monkey.Neuron,1999,24(4):911-917
    [26]Anderson SJ,Holliday IE,Singh KD,Harding GF.Localization and functional analysis of human cortical area V5 using magnetoencephalography.Proc.R.Soc.Lond.B Biol.Sci,1996,263:423-431
    [27]Dumoulin SO,Bittar RG,Kabani NJ,et al.A new anatomical landmark for reliable identification of human area VS/MT:a quantitative analysis of sulcal patterning.Cereb.Cortex,2000,10:454-463
    [28]Watson JDG,Myers R,Frackowiak RSJ,et al.Area V5 of the human brain:evidence from a combined study using positron emission tomography and magnetic resonance imaging.Cereb.Cortex,1993,3:79-94
    [29]Jiang Y,Haxby iV,Martin A,Ungerleider LG,Parasuraman R.Complementary neural mechanisms for tracking items in human working memory.Science.2000,287:643-646[30]Yuji K,Aihide Y,Masaru K,Yoshitomo T,Soichiro N.Perception of apparent motion in depth:a high-density electrical mapping study in humans.Neuroscience Letters,2004,354:115-118
    [31]Liu TS,Slotnick SD,Yantis S.MT+ mediates perceptual filling-in during apparent motion.NeuroImage,2004,21(4):1772-1780
    [32]Yang CY,Hsieh JC,Chang Y.An MEG study into the visual perception of apparent motion in depth.Neuroscience Letters,2006,403(1-2):40-45
    [33]Koenig T,Lehmann D.Event-related electric microstates of brain differ between words with visual and abstract meaning.Electroencephalography and Clinical Neurophysiology,1998,106:535-546
    [34]刘晓玲主编.视觉神经生理学.北京:人民卫生出版社,2004,7
    [35]Nicholls JG,Martin AR,Wallace BG.From Neuron to Brain.4th ed.,Sunderland,Mass:Sinauer Associates Inc.,2001
    [36]Gilles L,Fabrizio G.Collision-avoidance:nature' s many solutions.Nature Neuroscience,1998,1(4):261-263
    [37]Gabbiani F,Mo CH,Laurent G..Invariance of angular threshold computation in a wide-field looming-sensitive neuron.Journal of Neuroscience,2001,21:314-329
    [38]Rind FC,Simmons PJ.Seeing what is coming:building collision-sensitive neurones.Trends in Neurosciences,1999,22:215-220
    [39]Hatsopoulos N,Gabbiani F,Laurent G..Elementary computation of object approach by a wide-field visual neuron.Science,1995,270:1000-1003
    [40]Gabbiani F,Krapp HG,Laurent G..Computation of object approach by a widefield,motion- sensitive neuron.Journal of Neuroscience,1999,19:1122-1141
    [41]Rind FC,Simmons PJ.Orthopteran DCMD neuron:A reevaluation of responses to moving objects.I.Selective responses to approaching objects,Neurophysiol,1992,68:1654-1666
    [42]Simmons PJ,Rind FC.Orthopteran DCMD neuron:A reevaluation of responses to moving objects.Ⅱ.Critical cues for detecting approachingobjects,Neurophysiol,1992,68:1667-1682
    [43]Wang YC,Jiang SY,Frost BJ.Visual processing in pigeon nucleus rotundus,luminance,colour,motion and looming subdivisions.Visual Neuroscience,1993, 10:21-30
    [44] Sun HJ, Zhao J, Southall TL, Xu B. Contextual influences on the directional responses of tectal cells in pigeons. Visual Neuroscience, 2002, 19:133-144
    [45] Schiff W. Perception of impeding collision: A study of visually directed avoidant behaviour. Psychological Monographs: General and Applied, 1965, 79:1-26
    [46] Rossel S. Nature, 1983, 302:821-823
    [47] Collet TS. Curr. Biol., 1996, 6:1392-1395
    
    [48] Wheastone C. Philos. Trans. R. Soc. London Ser. B, 1952, 142:1-18
    [49] Gibson JJ. The ecological approach to visual perception. Boston: Houghton Mifflin, 1979
    [50] Lee DN. A theory of visual control of braking based on information about time-to-collision. Perception, 1976, 5:437-459
    [51] Orban GA. Neuronal Operations in the Visual Cortex. Berlin: Springer-Verlag, 1984, 8-9
    [52] Steinberg RH, Reid M, Lacy PL. Comp Neurol, 1973, 148:229
    
    [53]郭爱克.生物神经网络.生理物理学报,1991,12:615—622
    
    [54] Kalil RE. Scientific American, 1989, 12:38-45
    
    [55] Freeman WJ. Mass action in the nervous system. NewYork: Academic press, 1975
    
    [56] Mennon A, Mehrotra K, Mohan CK, Ranka S. Characterization of a class of sigmoid functions with applications to neural networks. Neural Networks, 1996, 9:415-446
    [57] Orban GA. Neuronal operations in the visual Cortex. Berlin: Springer-Verlag, 1984, 8-9
    
    [58] Sanderson KJ. Comp. Neurol, 1971, 143:101
    [59] Juan-Carlos Letelier, Gonzalo Marin, ElisaSentis, Andrea Tenreiro, Felipe Fredes, Jorge Mpodozis. The mapping of the visual field onto the dorso-lateral tectum of the pigeon (Columba livia) and its relations with retinal specializations. Journal of Neuroscience Methods, 2004, 132:161-168
    [60] Sun HJ, Zhao J, Southall TL, Xu B. Contextual influences on the directional responses of tectal cells in pigeons. Visual Neuroscience, 2002, 19:133-144
    [61] Simon H. Neural networks: a comprehensive foundation. 2nd Edition, Prentice-Hall, Inc, 1999
    [62] The Mathworks Inc. Neural Network Toolbox User' s Guide, 2004
    [63]阎平凡,张长水编著.人工神经网络与模拟进化计算.北京:清华大学出版社,2000
    [64]Yi S,et al.Global Optimization for NN training.IEEE Computer,1996,3:45-54
    [65]飞思科技产品研发中心编著.Matlab6.5辅助神经网络分析与设计.北京:电子工业出版社,2003
    [66]Suzanna B.Modeling the mind:from circuits to systems.In:New directions in statistical signal processing:from systems to brain(Haykin,Principe,Sejnowski,Mcwhirter),2005,3-67
    [67]Frost BJ,Sun HJ.The biological basis of time to collision computation.In:Time-to-contact Advances in Psychology Series(Hecht H,Savelsbergh GJP,eds.),Amsterdam:Elsevier - North Hollan,2004,13-37
    [68]Nieuwenhuys R,Voogd J,Van Huijzen C.The human central nerve system:A synopsis and atlas.1979(芦鹏,李振三,李世东译.人类中枢神经系统图谱及注释[中译本].北京:人民卫生出版社,1984)156
    [69]汤慈美.神经生理学.人民军医出版社,2001,4
    [70]魏景汉,罗跃嘉.认知事件相关脑电位教程.北京:经济日报出版社,2002,5
    [71]Ungerleider LG,Haxby iV."What" and "Where" in the human brain.Current Opinion in Neurobiology,1994,4:157-165
    [72]Sunaert S,Van Becke P,Marchal G,Orban GA.Motionresponsive regions of the human brain.Exp.Brain Res.,1999,127:355-370
    [73]Hoffmann M,Donr TJ,Bach M.Time course of motion adaptation:Motion-onset visual evoked potentials and subjective estimates.Vision Research,1999,39:437-444
    [74]尧德中.脑功能探测的电学理论与方法.北京:科学出版社,2003
    [75]翟义然.参考电极无关技术:[博士学位论文].成都:电子科技大学,2005
    [76]Harris JM,Watamaniuk,Scott NJ.Speed Discrimination of Motion-in-depth Using Binocular Cues.Vision Research.1995,35(7):885-896
    [77]HibbardPB,8radshaw MF,DeBruyn B.Global motion processing is not tuned for binocular disparity.Vision Research.1999,39(5):961-974
    [78]Shirai N,Yamaguchi MK.Asymmetry in the perception of motion-in-depth.Vision Research.2004,44(10):1003-1011
    [79]Electrical Geodesics,Inc.Net Station Viewer and Waveform Tools,Electrical Geodesics,Inc.2003
    [80]Jasper HH.The ten-twenty electrode system of the International Federation.EEG and Clin.Neurophysiol,1958,I0:371-375
    [81]The MathWorks,Inc.http://www.mathworks.com,2006
    [82]张振民,周未艾,蔡振华,崔树青.中国乒乓球世界冠军运动员脑功能特征研究.中国运动医学杂志,2002,2 1(5):452-457
    [83]秦素荣.运动员脑电图研究综述.西安体育学院学报,2003,20(2):54-56
    [84]Ramos LJ,Gonzalez GAA,Amezcua C,Guevara MA.Relationship between resting alpha activity and the ERPs obtained during a highly demanding selective attention task.International Journal of Psychophysiology,2004,54:251-262
    [85]Junghoefer M,Elbert T,Tucker BM,Braun C.The polar average referenced effect:a bias in estimation the head surface integral in EE recording.Electroencephalography and Clinical Neurophysiology,1999,98:422-434
    [86]Lehmann D.Principles of spatial analysis.In:Methods of analysis of brain electrical and magnetic signals(Gevins AS,Remond A,eds.),Handbook of electroencephalography and clinical neurophysiology.Amsterdam:Elsevier,1987
    [87]Lehmann D,Skrandies W.Spatial analysis of evoked potentials in man-A review.Progress in Neurobiology,1984,23:227-250
    [88]Brandeis D,Lehmann D.Event-related potentials of the brain and cognitive processes:Approaches and applications.Neuropsychologia,1986,24:151-168
    [89]刘大路,江朝晖,冯焕清等.小波和主分量分析方法研究思维脑电.生物物理学报,2003,19:415-418
    [90]魏怡.高等统计理论在形状分析中的应用.国防工业出版社,2004
    [91]Golub GH,Van Loan CG.Matrix Computations.3rd edition,Baltimore:Johns Hopkins University Press,1996
    [92]Source Signal Imaging,Inc.http://www.sourcesignal.com,2004
    [93]Niedeggen M,Wist ER.Characteristics of visual evoked potentials generated by motion coherence onset.Cogn.Brain Res.,1999,8:95-105.
    [94]Luo YJ,Jiang Y,Tang YY,Parasuraman R.Brain mechanism of unconscious visual motion onset.Chinese Science Bulletin,2001,20:1709-1713
    [95]Anllo VL,Hillyard SA.Selective attention to the color and direction of moving stimuli:Electrophysiological correlates of hierarchical feature selection.Preception & Psychophysics,1996,58:191-206
    [96]Polich J.P300 in clinical application:meaning,method,and measurement,EEG Technol.,1991,31:201-231
    [97]罗跃嘉,吴宗耀.175例正常人的听觉事件相关电位P300成分研究.中国神经精神疾病杂志,1990,16(5):272-275
    [98]Dochin E.Event-related brain potentials:A tool in the study of human information processing.In:Evoked potentials and behavior(Begleiter H,ed.),New York:Plenum Press,1979,13-75
    [99]Zeki SM.A vision of the brain.Oxford:Blackwell Scientific Publisher,1993
    [100]Culham J,He S,Dukelow S,Verstraten FAJ.Visual motion and the human brain:what has neuroimaging told us? Acta Psychologica,2001,107(1-3):69-94
    [101]Ungerleider LG,Courtney SM,Haxby JV.A neural system for human visual working memory.Proc.Natl.Acad.Sci,1998,95:883-890
    [102]de JongBM,Shipp S,Skidmore B,FrackowiakRSJ,Zeki S.The cerebral activity related to the visual perception of forward motion in depth,Brain,1994,117:1039-1054
    [103]Ptito M,Kupers R,Faubert J,Gjedde A.Cortical representation of inward and outward radial motion in man,Neuroimage,2001,14:1409-1415
    [104]Picton TW,Bentin S,Berg P,Donchin E,Hillyard SA,Johnson JR,Miller GA,Ritter W,RuchkinDS,RuggeD,Taylor MJ.Guidelines for using human event-related potentials to study cognition:Recording standards and publication criteria.Psychophysiology,2000,37:127-152
    [105]YaoDZ.A study of equivalent source techniques forhigh-resolution EEGimaging.Phys.Med.Biol.2001,46:2255-2266
    [106]Yao DZ.Cortical Mapping of EEG Alpha Power Using a Charge Layer Model Brain Topography.2004,17(2):65-71
    [107]Yao DZ.High-resolution electroencephalogram(EEG) mapping:scalp charge layer Phys.Med.Biol.2004,49:5073-5086
    [108]Pascual-Marqui RD,Michel CM.LORETA(low resolution brain electromagnetic tomography):new authentic 3Dfunctional images of the brain.ISBETNewsletter,1994,4-8
    [109]Sekihara K,Sahani M,Nagarajan SS.Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction.NeuroImage 2005,25:1056-1067
    [110]Wagner M,Fuchs M,Kastner J.Evaluation of sLORETA in the presence of noise and multiple sources.Brain Topogr,2004,16:277-280
    [111]Park HJ,Kwon JS,Youn T,Pae JS,Kim JJ,Kim MS.Statistical Parametric Mapping of LORETA Using High Density EEG and Individual MRI:Application to Mismatch Negativities in Schizophrenia.Human Brain Mapping,2002,17:168-178
    [112]Dehaene S,Posner MI,Tucker DM.Localization of a neural system for error detection and compensation.Psychol.Sci.,1994,5:303-305
    [113]Yap DZ,He B.A Self-Coherence Enhancement Algorithm and its Application toEnhancing 3D Source Estimation from EEGs.Annals of Biomedical Engineering,2001,29:1019-1027
    [114]唐孝威主编.脑功能成像.合肥:中国科学技术大学出版社,1999
    [115]陈华富.基于磁共振的脑功能空间定位和动力学特性研究:[博士学位论文].成都:电子科技大学,2004
    [116]http://www.fil.ion.ucl.ac.uk/spm,2002
    [117]袁红.fMRI数据分析方法研究:[硕士学位论文].成都:电子科技大学,2005
    [118]Volz KG,Schubotz RI.yon Cramon DY.Variants of uncertainty in decision-making and their neural correlates.Brain Res Bull,2005,67(5):403-412
    [119]Chew,Ho J.Risk and Uncertainty,1994,8(3):267-288
    [120]Jean B.Integrated model of visual processing.Brain Research Reviews,2001,36:96-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700