用户名: 密码: 验证码:
重型数控落地铣镗床滑枕组件热误差补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型数控落地铣镗床是国防军工、交通运输和工程机械等支柱产业的重要设备。滑枕组件是重型数控落地铣镗床的关键部件,它的精度直接决定了机床的加工精度。重型数控落地铣镗床在使用过程中,滑枕组件受内外热源联合作用,温度升高,产生热变形,影响机床的加工精度。本文主要针对重型数控落地铣镗床的滑枕组件进行热分析,提出解决方案并进行相关实验论证。论文主要完成如下工作:
     针对重型数控落地铣镗床滑枕组件的结构特点,分析数控机床在不同反馈控制方式下,机床W轴方向上热误差的构成,确定滑枕组件热态特性的影响因素。
     根据实际工况,计算滑枕组件的热源和边界条件,建立滑枕组件有限元模型,分析滑枕组件的温度场和热变形场,获得热误差构成比例;并通过分析不同边界条件下的有限元模型,得到了影响因素与滑枕组件热变形的关系。
     对重型数控落地铣镗床滑枕组件的关键点温度和热变形进行测量与分析,得出滑枕在机床W轴位置和主轴转速对滑枕组件热变形的影响;将实验得到的滑枕热变形量与有限元仿真得到热变形进行比较,验证滑枕组件有限元模型的准确性和分析结果的可信性。
     依据滑枕组件热误差构成,对螺母前端滑枕部分热变形,提出热变形检测方案和补偿措施,对因光栅尺热变形而导致的热误差,提出滑枕光栅尺安装改进方案。对滑枕热变形检测方案和光栅尺安装改进方案进行有限元分析,验证方案的可行性与准确性。对滑枕热变形检测方案进行实验验证,结果表明:检测方案能够准确测量出滑枕热变形。针对螺母前端滑枕部分热变形,研制补偿装置,实验证明数控机床能够准确接收补偿装置发送的控制脉冲。
Ram components are essential components of NC heavy type milling-boring machine tool with adjustable stand, which is an important equipment in the pillar industries such as national defense industry, arms industry, transportation, and engineering machinery, etc. Ram components directly determine the process accuracy of a machine tool. During the process of using NC heavy type milling-boring machine tool with adjustable stand, ram components are jointly affected by internal and external heat sources which raise the temperature of ram components, result in the thermal deformation of them, and consequently impact the process accuracy of a machine tool. This thesis is aimed at a thermal analysis of the ram components of NC heavy type milling-boring machine tool with adjustable stand. A scheme to solve the problem is proposed in this thesis and an experimental demonstration is provided. The work of this thesis mainly includes:
     The factors influencing the thermal characteristics of the ram components are ascertained according to their structural characteristics. The formation of thermal errors in the W axis of the tool is analyzed in different patterns of feedback control.
     According to the actual working conditions, the heat sources and boundary conditions of the ram components are counted; the finite element model of ram components are built; the temperature field and the thermal deformation field of ram components are analyzed, and thus the proportion of thermal errors is obtained; the relationship between the influencing factors and the thermal deformation of ram components are obtained by analyzing the finite element model under different boundary conditions.
     The position of the ram in the W axis of the tool and the influence exerted by the rotate speed of the spindle on the thermal deformation of ram components are obtained according to the measurement and analysis of the temperature of the key point and the deformation of ram components; by comparing the thermal deformation of ram components gained in this experiment and the thermal deformation gained in the finite element modeling, the accuracy and the credibility of the finite element model of ram components is tested.
     According to the formation of the thermal errors, the ram in the fore-end of the nut is thermally deformed; the scheme to detect thermal deformation and the remedial measures are proposed; with regard to the thermal errors caused by the thermal deformation of the grating bar, a scheme to install and improve the grating bar of the ram is proposed. With the finite element method, the scheme to detect the thermal deformation of the ram and the scheme to install and improve the grating bar of the ram are analyzed to test the feasibility and accuracy of the scheme. The result of the test demonstrates that the deformation of the ram can be accurately detected with the scheme. A compensating device is developed for the deformation of the ram in the fore-end of the nut. The experiment demonstrates that the NC machine can accurately receive the control pulse sent by the compensating device.
引文
[1] Bryan J. International Status of Thermal Error Research[J]. Keynote Paper Annals of the CIRP, 1990, 39(2): 645-656.
    [2]倪军.数控机床误差补偿研究的回顾及展望[J].北京:中国机械工程, 1997, 8(1): 29-31.
    [3]陶湘保,张德贤,刘筱连等.机床热变形的主动补偿[J].北京:中国机械工程, 1999, 10(8): 923-926.
    [4] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tool~a review Part I: thermal errors[J]. International Journal of Machine Tools & Manufacture, 2000: 1257-1284.
    [5] Liu Z Q, Venuvinod P K. Error compensation in CNC turning solely from dimensional measurements of previously machined parts[J]. Annals of the CIRP, 1999, 48(1): 429-432.
    [6] Ferreira P M, Liu C R. A Contribution to the Analysis and Compensation of the Geometric Error of a Machining Center[J]. Annals of CIRP, 1986, 35(1): 259-263.
    [7]章青,刘又午,赵小松,等.提高大型叶片数控加工精度技术[J].北京:中国机械工程, 2000, 10(6): 631-634.
    [8]王清明,卢泽生,梁迎春.亚微米数控车床误差补偿技术研究[J].北京:中国机械工程, 1998, 12(9): 48-52.
    [9]闫占辉,于骏一.机床热变形研究现状[J].长春:吉林工业大学自然科学学报, 2001, 31(3): 95-97.
    [10] Yang J G, Yuan J X, Ni J. Thermal Error Mode Analysis and Robust Modeling for Error Compensation on a CNC Turning Center[J]. International Journal of Machine Tools and Manufacture, 2005, 39(9): 1367~1381.
    [11]梁永奇.机械制造中的传热与热变形基础[M].北京:机械工业出版社, 1982: 45-46.
    [12] Attia M H, Kops L O. The Role Of Fixed Joints In Thermal Deformation Of Machine Tool Structures[J]. Annals of the CIRP, v27, n1, 1978, p305-310.
    [13] Attia M H, Kops L. Calculation Of Thermal Deformation Of Machine Tools In Transient State With The Effect Of Structural Joints Taken Into Account[J]. Annals of the CIRP, 1979, v28, n1: p247-251.
    [14] Fraser S, Attia M H, Osman M O M. modeling identification and control of thermal deformation of machine tool structures[J]. Journal of manufacturing Science and Engineering, 1999, v121, n3, p509-516.
    [15] Venugopal R, Barash M. Thermal Effects on the Accuracy of Numerically Controlled Machine Tools[J]. Annals of CIRP, 1986, 35(1): 80-92.
    [16] Kim S K, Cho D W. Real-time Estimation of Temperature Distribution in a Ball-screw System[J]. International Journal of Machine Tools & Manufacture. 1997, (37): 451-464.
    [17] Choi J K, Lee D G. Thermal Characteristics of the Spindle Bearing System with a Gear Located on the Bearing Span[J]. International Journal of Machine Tool & Manufacture, 1998, (38): 1017-1030.
    [18]高赛,曾理江,殷纯永.基于单光束干涉仪的机床主轴热误差实时测量[J].北京:计量学报, 2001, 22(1): 1~6.
    [19]郭策.高速高精度数控车床主轴系统的动态和热态特性研究[D].南京:东南大学硕士学位论文. 2003: 23~24.
    [20]王金生. XK717数控铣床热特性研究[D].杭州:浙江工业大学硕士学位论文. 2004: 44~48.
    [21] Ohishi S, Matsuzaki Y. Experimental Investigation of Air Spindle Unit Thermal Characteristics[J]. Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology, 2006, (26): 49-57.
    [22] Creightona E, Honeggera A, Tulsiana A, et al. Analysis of thermal errors in a high-speed micro-milling spindle[J]. International Journal of Machine Tools and Manufacture Volume 50, Issue 4, April 2010, Pages 386-393.
    [23] Josef M, Markus E, Sascha W, et al. Compensation of Thermal Effects on Machine Tools using a FDEM Simulation Approach[J]. IWF Institute of Machine Tools and Manufacturing, ETH Zurich, Switzerland, 2009.
    [24] Zhang Y M, Wei Q L. Finite Element Analysis of Thermal Characteristics of the Spindle Assembly and Headstock for a Numerical Control Lathe[J]. Journal of Northeastern University (Natural Science), 2011.
    [25] Weck M, et al. Reduction and Compensation of Thermal Error in Machine Tools[J]. Annals of CIRP, 1995, 44(2): 589-597.
    [26] Chen J S, Yuan J X, Ni J, et al. Real-time Compensation for Time-variant Volumetric Error on a Machining Center[J]. ASME Journal of Engineering for Industry, 1993, 115(4): 472-479.
    [27] Atin T H.神经网络设计.北京:机械工业出版社, 2005, 18-24.
    [28] Lo C H, Yuan J X, Ni J. An Application of Real-time Error Compensation on a Turning Center[J]. International Journal of Machine Tool & Manufacture, 1995, 35(12): 1669-1682.
    [29] Veldhuis S C, Elbestawi M A. Strategy for the Compensation of Errors in Five-axis Machining[J]. CIRP Annals-Manufacturing Technology, 1995, (44): 373-377.
    [30] Krulewich D A. Temperature Integration Model and Measurement Selection for Thermally Induced Machine Tool Errors[J]. Mechatronics, 1998, (8): 395-412.
    [31] Ma Y, Yuan J, Ni J. A Strategy for the Sensor Placement Optimization for Machine Thermal Error Compensation[J]. ASME Winter Annual Meeting, 1999, 10: 629-637.
    [32]杨建国,窦小龙,邓卫国.五轴数控机床综合误差建模分析[J].上海:上海交通大学学报, 2003, 37 (1): 70-75.
    [33]杨建国,张宏韬,童恒超,等.数控机床热误差实时补偿应用[J].上海:上海交通大学学报, 2005, 39(9): 1391-1394.
    [34] Yang J G, Ren Y Q, Liu G L, et al. Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center[J]. International Journal of Advanced Manufacturing Technology, 2005: 1703-1708.
    [35] Lee J H, Yang H S. Statistical Optimization and Assessment of a Thermal Error Model for CNC Machine Tools[J]. Internal Journal of Machine tools & Manufacture. 2006, (42): 147-155.
    [36] Fan K C. An Intelligent Thermal Error Compensation System for CNC Machining Centers[J]. J. of Chinese Society of Mechanical Engineers, Vol. 28, No. 1, pp.81-90.
    [37]王建中,黄成军.大型落地铣镗床方滑枕精度变形补偿措施[J].北京:制造技术与机床, 2006. 19(7): 61-76.
    [38] Yao et al. Bayesian networks modeling for thermal error of numerical control machine tools[J]. J Zhejiang Univ Sci A, 2008 9(11): 1524-1530.
    [39] Mian, Naeem, Fletcher, et al. Efficient offline thermal error modelling strategy for accurate thermal behaviour assessment of the machine tool[C]. In: Proceedings of Computing and Engineering Annual Researchers' Conference 2009: CEARC’09. University of Huddersfield, Huddersfield, pp.26-32.
    [40] Zhu R, Dai S J, Zhu Y L, et al. Thermal Error Analysis and Optimal Partition Method Based Error Modeling for a Machine Tool[C]. International Conference on Measuring Technology and MechatronicsAutomation, 2009, icmtma, vol. 3, pp.154-159.
    [41] Cui Y L, et al. Thermal Errors Simulation and Modeling of Motorized Spindle[J]. Advanced Materials Research, 2010: 154-155.
    [42] Zhang H T, et al. An Online Modeling Method for Real-Time Thermal Error Compensation on High-Speed Machines Based on RBF Neural Network Theory[J]. Key Engineering Materials, 2010: 455, 606.
    [43]王磊,重型数控落地铣镗床结构热变形误差预测技术的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2010.
    [44] Guo Q J, et al., Thermal Error Modeling and Compensation for an INDEX-G200 Turning Center[J]. Advanced Materials Research, 2011: 215,253.
    [45] Lu Y, Gao D, Liu Y L, et al. Research on Ram Thermal Deformation Real-Time Compensation of Large Floor Type Boring-Milling Machine[J]. Advanced Materials Research, 2011: 188, 503.
    [46]赵镇南.传热学[M].北京:高等教育出版社, 2002, 10-16.
    [47]杨咸启.轴承系统温度场分析[J].北京:轴承, 1997. No.3. 1-5.
    [48]王泽鹏,张秀辉,胡仁喜等. ANSYS 12.0热力学有限元分析[M].北京:机械工业出版社, 2010, 82-90.
    [49]毕梦熊.因瓦合金100年[J].上海:上海冶金情报, 1997: 272,273.
    [50]戴闻.殷钢中零热胀系数的微观机制[J].北京:物理, 2000: 05期, 317,318.
    [51]王洪波.数控机床电气维修技术——SINUMERIK 810D/840D系统[M].北京:电子工业出版社. 2007, 199~212.
    [52] Sinumerik 840D sl Fundamentals Programming manual. Siemens[M]. 2008, 31~36.
    [53]苏奎峰,吕强,常天庆等. TMS320X281X DSP原理及C程序开发[M].北京:电子工业出版社, 2009: 10-230.
    [54]徐科军,张翰,陈智渊. TMS320X281x DSP原理与应用[M].北京:北京航空航天大学出版社, 2006: 1-450.
    [55]谷树忠,侯丽华,姜航. Protel 2004实用教程.北京:电子工业出版社, 2009: 133-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700