用户名: 密码: 验证码:
沙堆演化动态特性及自组织临界现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前人们猜想,自组织临界性同时由系统的尺寸和组织原则确定,前者的依据是Held的沙堆实验,后者还没有实验证据,有关理论解释基本上还是空白。国内外所进行的沙堆模型实验(包括计算机沙堆模拟实验和真实沙堆实验)没有考虑颗粒大小的不均匀性对自组织临界性的影响,并且,都是首先建立一个处于临界状态的沙堆,然后从临界状态开始进行连续加沙实验,没有进行从亚临界状态到临界状态的沙堆演化实验,也没有进行每次都处于完全相同的临界状态的不连续沙堆实验。在我们进行的水下沙堆实验中,首次发现自组织临界性与颗粒大小的非均匀性有关。以此为突破口,着重从上述几个方面进行沙堆模型实验,深入分析沙堆演化的动态机制,并对一些自组织临界现象展开研究。主要工作及结论如下:
     1.沙堆模型实验发现,沙堆从亚临界状态向临界状态演化的过程中,雪崩的规模也服从幂律分布,并且沙堆在临界状态下具有不确定性。
     2.采用非均匀性不同的沙粒,一共进行了86组、近万次水下沙堆实验和单面坡干沙堆实验,证实颗粒大小的非均匀性影响自组织临界性。
     3.采用均匀沙(粒径2.5~5 mm)和非均匀沙(非均匀系数为2.85),分别进行了从亚临界状态到临界状态、在临界状态下、以及从临界状态开始的三种类型的对比实验;分析沙堆演化的动态特性、临界状态的不确定性和复杂性;在此基础上进行临界状态下大规模雪崩的可预报性研究。获得如下认识:
     (1)在小的扰动条件下,两种沙堆自发地向临界状态演化,但是表现出两种不同的动态特性:均匀沙沙堆大规模雪崩服从准周期分布,非均匀沙沙堆所有规模的雪崩服从幂律分布。并用重构相空间分析方法证实了这两种动态特性的存在。
     (2)这两种动态特性是由于临界状态下大规模雪崩具有两种不同类型——维持在临界状态的大规模雪崩、偏离临界状态的大规模雪崩产生的。与这两种动态特性相对应,临界状态具有两种不同的吸引子类型:非分形动力学吸引子和分形动力学吸引子。
     (3)用沙堆的二元结构(散粒层和摩阻层)模型对这两种动态特性进行了解释。认为非均匀沙沙堆大规模雪崩只发生在散粒层,沙堆始终维持在
    
    第日页
    西南交通大学博士研究生学位论文
    临界状态,雪崩的规模服从幂律分布;而均匀沙沙堆大规模雪崩发生在摩阻
    层,沙堆偏离了临界状态达到亚临界状态,然后又向临界状态演化,在临界
    状态发生大规模雪崩,在亚临界状态发生小规模的雪崩,因此大规模雪崩呈
    现准周期分布。用大型粗颗粒实验系统,测定不同非均匀系数沙石材料的相
    对密度和直剪特性,发现非均匀沙沙堆比均匀沙沙堆密实,内摩擦角大,在
    我们的实验条件下,只发生散粒层雪崩,沙堆的整体稳定性不被破坏,始终
    维持在临界状态。从而大型粗颗粒实验证实了二元结构模型的合理性。
     (4)计算了两个沙堆在临界状态的信息嫡和复杂度,发现信息嫡都较
    大,信息嫡是系统不确定性的量度,这种不确定性是沙粒移动的连锁反应产
    生的,由于还没有掌握连锁反应的内在机制,因此目前不能够对临界状态的
    大规模雪崩进行准确预报。但是均匀沙沙堆由于复杂度低、大规模雪崩呈现
    准周期分布,因此对临界状态下的大规模雪崩进行相对准确的预测是可行
    的。而非均匀沙沙堆由于复杂度高、雪崩规模呈现幂律分布,对临界状态下
    的大规模雪崩进行相对准确的预测也存在很大的困难。采用侧S方法计算了
    两个沙堆从临界状态开始实验的雪崩时间序列的H值,并根据H值的大
    小,进一步阐述了上述预测观点的合理性。
     4.进行了变扰动的沙堆实验,提出影响沙堆自组织临界性的因素有沙
    堆规模、结构以及外界扰动的强弱,并对影响沙堆自组织临界性的因素进行
    了解释。认为,沙堆维持在临界状态必须同时具备两种动力学特征,敏感性
    和鲁棒性,敏感性主要是通过沙堆散粒层沙粒的移动来体现的,而鲁棒性是
    通过摩阻层来维持的;如果在临界状态下发生摩阻层雪崩,鲁棒性遭到破
    坏,不能维持在临界状态,就不会出现自组织临界性;因而影响连锁反应的
    沙堆规模、结构以及外界扰动的强弱就成为影响自组织临界性的因素。
     5.采用刃S方法证明,幂律统计方法在自组织临界性研究中存在局限
    性。对自组织临界性的幂律分布判断标准进行了改进,在此基础上提出了自
    组织临界性的判断标准。
     6.对自组织临界性的应用研究进展进行了评述,并对一些自组织临界
    现象进行了研究。得到如下一些认识:
     一些滑坡、泥石流和森林火灾尽管没有持续的物质或能量供给,却周期
    性地达到临界状态,而其他时候没有达到临界状态。在外界周期性的扰动
    下,这种周期性波动与系统的结构发生周期性的变化密切相关,并且这种周
    期性地达到临界状态的现象也具有普适性,因此,我们认为这是自发地向临
    界状态演化的一种新形式。
    
    —一遭鱼塑叁越鱼丝全鲤鱼L一一一
     从地壳地质结构出发,依据沙堆演化的动态特性,提出,稳定地块一般
    不能够达到临界状态,不会发生破坏性的大地震;在深大断裂带和板块边
    缘,对破坏性的大地震进行中长期相对准确的预报是可行的,由于临界状态
    的不确定性,大地震的短临预报,尤其是临震预报存在很?
It is guessed that the emergence of self-organization criticality is depended on the size and structure principle of the system, the former foundation being experiments performed by Held, the latter still having not experimental evidence, and its theory explanation is still the blank space. The influence on self-organized criticality of the non-uniform of granular size is not taken into account in sand-pile experiments completed in the home and abroad, including computer simulation and real sand-pile experiment, and those experiments have been carried out only from the critical state, neither from the sub- critical state towards the critical state, nor in the critical state. It is discovered that self-organization criticality is related to the non-uniform coefficient of granular size in our water sand-pile experiments. Taking this as the gap, it is emphasized those respect work in our sand-pile model experiments, the dynamic characteristic of sand-pile evolution is analyzed, and some self-organization critical phenomena are researched as well.Main work and findings as follows:1 It is discovered in our sand-pile model experiments that, avalanches also obey to power-law distribution in the course of evaluation from the sub-critical state to the critical state, and sand-pile possesses the uncertainty in the critical state.2. Adopting the non- uniform difference sand,86 series in all, close to ten thousand wet sand-pile and dry sand-pile with one slope tests finished, it is confirmed the non- uniform of granular size affects the self-organization criticality.3. Adopting 2.5 -5 mm uniform sand and non- uniform sand of the non-uniform factor2.85, three kinds of compared experiments are carried out, including from the sub-critical state towards the critical state, in the critical state, and starting from the critical state as more;The dynamic characteristic of sand-pile evolvement, and the uncertainty and the complexity in critical state, are thoroughly analyzed; The forecast of large-scale avalanche in critical state is researched based on it. The understandings is obtained as follows:
    
    (l)Under little perturbation, two sand-pile spontaneously evolve towards the critical condition, yet presents two kinds of difference dynamics characteristic: large scale avalanche obeying quasi-cycle distributions for 2.5 - 5 mm sand-pile.and all scales avalanches obeying power-law distribution for the non- uniform factor 2.85 sand-pile. These two kinds of dynamics characteristic are confirmed with the phase space analysis means .(2)The reason of the two kinds of dynamics characteristic is that there are is two kinds of distinct forms of large-scale of avalanches in the critical state, keeping or diverging the critical state. Corresponding to these two kinds of dynamics characteristic, the critical state has two kinds of difference attractor types: fractal kinetics attractor and non-fractal kinetics attractor.(3) The two kinds of dynamic behavior are interpreted with the binary composition (the granular layer and the friction-resistance layer) model of sand-pile. It is thought that large-scale avalanches happen only in the granular layer in the critical state, keeping in the critical state, and all scale of avalanches obeying power-law distribution for the non-uniform factor 2.85 sand-pile. Whereas for 2.5-5 mm sand-pile, large-scale avalanches happen in the friction-resistance layer, diverging from the critical state ,then spontaneously evolve towards the critical state, large-scale avalanches happening in the critical state ,and small-scale avalanches in the sub-critical state, hence, large scale avalanche obeying quasi-cycle distributions. The relative density and direct shear characteristics are measured with the large-scale coarse grained soil test system, and it is discovered sand-pile of the non-uniform factor 2.85 much more close-grained ,and internal friction angle larger than2.5~5 mm sand-pile, hence the entire stability of the sand-pile can not been destroyed in the condition of our test, avalanches taking place
引文
[1] 冯端,金国钧.凝聚态物理学新论.上海科学技术出版社,1992:354-398
    [2] Per Bak, Chao Tang, and Eurt Wiesenfeld. Self-organized criticality:an explanation of 1/f noise. Physical Review Letters. 1987,59(4):381-384
    [3] 於崇文,固体地球系统的复杂性与自组织临界性.地学前缘.1998,5(3):159-182,347-368
    [4] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality. Physical Review A. 1988,38(1):364-374
    [5] 姚令侃,方铎.非均匀沙自组织临界性极其应用研究.水利学报.1997(3):26-32
    [6] 李远富,姚令侃,邓域才.单面坡沙堆模型自组织临界性实验研究.西南交通大学学报.2000,35(2):121-125
    [7] P. Evesque, D. Fargeix, P. Habib, M.P. Luong and P. Porion. Pile density is a control parameter of sand avalanches. Physical Review E. 1993, 7(4): 2326-2332
    [8] Hernán A. Makse, Shlomo Havlin, Peter R. King & H. Euggene Stanley. Spontaneous stratification in granular mixtures. Nature. 1997,386(27): 379-382
    [9] Hendrik J. Blok and girger Bergersen. Effect of boundary conditions on scaling in the "game of Life". Physical Review E. 1997,55(5): 6249-6252
    [10] J.M. Carlson, J.T. Chayes, E.R. Grannan, and G. H. Swindle. Self-organized criticality in sandpiles: nature of critical phenomenon. Physical Review A. 1990,42(4):2467-2470
    [11] Imre M. Jánosi. Effect of anisotropy on the self-organized critical state. Physical Review A. 1990,42(2):769-774
    [12] Brigita Urbanc and Luis Cruz. Order parameter and segregated phases in a sandpile model with two partical sizes. Physical Review E, 1997, 56(2):1571-1579.
    [13] Parthapratim Biswas and Arnad Majumdar.Smoothing of sandpile surfaces after intermittent and continuous avalanches:Three models in search of an experiment. Physical Review E. 1998,58(2):1266-1285
    [14] Carmen P.C. Prado and Zeev Olami. Inertia and break of self-organizd criticality in sandpile cellular-automata models. Physical Review A, 1992,45(2):665-669
    [15] D.h. Head and G.J.Rodgers. Crossover to self-organized criticality in an inertial sandpile model. Physical Review E. 1997,55(3):2573-2579
    [16] Anita Mehta,G.C. Barker.J.M. Luck, R.J.Needs. The dynamics of sandpiles: The competing roles of grains and clusters. Physical A.1996,224:48-67
    [17] Stefan Boettcher. hging exponents ini self-organized criticality. Physical Review E, 1997,56(6): 6466-6474
    
    [18] Maxim Vergeles. Self-organization at nonzero temperatures. Physical Review Letters. 1995, 75(10):1969-1972
    [19] Maxim Vergeles. Mean-field theory of hot sandpiles. Physical Review E. 1997, 55(5).6264-6265
    [20] Lu i s A.Nunes Amaral and Kent Baekgaard Lauritsen. Self-organized criticality in a rice-pile model. Physical Review E. 1996,54(5): R4512-R4515
    [21] J. Krug, J. E. S. Socolar, and G. Grinstein. Surface fluctuations and criticality in a class of one-dimensional sandpile models. Physical Review A, 1992, 46(8):R4479-R4482
    [22] H. M. Jaeger, Chu-heng Liu, and Sidney R. Nagel. Relaxation at the angle of repose. Physical Review Letters. 1989, 62(1):40-42
    [23] Kim Christensen, Alvaro Corral, Vidar Frette, Jens Feder, and Torstein Jossang. Tracer dispersion in a self-organized critical system. Physical Review Letters. 1996, 77(1):107-110
    [24] Deepak Dhar. Self-organized critical state of sandpile automaton models. Physical Review Letters. 1990, 64(14):1613-1616
    [25] V. B. Priezzhev. Structure of two-dimensional sandpile. I .Height Probabilities. Jounal of Statistical Physics. 1994, 74(5/6):955-979
    [26] Pui-Man Lam and Fereydoon Family. Mode-coupling theory and simulation results for the "running-sandpile " model of self- organized criticality. Physical Review E. 1993, 47(3):1570-1576
    [27] Antal Kdrolyi and Jdnos Kertesz.Lattice-gase model of avalanches in a granular pile. Physical Review E. 1997, 57(1):852-856
    [28] H. F. Chau. Abelian sandpile model.Physical Review E. 1993, 47(6) :R3815~ 3817
    [29] T. Elperin and A. Vikhansky. Numerical solutions of the variations equations for sandpile dynamics. Physical Review E. 1997, 55(5):5785- 5791
    [30] M. V. Medvedev and P. H. Diamond. Self-organized states in cellular automata:Exact solution. Physical Review E. 1998, 58(5):6824-6827
    [31] Afshin Montakhab and J. M. Carlson. Avalanches, transport, and local equilibrium in self-organized criticality. Physical Review E. 1998, 58(5)-.5608-5619
    [32] D. V. Ktitarev and V. B. Priezzhev. Expansion and contraction of avalanches in the two-dimensional Abelian sandpile. Physical Review E,1998,58(3):2883-2888
    [33] S.S. Manna. Large-sccale simulation of avalanche cluster distribution in sand pile model. Jounal of Statistical Physics. 1990, 59(1/2):509- 521
    [34] M. G. Shnirman and Y. A. Tyurina. Generalized hierarchical model of defect development and self-organized criticality. Physical Review E.1998, 57(4):3804-3813
    
    [35] F. Bagnoli.P.Palmerini, and R. Rechtman. Algorithmic mapping from criticality to self-organized criticality. Physical Review E. 1997, 55(4): 3970-3976
    [36] Henrik Jeldtoft Jensen, Kim Christensen and Hans C. Fogedby. 1/f noise, distribution of lifetime, and a pile of sand. Physical Review B. 1989, 40(10):7425-7427
    [37] Vidar Frette. Sandpile models with dynamically varying critical slopes. Physical Review Letters. 1993, 70(18):2762-2765
    [38] Luis A. Nunes Amaral.Kent Bskgaard Lauritsen. Energy avalanches in a rice-pile model. Physica A. 1996, 231:608-614
    [39] M. Bengrine,A. Benyoussef, F. Mhirech, S. D. Zhang. Disorder-induced phase transition in a one-dimensional model of rice pile. Physica A. 1999, 272:1-11
    [40] S. L tl beck and K. D. Usadel. Numeric determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model. Physical Review E. 1997,55 (4):4095-4099
    [41] Shu-Dong Zhang.On the universality of a one-dimensional model of rice pile.Physics Letter A, 1997, 233:317-322
    [42] S. S. Manna. Critical exponents of the sand pile models in two dimensions. Physica A. 1991,179:249-268
    [43] L. Pietronero, A. Vespignani, and S. Zapperi. Renormalization scheme for self-organized criticality in sandpile models. Physical Review Letters.1994, 72(11):1690-1693
    [44] Chao Tang and Per Bak. Critical exponents and scaling relations for self-organized critical phenomena. Physical Review Letters. 1988, 60(23):2347-2350
    [45] Yi-Cheng Zhang. Scaling theory of self-organized criticality. Physical Review Letters. 1989, 63(5):470-473
    [46] Asa Ben-Hur and Ofer Biham.Universality in sandpile models.Physical Review E.1996,53(2) :R1317-R1320
    [47] Alessandro Vespignani, Stefano Zapperi, and Luciano Pietronero. Renormalization approach to the self-organized critical behavior of sandpile models. Physical Review E. 1995, 51(3):1711-1724
    [48] Sergei Maslov and Maya Paczuski. Scaling theory of depinning in the Sneppen model.Physical Review E. 1994,50(2):R643-R646
    [49] S. D. Edney, P. A. Robinson, and D. Chisholm. Scaling exponents of sandpile- type models of self-organized criticality. Physical Review E.1998, 58(5): 5395-5402
    [50] Luis A. Nunes and Kent Bskgaard Lauritsen. Universality classes for rice-pile models. Physical Review E. 1997, 56(1):231-234
    [51] Maria de Sousa Vieira. Simple deterministic self-organized critical system. Physical Review E. 2000, 61(6):R6056-R6059
    [52] Mdria Markosovd.Universality classes for the ricepile model with absorbing properties. Physical Review E.2000,61(1):253-260
    
    [53] Stefan Hergarten and Horst J. Neugebauer.Self-organized criticality in two-variable models. Physical Review E, 2000, 61(3): 2382-2385
    [54] S. N. Dorogovtsev, J. F. F. Mendes, and Yu. g. Pogorelov. Bak-Sneppen model near zero dimension. Physical Review E, 2000, 62(1)-.295-298
    [55] Terence Hwa and Mehran Kardar. Dissipative transport in open systemran investigation of self-organized criticality. Physical Review Letters, 1989, 62(16):1813-1816
    [56] Alexei Vazquez and Oscar Sotolongo-Costa. Universality classes in the random-storage sandpile model. Physical Review E, 2000, 61(l) : 944-947
    [57] S. L U beck. Large-scale simulations of the Zhang sandpile model. Physical Review E, 1997, 56(2):1590-1594
    [58] Hiizu Nakanishi and Kim Sneppen. Universal versus drive-dependent exponents for sandpile models. Physical Review E, 1997, 55(4) :40l2- 4016
    [59] S. S. Manna. Critical exponents of the sand pile models in two dimensions. Physica A,1991, 179:249-268
    [60] Stefano Lise and Maya Paczuski.Self-organized criticality and universality in a nonconservative earthquake model. Physical Review E,2001,63(3):036111-036115
    [61] Albert D i az-Guilera. Noise and dynamics of self-organized criticality phenomena. Physical Review A, 1992,45(12) :8551-8558
    [62] Chao Tang and Per Bak.Mean-field theory of self-organized critical phenomena. Jounal of Statistical Physics. 1988,51(5/6):797-802
    [63] Kim Christensen, Zeev Olami. Sandpile models with and without an underlying spatial structure. Physical Review E. 1993,48(5):3361- 3372
    [64] Henrik Flyvbjerg, Kim Sneppen and Per Bak. Mean field theory for a simple model of evolution. Physical Review Letters. 1993, 71(24):4087- 4090
    [65] Stefano Zapperi.Kent Baskgaard Lauritssen, and Eugene Stanley. Self- organizedbranching processes.mean-field theory for avalanches. Physical Review Letters. 1995,75(22):4071-4074
    [66] Makoto Katori, Hirotsugu Kobayashi. Mean-field theory of avalanches in self-organized critical states. Physica A. 1996, 229:461-477
    [67] Maxim Vergeles, Amos Maritan.and Jayanth R. Banavar. Mean-field theory of sandpile. Physical Review E. 1997,55 (2):1998-2000
    [68] Terence Hwa and Erwin Frey. Exact scaling function of interface growth dynamics. Physical Review A. 1991,44(12):R7873-7876
    [69] Ashvin B. Chhabra, Mitchell J. Feigenbaum, Leo P. Kadanoff, Amy J. Kolan and Itamar Procaccia. Sandpiles, avalanches, and the statistical mechanics of nonequilibrium stationary states. Physical Review E. 1993, 47 (5):3099-3121
    
    [70] V. B. Priezzhev and K. Sneppen. Multiple scaling in a one-dimensional sandpile. Physical Review E. 1998,58(6):6959-6963
    [71] Rooiualdo Pastor-Satorras and Alessandro Vespignani. Corrections to scaling in the forest-fire model. Physical Review E. 2000,61(5):4854- 4859
    [72] Terence Hwa and Mehran Kardar. Avalanches, Hydrodynamics, and discharge events in models of sandpiles. Physical Review A. 1992,45(10):7002-7023
    [73] Per Bak, Kan Chen. A. forest-fire model and some thoughts on turbulence. Physics Letter A. 1990, 147(5. 6):297-300
    [74] Barbara Drossel. Scaling behavior of the Abelian sandpile model. Physical Review E. 2000, 61(3):R2168-R2171
    [75] L. Pietronero and W. R. Schneider. Fixed scale transformation approach to the nature of the relaxation clusters in self-organized criticality. Physical Review Letters. 1991, 66(13) .-2336-2339
    [76] Maya Paczuski, Sergei Maslov, and Per Bak. Avalanche dynamics in evolution, growth, and depinning models.Physical Review E.1996, 53(1): 414-443
    [77] Stefano Lise and Maya Paczuski. Scaling in a nonconservative earthquake model of self-organized criticality. Physical Review E.2001,64(4):046111-046115
    [78] S. T. R. Pinho,C. P. C. Prado, and S. R. Salinas. Complex behavior in one- dimensional sandpile models. Physical Review E. 1997, 55(3):2159~2165
    [79] Leo P. Kadanoff, Sidney R. Nagel, Lei Wu, and Su-min Zhou. Scaling and universality in avalanches. Physical Review A. 1989, 39(12):6524-6537
    [80] M. De Menech,A. L. Stella, and C. Tebaldi. Rare events and breakdown of simple scaling in the Abelian sandpile model. Physical Review E. 1998, 58(3):R2677-R2680
    [81] Kim Christensen, Zeev Olami.and Per Bak. Deterministic 1/f noise in nonconservative models of self-organized criticality. Physical Review Letters. 1992,68(16):2417-2420
    [82] Henrik Jeldtoft Jensen.Lattice gas as a model of 1/f noise. Physical Review Letters. 1990,64(26):3103-3106
    [83] B. Kaulakys and T.Me s kauskas.Modeling 1/f noise. Physical Review E.1998,58(6):7013-7019
    [84] G.Grinstein and D.-H. Lee, Subir Sachdev. Conservation laws, Anisotropy, and" self-organized criticality" in noisy nonequilibrium systems. Physical Review Letters. 1990,64(16):1927-1930
    [85] V. N.Skokov, A.V. Reshetnikov, V. P. Koverda, A. V. Vinogradov. Self-rganized criticality and 1/f-noise at interacting nonequilibrium phase transitions. Physica A. 2000, 293:1-12
    [86] Henrik Flyvbjerg. Simplest possible self-organized critical system. Physical Review Letters. 1996, 76(6):940-943
    
    [87] Hans-Henrik St0lum. Flutuations at the self-organized critical states. Physical Review E. 1997, 56(6):6710-6718
    [88] Kurt Wiesenfeld,James Theiler and Bruce McNamara. Self-organized criticality in a deterministic automaton. Physical Review Letters. 1990,65(8):949-952
    [89] A.Alan Middleton and Chao Tang. Self-organized criticality in nonconserved systems. Physical Review Letters. 1995, 74(5):742-745
    [90] Per Bak, Stefan Boettcher. Self-organized criticality and Punctuated equilibria. Physica D,1997,107:143-150
    [91] Per Bak and Kim Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters, 1993, 71 (24):4083- 4086
    [92] Emma Montevecchi and Attilio L.Stella. Boundary spatiotemporal correlations in a self-organized critical model of punctuated equilibrium. Physical Review E. 2000,61(1):293-297
    [93] C. Adami. Selff-organized criticality in living systems. Physics Letters A. 1995, 203:29-32
    [94] Tomoko Tsuchhiya and Makoto Katori. Proof of breaking of self- organized criticality in a nonconservative Abelian sandpile model. Physical Review E. 2000, 61(2):1183-1188
    [95] per Bak. Self-organized criticality in non-conservative models. Physica A, 1992, 191:41-46
    [96] Peyman Ghaffari, Stefano Lise, and Henrik Jeldtoft Jensen. Nonconservative sandpile models. Physical Review E. 1997, 56(6) : 6702- 6709
    [97] D. L. Turcotte, B. D. Malamud, G. Morein, W.I.Newman. An inverse-cascade model for self-organized critical behavior. Physica A. 1999, 268:629- 643
    [98] M. E. J. Newman and Kim Sneppen. Avalanches, scaling, and coherent noise. Physical Review E. 1996, 54(6):6226-6231
    [99] Y.Moreno, J. B. G 6 mez, A. F. Pacheco. Self-organized criticality in a fibre-bundle-type model. Physica A. 1999,274:400-409
    [100] Pratip Bhattacharyya. Critical phenomena in an one-dimensional probabilistic cellular automaton. Physica A. 1996, 234:427-434
    [101] Sergei Maslov, Yi-Cheng Zhang. Self-organized critical directed percolation. Physica A. 1996,223:1-6
    [102] Zoltan Fodor and Imre M. Janosi. Results on the continuous-energy sef-organized critical model in one dimension. Physical Review A.1991, 44(2):1386-1389
    [103] Alvaro Corral, Conrad J. Perez, Albert Diaz-Guilera, and Alex Arenas. Self-organized criticality and synchronization in lattice model of integrate-and-fire oscillators. Physical Review Letters. 1995, 74(1): 118-121
    
    [104] Gongwen Peng. Self-organized criticality in vector-state automata. Physica A. 1993, 201:573-580
    [105] Gerald Baumann and Dietrich E. Wolf. Self-organized criticality in a two-dimeensional rotating drum model. Physical Review E. 1996, 54(5):R4504-4511
    [106] E. N. Miranda and H. J. Herrmann. Self-organized criticality with disorder and frustration. Physica A. 1991, 175:339-344
    [107] A. Malthe-Sarenssen. Kinetic grain model for sandpiles. Physical Review E.1996, 54(3):2261-2265
    [108] Horacio Ceva and Roberto P. J. Perazzo. From self-organized criticality to first-order-like behavior:A new type of percolation transition. Physical Review E. 1993, 48(1):157-160
    [109] A. M. Alencar, J. S. Andrade, and L. S. Lucena. Self-organized percolation. Physical Review E. 1997,56(3).R2379-R2382
    [110] S. Clar, B. Drossel, K. Schenk, F. Schwabl. Self-organized criticality in forest-fire models. Physica A. 1999, 266:153-159
    [111] Barbara Drossel, Siegfried Clar, and Franz Schwabl. Crossover from percolation to self-organized criticality. Physical Review E. 1994, 50(4):R2399-R2402
    [112] Kim Christensen, Henrik Flyvbjerg and Zeev Olami. Self-organized critical forest-fire model:mean-field theory and simulation results in 1 to 6 dimensions. Physical Review Letters. 1993, 71(17):2737-2740
    [113] C. Vanderzande and F. Daerden. Dissipative Abelian sandpiles and random walks. Physical Review E. 2001, 63(3):030301-030304
    [114] K. I. Hopcraft, E. Jakeman, and R. M. Tanner. Characterization of structural reorganization in rice piles. Physical Review E. 2001, 64(1):016116-016125
    [115] Eric Bonabeau, Journal of the Physical Society of Japan. 64(1):327- 328
    [116] R. R. shcherbakov, VI. V. Papoyan, and A. Mpovolotsky. Critical dynamics of self-organizing Eulerian walkers. Physical Review E. 1997, 55(3):3686-3688
    [117] R. Vilela Mendes. Characterizing self-organization and coevolution by ergodic invariants. Physica A. 2000,276:550-571
    [118] E. M. Blanter and M. G. Shnirman. Simple hierachical systems; Stability, self-organized criticality, and catastrophic behavior. Physical Review E.1997,55(6):6397-6403
    [119] J. Rosendahl.M.Vekic, and J. E. Rutledge. Predictability of large avalanches on a sandpile. Physical Review Letters. 1994,73(4):537- 540
    [120] Peter Bdntay and Imre M. Janosi.Avalanche Dynamics from anomalous diffusion. Physical Review Letters. 1992, 68(13):2058-2061
    
    [121] J. E. S, Socolar and G.Grinstein. On self-organized criticality in nonconserving systems. Physical Review E. 1993,47(4):2366-2376
    [122] N. Vandewalle, H. Puyvelde, and M. Ausloos. Self-organized criticality can emerge even if the range of interactions is infinite.Physical Review E. 1998,57(1):1167-1170
    [123] L. Pietronero, P. Tartaglia and Y. -C. Zhang. Theoretical studies of self-organized criticality. Physical A. 1991, 173:22-44
    [124] Sergei Maslov.Maya Paczuski, and Per Bak. Avalanches and 1/f noise in evolution and growth models. Physical Review Letters. 1994, 73(16):2162-2165
    [125] Alvaro Corral and Albert Diaz-Guilera. Symmetries and fixed point stability of stochastic differential equations modeling self- organized self-organized criticality. Physical Review E. 1997, 55 (3):2434-2445
    [126] J. M. Carlson, J. T. Chayes. E. R. Grannan, and G. H. Swindle. Self-organized criticality and singular diffusion. Physical Review Letters. 1990, 65(20): 2547-2550
    [127] S. P. Obukhov. Self-organized criticality:goldstone modes and their interactions. Physical Review Letters. 1990, 65(12) :1395-1398
    [128] Per Bak and Kan Chen. Self梠rganized criticality. Scientific American. 1991, 264(1):26-33
    [129] Held G A et al. Experimental study of critical-mass fluctuation in an evolving sandpile. Physical Review Letters. 1990, 65(9):1120-1123
    [130] J. Rosendahl,M. Vekic, and J. Kelley. Persistent self-organization of sandpiles. Physical Review E. 1993. 47(2):1401-1404
    [131] E. Altshuler, 0. Ramos, C. Martinez, L. E. Flores, and C. Noda. Avalanches in one-dimensional piles with different types of bases. Physical Review Letters. 2001, 86(24):5490-5493
    [132] Shin Horikawa, Takeshi Isoda, Tomoo Nakayama, Akio Nakahara. Self- organized critical density waves of granular particles flowing though a pipe. Physica A. 1996, 233:699-708
    [133] Hans Jacob S. Feder and Jens Feder. Self-organized criticality in astick-slip process. Physical Review Letters. 1991,66(20):2669-2672
    [134] Frette V, Malthe-Soressen K C A. Jossang J F T et al. Avalanche dynamics in a pile of rice. Nature. 1996, 379(27): 49-52.
    [135] Bretz M,Cunningham J B, Kurczvnski P L, et al. Imaging of avalanches in Granular materials. Physical Review Letters. 1992, 69(16):2431- 2434.
    [136] E. Morales-Gamboa, J. Lomnitz-adler and V. Romero-Roch i n, R. Chicharro- Serra and R. Peralta-Fabi. Two-dimensional avalanches as stochastic Markov processes. Physical Review E. 1993,47(4):R2229-R2232
    [137] Victor B.Sapozhnikov and Efi Foufoula-Georgiou. Do the current landscape evolution models show self-organized criticality? Water Resource Research. 1996, 32(4) :1109-1112
    [1
    
    [138] 林振山.长期预报的相空间理论和模式.气象出版社,1993.10~43.
    [139] 陈士华,陆君安.混沌动力学初步.武汉水利电力大学出版社,1998:95~97
    [140] Lopez-Ruiz R, Mancini H L and Calbe X.A statistical measure of complexity. Physics Letter A. 1995, (209): 321-326
    [141] Hideki Takayasu and Hajime Inaoka. New type of self-organized criticality in a model of erosion. Physical Review Letters. 1992, 68(7):966-969
    [142] P. Diodati, F. Marchesoni, and S. Piazza. acoustic emission from volcanic rocks:an exxaple of self-organized criticality. Physical Review Letters. 1991,67(17):2239-2243
    [143] Didier Sornette. Power Laws without Parameter Tuing: an alternative to self-organized criticality. Physical Review Letters. 1994, 72 (14): 2306
    [144] 国家地震局地球物理所.非线性科学在地球物理中的应用.北京:地球物理出版社,1992,146-149
    [145] 方福康.复杂经济系统的演化分析.中科院《二十一世纪100个科学难题》
    [146] 姜璐.复杂系统的层次结构.自然辩证法研究.1994,10(2):16-22
    [147] Per Bak and Chao Tang. Earthquakes as a self-organized critica phynomenon. Journal of geophysical research. 94(B11):15635-15637
    [148] Marie-Line Chabanol and Vincent Hakim. Analysis of a dissipative model of self-organized criticality with random neighbors. Physical Review E. 1997,56(3):R2343-R2346
    [149] W.-S. Liu and Y.N. Lu, and E.J. Ding. Dynamic phase trasitions and self-organized criticality in atheoretical spring-block model. Physical Review E, 1995,51(3):1916-1928
    [150] Zeev Olami, Hans Jacob S. Feder, and Kim Christensen. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters. 1992,68(8):1244-1247
    [151] Y.N. Lu, E.J. Ding. Self-organized criticality in a stochastic springblock model. Physical Review E. 1993,48(1):R21-R24
    [152] A.S. Elgazzar. An inhomogeneous self-organized critical model for earthquakes. Physica A. 1998,251:303-308
    [153] B. Barriere and D.L. Turcotte. Seismicity and self-organized criticality. Physical Review E. 1994,49(2):1151-1160
    [154] Kan Chen, Per Bak and S.P. Obukhov. Self-organized criticality in a crack-propagation model of earthquakes. Physical Review A. 1991,43(2):625-30
    [155] Zeev Olami and Kim Christensen. Temppral correlations, universality, and multifractality in aspring-block model of earthquakes. Physical Review A. 1992,46(4):R1720-R1723
    [156] 安镇文,叶正仁,腾春凯,王林瑛,陈瑶.孕震系统中的1/f噪声行为.地球物理 学报.1997,40(3):380-385
    [1
    
    [157] Geller R J, Jackson D D, et al. Earthquake cannot be predicted 1997,275:1616-1517
    [158] 吴忠良.自组织临界性与地震预测:对目前地震预测问题争论的评述(之一).中国地震.1998,14(4):9-10
    [159] K.L. Babcock and R.M. Westervelt. Avalanches and self-organization in cellular magnetic-domain patterns. Physical Review Letters. 1990,64(18):2168-2171
    [160] Ferenc Pázmándi,Gergely Zaránd, and Gergely T. Zimányi. Selforganized criticality in the hysteresis of the sherringtonkirkpatrick model. Physical Review Letters. 1999,83(5):1034-1037
    [161] Victor. B. Sapozhnikov and Efi. Foufoula-Georgiou, Experimental evidence of dynamic scaling and indications of self-organized criticality in braided rivers. Water Resource Research. 1996 , 33(8):1983-1991
    [162] Ignacio Rodriguez-iturbe, Marco Marani, Riccardo Rigon, and Rinaldo. Self-organized river basin landscapes:fractal and multifractall characteristics. Water Resource Research. 1996, 30(12):3531-3539
    [163] Per Bak, Kan Chen & Michael Creutz. Self-organized criticality in the 'game of life' .Nature. 1989,342(6251):780-782
    [164] H.F. Chau, Louis Mak, Peter K. Kwok. Self-organized critical model of biological evolution. Physica A. 1995,215:431-438
    [165] Yu.M. Pis, Mak. Solution of the master equatoi for the Bak-Sneppen model of biological evolutions in a finite ecosystem. Physical Review E. 1997,56(2):R1326-R1329
    [166] Pablo M. Gleiser, Francisco A. Taimarit, Sergio A. Cannas. Selforganized criticality in a model of biological evolution with long-range interactions. Physica A. 2000,275:272-280
    [167] Jan de Boer, Bernard Derrida, Henrik Flyvbjerg, Andrew D. Jackson, and Tilo Wetting. Simple model of self-organized biological evolution. Physical Review Letters. 1994,73(6):906-909
    [168] T.S. Ray and N. Jan. Anomalous approach to the self-organized critical state in a model for "life at the edge of chaos" .Physical Review Letters. 1994,72(25):40454048
    [169] Paolao De Los Rios, Angelo Valleriani, and José Luis Vega. Selforganized criticality driven by deterministic rules. Physical Review E. 1997,56(4):4876-4879
    [170] B. Drossel and F. Schwabl。Self-OrganizedCritical Forest - Fire Model. Physical Review Letters. 1992, 69 (11) : 1629-1992
    [171] S. Clar, K. Schenk, and F. Schwabl. Phase transitions in a forest-fire model. Physical Review E. 1997,55(3):2174-2183
    [172] Hans-Martin Brker and Peter Grassberger. Anomalous scaling in the Bak-Cben-Tang forest fire model. Physical Review E. 1997,56(5):R4918-4921
    
    [173] Bruce D, Malamud, Gleb Morein , Donald, Turcotte. Forest Fire : An Example of Self-organized Critical Behavior。Science. 1998, 281: 1840-1841
    [174] 宋卫国,范维澄,汪秉宏.中国森林火灾的自组织临界性.科学通报.2001,46(6):521-525
    [175] Song W, Fan W,Wang B. Self - Organized Criticality and Wildfires. Ecological Modeling. 2001, 145: (1) 61-68
    [176] 宋卫国,范维澄,林其钊.森林火灾的自组织临界性行为及其在中国林火数据中的体现.自然灾害学报.2001,10:37-40
    [177] 宋卫国.等整数型森林火灾模型及其自组织临界性.火灾科学,2001,10(1):53-56
    [178] 舒立福,等,森林特殊火行为格局的卫星遥感研究。火灾科学,2001,10(3):140-143
    [179] Drossel B, Schwalb F. Forest-fire model with immune tees。Physica A, 1993,199(2):183-197
    [180] Albano E V. Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees. Physics A. 1995,216:213-226
    [181] William J. Reed, Kevin S. McKelvey. Power-law behaviour and parametric models for the size-distribution of forest fires. Ecological Modeling, 2002,150,239-254
    [182] Carlo Ricotta, et al。The flaming sand-pile: self-organized criticality and wildfires。Ecological Modeling, 1999, 119:73-77
    [183] Schenk K, Drossel B, Clar S, et alo Finite-size effects in the self -organized critical forest-fire model o Eur Phys J, 2000, 15:177 -185
    [184] 宋卫国,范维澄,汪秉宏.有限尺度效应对森林火灾模型自组织临界性的影响.科学通报,2001,46:1841-1845
    [185] Keeley J E, et al. Reexamining Fire Suppression Impacts on Busldand Fire Regines. Science, 1999,284:1829-1832
    [186] J.S. Andrade Jr, I.Wainer, J. Mendes Filho, and J.E. Moreira. Selforganized criticality in the El Nio Southern Oscillation. Physica A. 1995,215:331-338
    [187] Ole Peters, Christopher Hertlein, and Rim Christensen. A complexity view of rainfall[J]. Physical Review Letters. 2002,88(5):054302
    [188] 封国林,曹鸿兴.大型涡旋自组织临界态的观测证据.热带气象科学.1994,10(2):155-161
    [189] Stefan Boettcher and Allon G. Percus. Optimization with extremal dynamics. Physical Review Letters. 2001,86(23):5211-5214
    [190] Jian Yuan, Yong Ren, and Xiuming shah. Self-organized criticality in a computer network model. Physical Review E. 2000,61(2):1067-1071
    [191] Franz-Josef Elmer. Self-organized criticality with coplex scaling exponents in the train models. Physical Review E. 1997,56(6):R6225- R6228
    [1
    
    [192] Takashi Nagatani. Self-organized criticality and Scaling in lifetime of traffic james. Jounal of the Physical Society of Japan. 1995,61(1):31-34
    [193] Takashi Nagatani. Self-organized criticality in 1D traffic flow model with inflow or outflow. Journal of Physics A-Mathematical & General. 1995,28(40): L119-L124
    [194] 张玉海,郭治安。客运模型自组织临界性的研究。西北建筑工程学员学报,1996,3:12-17
    [195] 汪秉宏,毛丹,王雷,许伯铭。交通流中的自组织临界性研究.广西师范大学学报,2002,20(1):15-21
    [196] Pablo Garrido, Shaun Lovejoy, Daniel Schertzer. Multifractal processes and self-organized criticality in the large-scale structure of the universe. Physica A, 1996,225:294-311
    [197] C.M. Agegertre. Evidence for self-organized in the Bean critica state in superconductor. Physical Review E, 1998,58(2):1438-1441
    [198] 罗得军,艾南山,李后强,泥石流暴发的自组织临界性。山地研究,1995,2(4):160-163
    [199] 王裕宜,詹前登,韩文亮,吕娟,泥石流的自组织临界特性及其预测,
    [200] 易顺民。张首丽。滑坡活动的自组织临界性特征及其意义,自然灾害学报,1998,1(3):165-170
    [201] 汪华斌,李江风,吴树仁。滑坡灾害系统非线性研究进展[J]。地球科学进展,2000年,第三期,271
    [202] Stefan Hergarten and Horst J. Neugebauer. Self-organized critical drainage networks. Physical Review Letters, 2001,86(12):2689-2692
    [203] 孙博文,孙名松。基于沙堆模型的股市宏观行为研究。哈尔滨理工大学学报,2003,8(1):105-107
    [204] 於崇文.成矿动力系统在混沌边缘的分形生长——一种新的成矿理论与方法.矿物岩石地球化学通报.2002,21(2):103-113
    [205] 施泽进,罗蛰潭等.自组织临界现象楔状体构造初探.成都理工学院学报.1995,22(1):1-6
    [206] 刘俊刁,曹万强,李景德.自组织临界的OFC模型在聚丙烯介电驰豫中的应用。化学物理学报.2001,14(6):694-698
    [207] 秦四清,张倬元,王士天.非线性工程地质学导引.西南交通大学出版社,1993:101-106
    [208] 姚令侃,李仕雄,蒋良潍.自组织临界性及其在散粒体研究中的应用.四川大学学报.2003,35(1):8-14
    [209] 黄登仕,李后强.非线性经济学的理论和方法.四川大学出版社。1993
    [210] 高洪.复杂性研究之经济哲学进展。自然辩证法研究,2000,16(5):18-21
    [211] 杨文进.论经济波动周期性的内在机制。当代财经,1994.000(008).16-20
    [212] 蒋良潍,姚令侃,蒋忠信,李仕雄。溜砂坡动力学特性实验及防治。山地学报2004,22(1):97-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700