用户名: 密码: 验证码:
数控滚齿机热误差建模及补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控滚齿机加工过程中,热误差占到了总误差的40%~70%,是降低机床加工精度的主要因素。根据目前滚齿机热误差研究成果,减小滚齿机热误差有两种基本方法:误差预防法和误差补偿法。对于前者,可以通过温度控制及合理设计机床结构来实现,但这种方法受到技术和经济等诸多因素的限制,而后者是采用各种检测手段对滚齿加工时产生的热误差进行直接或间接的测量,从而建立热误差模型,对滚齿机实施热误差补偿。由于数控滚齿机热误差补偿技术可以在成本投入不大的情况下就能得到较好的效果,并且相对简单易行,所以该技术已经成为世界各国学者所共同研究的一项课题。本文采用误差补偿方法来降低滚齿机热误差对加工精度稳定性所带来的影响,主要工作如下:
     ①分析了国内外滚齿机热误差建模及补偿技术研究现状,阐述了该技术对于提高滚齿机精度稳定性的研究意义。
     ②分析了滚齿机热误差产生原因及热变形对加工精度稳定性所造成的影响,并且制定了本研究关于热误差模型的建立及对热误差进行补偿的技术路线。
     ③提出了热误差采集实验中温度传感器的布置策略,并且利用模糊聚类分析的方法从多个温度传感器布置点中优化选择出了几个关键温度点。
     ④对热误差采集实验所需仪器包括温度传感器、温度巡检仪、位移传感器及数显表进行了选型,利用C++builder开发出了热误差采集软件,采用蓝牙传输数据,从而解决了现场布线的困难。
     ⑤在YKS3120滚齿机上完成了热误差采集实验,根据实验所采集到的温度与位移数据优化了温度布置点后,利用多元线性回归的方法对热误差进行了建模,因滚齿机热误差主要体现在X方向,故研究了大立柱与小立柱在X方向上的变化规律。
     ⑥提出了两种热误差补偿方法,即利用一种热误差差动螺旋补偿装置进行补偿和采用数控系统进行补偿,后者也是在实践中被采用的更为实用的方法,即通过数控系统的PLC读取关键点的温度信息,利用数控系统的R参数来调用写入了热误差模型的子程序,算出补偿值,实时的修正加工状态中X的坐标从而达到对热误差进行实时补偿的目的,实践中也证明该方法可行性高、简单易行、补偿效果良好。
In CNC hobbing process, the thermal error accounted for 40% to 70% of the total error, It’s the main factor of reducing the machining accuracy. Based on the current research results about thermal error of CNC Gear Hobbing Machine Tools, there are two methods to reduce the thermal error: error prevention and the error compensation. For the former, it can be achieved by temperature controlling and rational design of machine tool structure, but this method is limited by technical and economic factors. The latter method is using a variety of detection ways to measure the thermal error during CNC hobbing directly or indirectly to establish thermal error model and compensate machining. The thermal error compensation of CNC gear hobbing machine can get good results in low cost and relatively simply, so the technology has become the common topic by scholars all over the world. In this paper, the method of error compensation will be used to reduce the effect of thermal error on the precision of gear hobbing machine, the main work is as follows:
     ①The research on modeling and compensation for thermal error of CNC gear hobbing machine tools at home and abroad is analyzed, the significance of this technology for improving the stability of precision of CNC gear hobbing machine tools is described.
     ②The cause of thermal error and the impact of thermal error upon stability of working accuracy are analyzed, the technical route is formed about modeling and compensation for thermal error.
     ③The strategy of the arrangement of temperature sensors in thermal error experiment is proposed, and several key temperature points from multiple layout points of temperature sensors by using use of fuzzy clustering analysis are selected.
     ④The necessary equipments in thermal error experiment such as temperature sensors、temperature data logging devices、displacement sensor and digital display, are selected , a thermal error acquisition software by using C++ builder is developed, using Bluetooth to transfer data to solve the on-site wiring difficulties.
     ⑤The acquisition experiment of thermal error in YKS3120 hobbing machine completed, according to the temperature and displacement data by this experiment to optimize layout of temperature sensors. The method of multiple linear regression is used to establish thermal error model. Because thermal error is mainly reflected in X direction, the transformation law of thermal error on large column and small column in X direction is studied in this paper.
     ⑥Two thermal error compensation methods: namely using a kind of thermal error differential helix compensation scheme and NC system to compensate the thermal error is proposed. The latter is also being used in practice and is more practical, through the PLC of NC system to get the temperature information of the key points, by the R parameter of NC system call the subroutine which was implanted thermal error model and calculate the compensation value. Modify X coordinate real-time while working state to achieve compensating thermal error real-time. The actual results has proved that this method was feasible, simple and had good effect on compensation.
引文
[1]齿轮手册编委会.齿轮手册(上、下)[M].北京:机械工业出版社,2000.
    [2]齿轮制造手册编委会.齿轮制造手册[M].北京:机械工业出版社,1998.
    [3]王惠方.金属切削机床[M].北京:机械工业出版社,1994.7.
    [4]谢华馄.现代精密量仪现状及水平[J].成都工具研究所,2004.10.
    [5] G. D. Kiml and C. N. Chu. In-Process Tool Fracture monitoring in Face Milling Using Spindle Motor Current and Tool Fracture Index[J]. Int JAdv Manuf Technol,2001,(18):383一389.
    [6] D.Choi1,W. T. Kwon and C.N.Chu. Real-Time Monitoring of Tool Fracture in Turning Using Sensor Fusion[J]. Int JAdv Manuf Technol,1999,(15):305一310.
    [7] Bryan J.International Status of Thermal Error Research[J]. Keynote Paper Annals of the CIPP,1990,39(2):645-656.
    [8] Yang J G,Yuan J X,Ni J.Thermal error mode analysis and robust modeling for error compensation on a CNC turning center[J]. International Journal of Machine Tools &Manufacture,1999,39(9):1367-1381.
    [9] Fraser S,Attia M H ,Osman M O M.Modeling identification and control of thermal deformation of machine tool structures,PartⅡ:Generalized transfer funtions[J]. ASME Journal Of Manufacturing Science and Enginnering,1998,120(3):632-639.
    [10]杨建国,薛秉源.CNC车削中心热误差模态分析及鲁棒建模[J].中国机械工程,1998,9(5):31-35.
    [11]应济,陈子庚.重型机床的热变形控制研究[J].机械科学与技术,1998,17(4):623-625.
    [12]杜正春,杨建国,窦小龙.制造机床热误差研究现状思考[J].制造业自动化,2002, 24 (10) : l-3.
    [13]杨建国,张宏韬,童恒超.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9)
    [14] Yang J G,Ren Y Q,Du Z C.Robust modeling and real time compensation for the thermal error on a large number of CNC turning centers,Key Engineering Materials,2004,259-260:756-760.
    [15] Hong Yang,Jun Ni. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture,2005,45:455-465.
    [16] HATAMURAY,et al.Development of an intelligent machining center in corporating activecompensation for thermal distortion,Annals of CIRP,1993,42(1):549-522.
    [17] KIMSK,CHODW.Real time estimation of temperature distribution in a ball-screw system[J]. International Journal of Machine Tools and Manufacture,1997,37(4).
    [18]国家自然科学基金委员会,机械制造科学(冷加工)[M].科学出版社,1994.
    [19]陈子辰等,热敏感度和热耦合度研究,1992年全国机床热误差控制和补偿研究会议论文集,1992,49-53.
    [20]傅建中.精密仪器加工动态监控理论及应用研究[D].浙江大学,1996.
    [21]张弈群,李书和,刘安伟,张国雄.基于主轴转速的机床热误差状态方程模型[J]. 1998,19(5):460-465.
    [22]王一丁,张国雄等.数控加工中心的位置误差补偿模型[J].计量学报,1995,10(3):200-205.
    [23]刘又午,刘丽冰,赵小松,章青,王树新.数控机床误差补偿技术研究[J].中国机械工程,1998,9(12):48-52.
    [24]张弈群,李书和,张国雄.机床热误差建模中温度测点选择方法研究[J].航空精密制造技术,1996,52(6):57-59.
    [25]赵汝嘉,白作霖,江平宁等.机床热特性研究的智能集成系统[J].中国机械工程,1996,7(2):52-54.
    [26]杨建国.数控机床误差综合补偿技术及应用[D],上海交通大学博士学位论文,1998.
    [27]陶湘保,张德贤等.机床热变形的主动补偿,中国机械工程,1999,10(8):923-926.
    [28]罗立辉,数控机床温度测点选取及热误差补偿建模[D],福建农林大学,2007.
    [29]张维纪,金属切削原理与刀具[M],浙江大学出版社,1991,8.
    [30]关耀奇,热变形对精密加工的影响与控制[J].机械研究与应用,2001,14 (2):1-2.
    [31]邱良恒,辛一行,王统,蒋松.齿轮本体温度场和热变形修形计算[J].上海交通大学学报,1995, 29 (2) :79-86.
    [32]《齿轮制造手册》编辑委员会.齿轮制造手册[M].北京:机械工业出版社,1997. 12
    [33]商向东,金嘉琦,付景顺,等.齿轮加工精度[M].北京:机械工业出版社,2000, 1
    [34]庞振基,黄其圣,王继平,等.精密机械设计[M].北京:机械工业出版社,2000, 7
    [35]Φ, JI,李特文.齿轮啮合原理上海[M].上海科学技术出版社,1984.
    [36]倪军.数控机床误差补偿研究的回顾及展望[J].中国机械上程,1997( 1).
    [37] Lo C H,Yuan J X,Ni J.Optimal temperature variable selection by grouping approach for thermal error modeling and compensation[J]. International Journal of Machine Tools &Manufacture,1999,39(9):1383-1396.
    [38] Lo C H,Ni J,Yuan J X. Thermal sensor placement strategy for machine error compensation [C] / /Penche C W,Takeshi G H. Dynamic System and Control Division. Atlanta:ASME,1996:341 - 348.
    [39]杨建国,任永强,朱卫斌.数控机床热误差补偿模型在线修正方法研究[J].机械工程学报,2003,39 (3):81-84.
    [40]刘向东,沙秋夫,刘勇奎,等.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32 (6) :201- 203.
    [41] Bluetooth Specification Version 1.0 B http://www.bluetooth.com
    [42]樊昌信.通信原理(第五版)[M].北京:国防工业出版社,2001.
    [43]余明兴,吴明哲,黄丰隆,黄世阳.C++ Builder 5程序设计[M].中国铁道出版社,2000.
    [44]范逸之,江文贤,陈立元.C++ Builder与RS-232串行通信控制[M].清华大学出版社,2002,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700