用户名: 密码: 验证码:
双层流体热毛细—浮力对流不稳定性及外部磁场主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热毛细对流是由于流体交界面温度分布不均匀引起的表面张力梯度驱动的流体流动,也称为Marangoni对流。这一对流广泛存在于晶体生长、铸造、镀膜等过程,其不稳定性可能导致许多不期望的结果,如晶体生长的不均匀性。本文以大尺寸晶体生长过程中双层流体内的流动不稳定性为研究对象,研究了双层流体热毛细-浮力对流不稳定性的产生条件、演化机理及其磁场主动控制规律;同时,研究了外部磁场对晶体生长过程中热质传输特性的影响规律。研究内容及获得的研究结果如下:
     首先,通过数值模拟研究了环形液池内双层流体热毛细-浮力对流不稳定性的产生条件、演化机理及其磁场主动控制规律。研究发现,热毛细对流不稳定性的扰动产生于内壁面区域,并沿着温度梯度方向传播;液池深径比对热毛细-浮力对流具有重要影响,当深径比为0.5时,双层流体热毛细-浮力对流不稳定性产生的临界Ma数为2.33×103。随着深径比减小周向温度波数先增大后减小,但周向速度的平均振幅逐渐增大;随着重力加速度的增大,由表面张力效应引起的扰动能能量减小,同时周向温度波数也逐渐减小。环形液池的旋转能够有效抑制热毛细对流不稳定性,其流动从非稳态振荡流转变为稳态对流。不同类型磁场均能抑制热毛细对流不稳定性,其中轴向磁场对热毛细-浮力对流的抑制效果最好,勾型磁场的抑制效果次之,水平磁场的抑制效果最差。
     其次,数值研究了外部磁场对大直径单晶硅生长中热质传输特性及杂质分凝效应的影响。研究发现,在轴向磁场和勾型磁场作用下,随着磁场强度增大,熔体内部氧浓度逐渐增大,熔体的对流结构逐渐趋于规则,且勾型磁场的抑制效果要好于轴向磁场。当应用旋转磁场时,晶体、熔体、坩埚三者同向旋转对晶体生长最有利。外部磁场能够有效改善晶体内部杂质的分布,水平磁场作用下杂质分布的梯度主要集中在晶体内部与磁场垂直的方向,而勾型磁场作用下杂质分布的梯度主要集中在晶体边缘,因此施加勾型磁场更有利于晶体生长。
     此外,发展了Level set方法模拟双层流体交界面的变形,研究了双层流体热毛细-浮力对流自由界面变形的特征及磁场对热毛细-浮力对流的影响规律。研究显示,在Marangoni效应的作用下,自由界面在热端凸起冷端凹陷;自由界面的变形率随Ma数和宽深比的增大而增大,随磁场强度和重力加速度的增大而逐渐减小。双层流体交界面与壁面的接触条件对交界面变形和流型结构具有重要影响。
     最后,采用剪切干涉法对矩形腔体内双层流体热毛细-浮力对流的温度场进行了验证实验,并采用代数重建算法对剪切干涉法获得的干涉图像进行了温度场的三维重建,重建结果与数值模拟结果吻合很好。
Thermocapillary convection is driven by surface tension gradient due to a non-uniform temperaturedistribution at the fluid interface, which is also called Marangoni convection. This flow phenomenonwidely exists in many engineering applications including crystal growth, metal casting, and filmcoating process. The instability of thermocapillary convection can cause adverse effects, i.e.,imperfections in crystal growth. In this thesis, the appearance and evaluation ofthermocapillary–buoyant convection instability in an annular two-layer fluids system and the effect ofmagnetic field on the convection instability were investigated. Meanwhile, the influence of externalmagnetic field on the heat and mass transfer in Cz method crystal growth process was investigated,also. The detailed content and results as follows:
     Firstly, the appearance and evaluation of thermocapillary–buoyant convection instability in anannular two-layer fluids system and the effect of magnetic field on it were investigated by numericalsimulation. The oscillation of thermocapillary convection instability initiates around the inner wallregion, and propagates along the direction of temperature gradient. The aspect ratio has obvious effecton thermocapillary convection, in which the azimutahl wave number increases at first and thendecreases as the aspect ratio decreases, but the average oscillatoty amplitude of azimuthal velocity isstrengthened gradually. When aspect ratio is0.5, the critical Ma number of themocapillary-buoyantconvection instability is2.33x103. With the gravitational acceleration increasing, the energy ofdisturbance from surface tension is reduced, and the azimuthal wave number decreases. The rotationof annular pool can suppress the thermocapillary convection instability effectively, and the oscillatoryconvection becomes steady convection. All the magnetic fields can suppress the thermocapillaryconvection, in which the electromagnetic damping of thermocapillary convection instability underaxial magnetic field is the most advantageous, that of cusp magnetic field is the second, and thehorizontal magnetic field results in the weakest damping.
     Secondly, the influence of external magnetic field on the heat and mass transfer and segregation ofimpurity in Cz method crystal growth process was investigated by numerical simulation. Under theinfluence of axial and cusp magnetic fields, with magnetic field intensity increasing the temperaturegradient on the interface of melt and crystal decreases, the oxygen concentration increases gradually,and the convective pattern becomes more regular and, the damping effect of cusp magnetic field isstronger than that of axial magnetic field. When rotating magnetic field is applied to, the rotations ofcrystal, crucible and fluid are in the same direction, a better crystal quality can be obtained. Theexternal magnetic field can improve the impurity distribution in crystal. The gradient of impuritydistribution mainly locates at the direction of θ=π/2and θ=3π/2of crystal under horizontalmagnetic field, but that of under cusp magnetic field locates at the margin of crystal. The applicationof cusp magnetic field is better for the control of impurity segregation.
     Developed Level set method was applied to the simulation of interface characterstics of two-layerfluids, and the flow characteristics of thermocapillary-buoyant convection with a deformable interfacewas investigated. It is found that, under the impact of Marangoni effect on the interface bulges outnear the hot wall and bulges in near the cold wall. The deformability of free surface is increased with Ma number and aspect ratio increasing, but it is decreased as the magnetic field intensity andgravitational acceleration increase. The contact condition of interface with the end walls is importantfor the prediction of thermocapillary convection characteristics.
     Lastly, the temperature field of thermacapillary-buoyant convection in a rectangular cavity wasinvestigated experimentally by Laser shear interference method, and the three-dimensionaltemperature field was reconstructed by algebraic reconstruction technique method. The constructedtemperature field is in good agreement with numerical simulation result.
引文
[1]胡文瑞,徐硕昌.微重力流体力学,北京:科学出版社,1999.
    [2]A. Raufeisen, S. Jana, M. Breuer, et al.3D computation of oxygen transport in Czochralski crystalgrowth of silicon considering evaporation. J. Crystal Growth,2007,303(3):146–149.
    [3]H. Benard. Les tourbillons cellulaires dans une nappe liquide transportant de chaleurpar convectionen regime permanent. Ann. Chim. Phys.,1901,23:62–144.
    [4]L. Rayleigh. On convection currents in a horizontal layer of fluid, when the higher temperature is onthe under side. Phil. Mag. Ser.,1916,32(6):529–546.
    [5]H. Benard. Proc.3rd Int. Congr. Appl. Mech.,1930,1:120-130.
    [6]M. J. Block. Surface tension as the cause of Benard cells and surface deformation in a liquid Film.Nature,1956,178:650-661.
    [7]J. R. Pearson. On convection cells induced by surface tension. J. Fluid Mech.,1958,4:486-497.
    [8]D. A. Nield. Surface tension and buoyance effects in cellular convection. J. Fluid Mech.,1964,19(3):341-355.
    [9]A. Vidal, A. Acrivos. Nature of the neutral state in surface tension driven convection. Phys. Fluids,1966,615(9):1-8.
    [10]M. Takashima. Thermal instability of fluid layer bounded below by a solid layer of finiteconductivity. J. Phy. Soc. Jpn.,1971,31(7):283-292.
    [11]L. E. Scriven, C. V. Sternling. On cellular convection driven by surface-tension gradients: effects ofmean surface tension and surface viscosity. J. Fluid Mech.,1964,19(4):231-245.
    [12]K. A. Smith. On convection instability induced by surface-tension gradient. J. Fluid. Mech.,1966,24(7):401-415.
    [13]R. W. Zeren, W. C. Reynolds. Thermal instabilities in two fluid horizontal layers. J. Fluid Mech.,1972,53(2):305–327.
    [14]N. Imaishi, K. Fujinawa. Theoretical study of the stability of two-fluid layers. J. Chem. Eng. Jpn.,1974,7(1):81-86.
    [15]Y. Kamotani, J. Lee, S. Ostrach. An experimental study of oscillatory thermocapillary convectionin cylindrical containers. Phys. Fluids A-Fluid Dyna.,1992,4(3):955–962.
    [16]Y. Kamotani, S. Ostrach, J. Masud. Microgravity experiments and analysis of oscillatorythermocapillary flows in cylindrical containers. J. Fluid Mech.,2000,410(5):211–233.
    [17]Y. Kamotani, S. Ostrach, A. Pline. Some temperature field results from the thermocapillary flowexperiment aboard USML-2space lab. Adv.Space Res,1998,22(2):1189–1195.
    [18]L. Renaud, A. Gustav, A. Henrik. Experimental and numerical investigation of nonlinearthermocapillary oscillations in an annular geometry. J. Mech. B-Fluids,2001,20(3):771-797.
    [19]N. Garnier, C. Normand. Effects of curvature on hydrothermal waves instability of radialthermocapillary flows. C. R. Acad. Sci. Paris,2001,2(4):1227-1233.
    [20]S. Hoyas, H. Herrero, A. M. Mancho. Thermal convection in a cylindrical annulus heated laterally.J. phys. A, Math. Gen.,2002,35(2):4067-4083.
    [21]D. Schwabe, S. Benz, A.Cramer. Experiment on the Multi-roll-structure of thermocapillary flow inside-heated thin liquid layers. Adv. Space Res.,1999,24(10):1367-1373.
    [22]D. Schwabe. Buoyant-thermocapillary and pure thermocapillary convective instabilities inCzochralski systems. J. Crystal Growth,2002,237-239:1849-1853.
    [23]D. Schwabe, S. Benz. Thermocapillary flow instabilities in an annulus under microgravity resultsof the experiment MAGIA. Adv. Space Res.,2002,29(4):629-638.
    [24]D. Schwabe, A. Zebib, B. C. Sim. Oscillatory thermocapillary convection in open cylindricalannuli. Part1. Experiments under microgravity. J. Fluid Mech.,2003,491:239–258.
    [25]N. Garnier, F. Daviaud. Hydrothermal waves in a disk fluid. Springer Tracts Modern Phys.,2001,207(1):147-161.
    [26]B. C. Sim, A. Zebib. Effect of free surface heat loss and rotation on transition to oscillatorythermocapillary convection. Phys. Fluids,2002,14(1):225-231.
    [27]Y. R. Li, L. Peng, S.Y. Wu. Thermocapillary convection in a differentially heated annular pool formoderate Prandtl number fluid. Int. J. Therm. Sci.,2004,43(5):87–593.
    [28]Y. R. Li, N. Imaishi, T. Azamic, et al. Three-dimensional oscillatory flow in a thin annular pool ofsilicon melt. J. Crystal Growth,2004,260(5):28–42.
    [29]B. C. Sim, W. S. Kim, A. Zebib. Axisymmetric thermocapillary convection in open cylindricalannuli with deforming interfaces. Int. J. Heat Mass Trans.,2004,47(3):5365-5373.
    [30]W. Y. Shi, M. K. Ermakov, N. Imaishi. Effect of pool rotation on thermocapillary convection inshallow annular pool of silicone oil. J. Crystal Growth,2006,294(5):474–485.
    [31]W. Y. Shi, N. Imaishi. Hydrothermal waves in differentially heated shallow annular pools ofsilicone oil. J. Crystal Growth,2006,290(7):280-291.
    [32]S. Wakitani. Experiments on instabilities of thermocapillary convection in shallow annular liquidlayers. J. Physics: Confer. Ser.,2007,64,012006.
    [33]L. Peng, Y. R. Li, W. Y. Shi. Three-demensional thermocapillary-buoyancy flow of silicone oil in adifferentially heated annular pool. Int. J. Heat Mass Trans.,2007,50(5-6):872-880.
    [34]Y. R. Li, L. Xiao, S. Y. Wu, et al. Effect of pool rotation on flow pattern transition of silicon meltthermocapillary flow in a slowly rotating shallow annular pool. Int. J. Heat Mass Trans.,2008,51(4):1810–1817.
    [35]Y. R. Li, W. J. Zhang, S. C. Wang. Two-Dimensional Numerical Simulation of ThermocapillaryConvection in Annular Two-Layer System. Microgravity Sci. Technol,2008,20(8):313–317.
    [36]W. Y. Shi, X. Liu, G. Y. Li, et al. Thermocapillary Convection Instability in Shallow AnnularPools by Linear Stability Analysis. J. Supercond Nov. Magn.,2010,23(5):1185–1188.
    [37]Y. R. Li, S. C. Wang, S. Y. Wu, et al. Asymptotic solution of thermocapillary convection in thinannular two-layer system with upper free surface. Int. J. Heat Mass Trans.,2009,52(21-22):4769-4777.
    [38]Y. R. Li, Y. S. Liu, W. Y. Shi, et al. Stability of Thermocapillary Convection in Annular Poolswith Low Prandtl Number Fluid. Microgravity Sci. Technol.,2010,21(s1):283-287.
    [39]Y. R. Li, W. J. Zhang, L. Peng, et al. Thermal Convection in an Annular Two-Layer System UnderCombined Action of Buoyancy and Thermocapillary Forces. J. Supercond Nov. Magn.,2010,44(1):15-21.
    [40]周小明,黄护林.大尺度环形液池中双层热毛细对流不稳定性.工程热物理学报,2011,32(7):1195-1198。
    [41]H. C. Kuhlmann, S. Albensoeder. Three-dimensional flow instabilities in a thermocapillary drivencavity. Phys. Rev. E,2008,77,036303.
    [42]D. Villers, J. K. Platten. Separation of Marangoni convection from gravitational convection in earthexperiments. Phys. Chem. Hydro.,1987,8(4):173-183.
    [43]A. Prakash, J. N. Koster. Thermal convection in a cavity-part I, steady natural convection. Int. J.multiphase flow,1994,20(10):383-396.
    [44]A. Prakash, J. N. Koster. Thermal convection in a cavity-part II, steady thermocapillary convection.Int. J. multiphase flow,1994,20(10):397-414.
    [45]H. Azuma, S. Yoshihara, M. ohnishi, et al. Upper layer flow phenomena in two immiscible liquidlayers subject to a horizontal temperature gradient. Microgravity Fluid Mech. IUTAM Symp.Bremen,1991:205-212.
    [46]A. Himmel, U. Bozian, K. Wozniak, et al. Flow and temperature measurements of two immiscibleliquid layers. Flow Mew. Instrum.,1995,6(4):295-299.
    [47]S. Someyaa, T. Munakata, M. Nishio, et al. Flow observation in two immiscible liquid layerssubject to a horizontal temperature gradient. J. Crystal Growth,2002,235(6):626–632.
    [48]M. Sakurai, J. Leypoldt, H. C. Kuhlmann, et al. Pattern formation and transient thermocapillaryflow in a rectangular side-heated open cavity, Microgravity sci. technol.,2002,13(3):30-35.
    [49]S. Rasenat, F. H. Busse, L. Rehberg. A theoretical and experimental study of double-layerconvection. J. Fluid Mech.,1989,199(4):519–540.
    [50]A. Juel, J. M. Burgess, W. D. McCormick, et al. Surface tension-driven convection patterns in twoliquid layers. Physica D,2000,143(4):169–186.
    [51]D. Johnson, R. Narayanan, P. C. Dauby. The effect of air height on the pattern formation inliquid–air bilayer convection, in: Fluid Dynamics at Interfaces. Cambridge University Press,Cambridge,1999:15–30.
    [52]S. Punjabi, K. Muralidhar, P. K. Panigrahi. Buoyancy-driven convection in two superposed fluidlayers in an octagonal cavity. Int. J. Therm. Sci.,2004,43(2):849–864.
    [53]J. N. Koster, A. Prakash, D. Fujita, et al. Brnard and Marangoni convection in immiscible liquidlayers. ASME28th National Heat Trans. Conf.,1992, San Diego, CA.
    [54]J. N. Koster, A. Prakash, T. A. Campbell, et al. Analysis of convection in immiscible liquid layerswith novel particle tracking velocimetry. ASME1992WAM,1992, Anaheim, CA.
    [55]P. Georis, J. C. Legros. Pure Thermocapillary Convection in a Multilayer System: First Resultsfrom the IML-2Mission. Lecture Notes in Physics,1996,464:299-311.
    [56]周炳红,刘秋生,胡良等.两层流体热毛细对流空间实验研究.中国科学,2002,32(3):316-322.
    [57]Q. S. Liu, G. Chen, B. Roux. Thermogravitational and thermocapillary convection in a cavitycontaining two superposed immiscible liquid layers. Int. J. Heat Mass Trans.,1993,36(1):101-117.
    [58]Q. S. Liu, B. Roux. Instability of thermocapillary convection in multiple superposed immiscibleliquid layers. Proc. VIIIth Euro.Symp. On Materials and Fluid Sciences in Microgravity, BelgiumESA SP-1992,333:735-742.
    [59]刘秋生.多层流体的Marangoni对流.力学学报,2002,34(4):481-491.
    [60]T. Doi, J. N. Koster. Thermocapillary convection in two immiscible liquid layers with free surface.Phys. Fluids A,1993,5(8):1-8.
    [61]T. A. Campbell, J. N. Koster. Molding of liquid encapsulated Gallium melts. Acta Astronoutica,1995,35(12):805-812.
    [62]J. P. Fontaine, R. L. Sani. Flow and transport in a multilayered fluid system I. Influence of1-orμ-g environment. Int. J. Heat Mass Trans.,1996,39(13):2751-2770.
    [63]P. Wang, R. Rahawita. Oscillatory behaviour in buoyant thermocapillary convection of fluid layerswith a free surface. Int J. Heat Mass Trans.,1998,41(2):399-409.
    [64]X. M. Zhou, H. L. Huang. MHD effects on the instability of thermocapillary convection intwo-layer fluid system. Int. J. Heat Mass Trans.,2010,53(12):5827–5834.
    [65]H. L. Huang, X. M. Zhou. The impact of normal magnetic fields on instability of thermocapillaryconvection in a two-layer fluid system. J. Heat Trans.,2009,131:1-7.
    [66]X. M. Zhou, H. L. Huang. MHD effect of magnetic field on the development of thermocapillaryconvection in two-layer system. Int. J. Low-carbon Tech.,2009,4(4):238-245.
    [67]H. L. Huang, X. M. Zhou. MHD effect on the critical temperature differences of oscillatorythermocapillary convection in two-layer system. Front. Energy Power Engin. in China,2010,4(2):155-160.
    [68]H. C. Kuhlmann. Thermpcapillary Convection in Model of Crystal Growth, Berlin, New York:Springer,1999.
    [69]B. Xiong, W. R. Hu. Crystal growth in floating zone with phase change and thermo-solutalconvection. J. Crystal Growth,1992,125(1-2):149-156.
    [70]C. H. Chun, W. Wuest. A micro-gravity simulation of the marangoni convection. ActaAstronautica,1978,5(9):681-686.
    [71]D. Schwabe, A. Scharmann. Some evidence for the existence and magnitude of a criticalmarangoni number for the onset of oscillatory flow in crystal growth melts. J. Crystal Growth,1979,46(6):125-131.
    [72]D. Schwabe, A. Scharmann, F. Preisser, et al, Experiments on surface tension driven flow infloating zone melting. J. Crystal Growth,1978,43(3):305-312
    [73]C. H. Chun, W. Wuest. Experiments on the transition from the steady to the oscillatorymarangoni-convection of a floating zone under reduced gravity effect. Acta stronautica,1979,6(1):1073-1082.
    [74]C. H. Chun. Experiments on steady and oscillatory temperature distribution in a floating zone dueto the marangoni convection. Acta Astronautica,1980,7(4-5):479-488.
    [75]Z. H. Cao, J.C. Xie, Z. M. Tang, et al. The influence of buoyancy on the onset of oscillatoryconvection in a half floating zone. Adv. Space Res.,1991,11(7):166-170.
    [76]Z. H. Cao, H. T. You, Z. M. Tang, et al. Experimental investigation of thermocapillary convectionin a half floating zone. Adv. Space Res.,1991,11(7):232-236.
    [77]R. Velten, D. Schwabe, A. Scharmann. A periodic instability of thermocapillary convection incylindrical liquid bridge. Phys. Fluid,1991, A3:267-177.
    [78]F. Preisser, D. Schwabe, A. Scharmann. Steady and oscillatory thermocapillary convection inliquid columns with free cylindrical surface. J. Fluid Mech.,1983,126:545-55.
    [79]J. C. Xie, J. Z. Shu, Y. L. Yao, et al. The Oscillation Feature of thermocapillary convection. Adv.Astronaut. Sci.,1996,91:441-453.
    [80]A. Hirata, M. Sakurai, N. Ohishi, et al. Transition process from laminar to oscillatory Marangoniconvection in a liquid bridge. J. Jpn Soc. Microgravity Appl.,1997,14(2):137-143.
    [81]C. Albanese, L. Carotenuto, E. Castagnolo, et al. First results from “onset” experiment during D2space mission, in Scientific Results of German Spacelab Mission D-2, DARA,1995:247-258.
    [82]L. Carotenuto, D. Castagnolo, C. Albanese, et al. Instability of thermocapillary convection in liquidbridges. Phys. Fluids,1998,10:555-565.
    [83]Y. L. Yao, J. Z. Shu, J. C. Xie, et al. Transition of oscillatory floating half-zone convection fromearth’s gravity to microgravity. Intl. J. Heat Mass trans.,1997,40(11):2517-2524.
    [84]S. Frank, D. Schwabe, Temporal and spatial elements of thermocapillary convection in floatingzones. Exp. Fluids,1992,23(3):234-251.
    [85]J. H. Han, Y. R. Zhou, W. R. Hu, Investigation on a simulation model of floating half zoneconvection II. Experiment. Intl J. Heat Mass Trans.,1997,40(11):2671-2677.
    [86]W. R. Hu, H. T. You, Z. H. Cao. Free surface oscillation of thermocapillary convection in liquidbridge of half floating zone. Scientia Sinica,1992, A35:1101-1107.
    [87]J. Z. Shu, Y. L. Yao, W. R. Hu. Free surface vibration in oscillatory convection in half floatingzone. Scientia Sinica,1993, A36:326-332.
    [88]Y. L. Yao,F. Liu, W. R. Hu. How to determine critical Marangoni number in half floating zoneconvection. Int. J. Heat Mass Trans.,1996,39(12):2539-2544.
    [89]Z. M. Tang, Y. A, Z. H. Cao, et al. Two bifurcation transition processes in floating half zoneconvection of larger Prandtl number fluid. Acta Mech. Sinica,2002,18(4):328-336.
    [90]W. R. Hu, Z. M. Tang. Influence of liquid bridge volume on the floating zone convection, CrystalRes. Tech.,2003,38(7-8):627-634.
    [91]Y. A, Z. H. Cao, Z. M. Tang, et al. Experimental study on the transition process to the oscillatorythermocapillary convection in a floating half zone. Microgravity Sci. Tech.,2005,17(4):5-13.
    [92]D. Schwabe. Hydrothermal waves in a liquid bridge with aspect ratio near the Rayleigh limit undermicrogravity. Phys. Fluids,2005,17,112104.
    [93]A. Croll, T. Kaiser, A. Schueizer, et al. Flaoting-zone and floating-solutal-zone of GaSb undermicrogravity. J. Crystal Growth,1998,191(3):365-376.
    [94]S. Nakamura, T. Hibiya, N. Imaishi, et al. Observation of periodic Marangoni convection in amolten silicon bridge on board the TR-IA-6rocket. J. Jpn. Soc. Microgravity Appl.,1999,16(2):99-103.
    [95]J. H. Han, Z. W. Sun, L. R. Dai, et al. Experiment on the thermocapillary convection of a mercuryliquid bridge in a floating half zone. Intl. J. Colloid Interface Sci.,1996,169(1):129-135.
    [96]Z. W. Sun, J. H. Han, L. R. Dai, et al. Experimental study of thermocapillary convection on aliquid bridge consisting of fluid with low Prandtl number in a floating half-zone. Sci. in China E,1997,40(1):97-104.
    [97]Y. K. Yang, S. Kon, Temperature oscillation in a Tin liquid bridge and critical Marangoni numberdependency on Prandtl number. J. Crystal Growth,2001,222(1-2):135-143.
    [98]K. Takagi, M. Otaka, H. Natsui, et al. Experimental study on transition to oscillatorythermocapillary flow in a low Prandtl number liquid bridge. J. Crystal Growth,2001,233(1-2):399-407.
    [99]M. Levenstam, G. Amberg. Hydrodynamic instabilities of thermocapillary flow in a half-zone. J.Fluid Mech.,1995,297(1):357-372.
    [100]J. Leypoldt, H. C. Kuhlmann, H. J. Rath. Three dimensional numerical simulation ofthermocapillary flows in cylindrical liquid bridges. J. Fluid Mech.,2000,414(2):285-314.
    [101]R. Savino, R. Monti. Oscillatory marangoni convection in cylindrical liquid bridges. Phys. Fluids,1996,8:2906-2922.
    [102]Z. M. Tang, W. R. Hu. Influence of liquid bridge volume on the onset of oscillation in floatingzone convection III. Three dimensional model. J. Crystal Growth,1999,207(3-4):239-246.
    [103]G. P. Neitzel, C. C. Law, D. F. Jankowski, et al. Energy stability of thermocapillary convection ina model of the float-zone crystal-growth process. II: Nonaxisymetric disturbances. Phys. Fluids,1991, A3:2841-2846.
    [104]L. B. Sumner, G. P. Neitzel. Oscillatory thermocapillary convection in liquid bridges with highlydeformed free surfaces: Experiments and energy-stability analysis. Phys. Fluids,2001,13:107-120.
    [105]C. H. Nienhüser, H. C. Kuhlmann. Stability of thermocapillary flows in non-cylindrical liquidbridges. J. Fluid Mech.,2002,458(2):35-73.
    [106]G. Chen, A. Lizée, B.Roux. Bifurcation analysis of thermocapillary convection in cylindricalliquid bridges. J. Crystal Growth,1997,180(3-4):638-647.
    [107]G. P. Neitzel, K. T.Chang, D. F. Jankowski, et al. Linear stability theory of thermocapillaryconvection in a model of the float-zone crystal-growth process. Phys. Fluids,1993, A5:108-114.
    [108]H. C. Kuhlmann, H. J. Rath. Hydrodynamic instabilities in cylindrical thermocapillary liquidbridges. J. Fluid Mech.,1993,247(1):247-274.
    [109]Q. S. Chen, W. R. Hu. Influence of liquid bridge volume on instability of floating half zoneconvection. Int. J. Heat Mass Trans.,1998,41(6-7):825–837.
    [110]Q. S. Chen, W. R. Hu., V. Prasad. Effect of liquid bridge volume on the instability in small-Prandtl number half zones. J. Cryst. Growth,1999,203(1-2):261–268.
    [111]Z. M. Tang, A. Yan, Z. H. Cao, et al. Two bifurcation transition processes in floating half zoneconvection of larger Prandtl number fluid. Acta Mech. Sinica,2002,18(4):328-341.
    [112]B. Xun, P. G. Chen, K. Li, Z. Yin, et al. A linear stability analysis of large-Prandtl-numberthermocapillary liquid bridges. Advan. Space Res.,2008,41(12):2094-2100.
    [113]K. Li, B. Xun, N. Imaishi, S. Yoda, et al. Thermocapillary flows in liquid bridges of molten tinwith small aspect ratios. Int. J. Heat Fluid Flow,2008,29(4):1190-1196.
    [114]B. Xun, K. Li, P. G. Chen, W. R. Hu. Effect of interfacial heat transfer on the onset of oscillatorythermocapillary flow in liquid bridge. Int. J. Heat Mass Trans.,2009,52:4211-4217.
    [115]B. Xun, K. Li, W. R. Hu. Effect of volume ratio on thermocapillary flow in liquid bridges ofhigh-Prandtl-number fluids. Phys. Rev. E,2010,81,036324.
    [116]C. W. Hirt, D. B. Nichols. Volume of fluid Method for the Dynamics of free boundaries. J.Comp. Phys.,1981,39(1):201-225.
    [117]S. Osher, J. Sethain. A Fronts Propagating with Curvature-Dependent Speed: Algorithms Basedon Hamilton-Jacobi Formulations. J. Comp. Phys.,1988,79(1):12-49.
    [118]S. Chen, B. Merriman, S. Osher. A simple level set method for solving Stefan problems. J. Comp.Phys.,1994,112(2):334-363.
    [119]N. Ashgriz, J. Y. Poo. FLAIR: Flux Line-segment model for Advection and InterfaceReconstruction. J. Comp. Phys.,1991,93(2):273-285.
    [120]H. Kohno, T. Tanahashi. Numerical analysis of moving interfaces using a level set methodcoupled with adaptive mesh refinement. Int. J. Numer. Meth. Fluids,2004,45(9):921–944.
    [121]E. Bassanom. Level-set based numerical simulation of a migrating and dissolving liquid drop in acylindrical cavity. Int. J. Numer. Meth. Fluids,2004,44(4):409–429.
    [122]王剑峰,杨超,毛在砂. Level set方法数值模拟单液滴传质中的Marangoni效应.中国科学B辑:化学,2008,38(2):150-160。
    [123]J. F. Zhao, Z. D. Li, H. X. Li, et al. Thermocapillary migration of deformable bubbles at moderateto large Marangoni number in microgravity. Microgravity Sci. Technol.,2010,22(3):121-132.
    [124]W. Q. Lu, Boundary element analysis of thermocapillary convection with a free surface in arectangular cavity. Int. J. Heat Mass Trans.,1994,37(3):1063-1071.
    [125]R. G. Nivedita, H. Hossein, A. Borhan. Thermocapillary flow in double-layer fluid structures: Aneffective single-layer model. J. Colloid Interface Sci.,2006,293(2):158–171.
    [126]M. Hamed, J. M. Floryan, Marangoni convecton. Part1. a cavity with dofferentially heatedsidewalls. J. Fluid Mech.,2000,405(1):79-110.
    [127]S. Satoshi, M. Tetsuo, N. Masahiro, et al. Flow observation in two immiscible liquidlayers subjectto a horizontal temperature gradient. J. Crystal Growth,2002,235(2):626–632.
    [128]M. Z. Saghir, R. Abbaschian, R. Raman. Numerical analysis of thermocapillary convection inaxisymmetric liquid encapsulated InBi. J. Crystal Growth,1996,169(1):1l0-117.
    [129]J. P. Fontaine, R. L. Sani, Thermocapillary effects in a multilayered fluid system. proceedings30th Aerospace Sciences Meeting and Exhibit, AIAA,1992., Reno, NV, Jan.6-9.
    [130]X. M. Zhou, H. L. Huang. Numerical simulation of steady thermocapillary convection in atwo-layer system using level set method. Microgravity Sci. Technol.,2010,22(2):223-232.
    [131]T. Suzuki, N. Isawa, Y. Okubo, et al. Semiconductor silicon. Electrochemical Society, Pennington,NJ,1981.
    [132]K. M. Kim, P. Smetana. Striations in Cz silicon crystals grown under various axial magnetic fieldstrengths. J. Appl. Phys.,1985,58(7):2731-2735.
    [133]H. Hirata, K. Hoshikawa. Silicon crystal growth in a cusp magnetic field. J. Crystal Growth,1989,6(4):37-47.
    [134]宇慧平,隋允康,安国平.大直径单晶硅垂直磁场下的数值模拟.北京工业大学学报,2006,32(s1):68-73.
    [135]宇慧平,隋允康,张峰翊等.勾形磁场下直径300mm Cz Si熔体中氧浓度分布的数值模拟.半导体学报,2005,26(3):517-523.
    [136]K. Yutaka, T. Teruyuki, O. Kensuke. Geostrophic turbulence in Cz silicon melt under cuspmagnetic field. J. Crystal Growth,2005,273(3-4):329–339.
    [137]P. Dold, K. W. Benz. Rotating magnetic fields: fluid flow and crystal growth applications.Progress in Crystal Growth and Characterization of Materials,1999,38(1-4):7–38.
    [138]M. Y. Abritska, L. A. Gorbunov. Magnetohydrodynamics,1992.
    [139]N. Ono, G. Trapaga. A numerical study of the effects of electromagnetic stirring on thedistributions of temperature and oxygen concentration in silicon double-crucible Czochralskiprocessing. J. Electrochem. Soc.,1997,144(2):764–772.
    [140]T. Munakata, S. Satoshi. Effect of high frequency magnetic field on Cz silicon melt convection.Int. J. Heat Mass Trans.,2004,47(21):4525–4533.
    [141]J. S. Walker, D. Henry, H. B. Hadid. Magnetic stabilization of the buoyant convection in theliquid-encapsulated Czochralski process. J. Crystal Growth,2002,243(9):108–116.
    [142]L. J. Liu, S. Nakano, K. Kakimoto. An analysis of temperature distribution near the melt–crystalinterface in silicon Czochralski growth with a transverse magneticfield. J. Crystal Growth,2005,282(1-2):49–59.
    [143]S. Jana, S. Dost, V. Kumar, et al. A numerical simulation study for the Czochralski growthprocess of Si under magnetic field. Int. J. Eng. Sci.,2006,44(3):554–573.
    [144]A. Krauzea, A. Muimnieksa, A. M.uhlbauera, et al. Numerical3Dmodelling of turbulent meltflow in large Cz system with horizontal DC magnetic field—I: flow structure analysis. J. CrystalGrowth,2004,262(7):157–167.
    [145]V. Kumar, S. Dost, F. Durst. Numerical modeling of crystal growth under strong magnetic fields:An application to the travelling heater method. Appl. Math. Modelling,2007,31(3):589–605.
    [146]P. Rudolph. Travelling magnetic fields applied to bulk crystal growth from the melt: The stepfrom basic research to industrial scale, J. Crystal Growth,2008,310(7-9):1298-1306.
    [147]C. Frank-Rotsch, D. Jockel, M. Ziem, et al. Numerical optimization of the interface shape at theVGF growth of semiconductor crystals in a traveling magnetic field. J. Crystal Growth,2008,310(7-9):1505-1510.
    [148]O. Kleina, C. Lechnera, P. Drueta, et al. Numerical simulation of Czochralski crystal growthunder the influence of a traveling magnetic field generated by an internal heater-magnet module(HMM). J. Crystal Growth,2008,310(7-9):1523-1532.
    [149]V. V. Kalae. Combined effect of DC magnetic fields and free surface stresses on the melt flowand crystallization front formation during400mm diameter Si Cz crystal growth. J. CrystalGrowth,2007,303(1):203–210.
    [150]E. Yildiz, S. Dost. A numerical simulation study for the combined effect of static and rotatingmagnetic fields in liquid phase diffusion growth of SiGe. J. Crystal Growth,2007,303(1):279–283.
    [151]I. Grants, G. Gerbeth. The suppression of temperature fluctuations by a rotating magnetic field ina high aspect ratio Czochralski configuration. J. Crystal Growth,2007,308(2):290–296.
    [152]B. C. Houchens, L. M. Witkowski, J. S. Walker, Rayleigh–bénard instability in a vertical cylinderwith a vertical magnetic field. J. Fluid Mech.,2002,469(1):189-207.
    [153]T. E. Morthland, J. S. Walker. Magnetically damped thermocapillary convections in fluid layersin microgravity. AIAA,1998,98-065,4:12-15.
    [154]V. Pablo, D. Rivas. Effect of an axial magnetic field on the flow pattern in a cylindrical floatingzone. Advan. Space. Res.,2005,36(1):48-56.
    [155]K. Kakimoto. Oxygen distribution in silicon melt under inhomogeneous transverse-magneticfields. J. Crystal Growth,2001,230(1-2):100–107.
    [156]K. Kakimoto, L. L. Liu. Analysis of local segregation of impurities at a silicon melt–crystalinterface during crystal growth in transverse magnetic field-applied Czochralski method. J.Crystal Growth,2009,311(8):2313–2316.
    [157]Y. C. Won, K. Kakimoto, H. Ozoe. Transient three-dimensional numerical computation forunsteady oxygen concentration in a silicon melt during a Czochralski process under a cusp-shapedmagnetic field. J. Crystal Growth,2001,233(4):622–630.
    [158]K. W. Yi, K. Kakimoto, M. Eguchi, et al. Oxygen transport mechanism in Si melt during singlecrystal growth in the Czochralski system. J. Crystal Growth,1996,165(4):358-361.
    [159]K. Kakimoto, K. W. Yi, M. Eguchi. Oxygen transfer during single silicon crystal growth inCzochralski system with vertical magnetic fields. J. Crystal Growth,1996,163(3):238-242.
    [160]C. E. Chang, W. R. Wilcox. Analysis of surface tension driven flow in floating zone melting. Int.J. Heat Mass Trans.,1976,19(4):355–366.
    [161]M. Smith, S. Davis. Instabilities of dynamic thermocapillary liquid layers. Part1. Convectiveinstabilities. J. Fluid Mech.,1983,132(1):119–144.
    [162]M. Wanschura, V. Shevtsova, H. Kuhlmann, et al. Convective instability mechanisms inthermocapillary liquid bridges. Phys. Fluids,1995,7:912–925.
    [163]Y. Kamotani, S. Ostrach, A. Pline. A thermocapillary convection experiment in microgravity. Int.J. Heat Mass Trans.,1995,117(2):611–618.
    [164]S. X. Chen, M.W.Li. Flow instability of buoyant-Marangoni convection in the LEC GaAs melt.Sci. China Ser. E-Tech Sci.,2008,51(4):97-406.
    [165]B. C. Sim, A. Zebib, D. Schwabe. Oscillatory thermocapillary convection in open cylindricalannuli. Part2. simulations. J. Fluid Mech.,2003,491(1):259-274.
    [166]C. Chan, C. F. Chen. Effect of gravity on the stability of thermocapillary convection in ahorizontal fluid layer. J. Fluid Mech.,2010,647(1):91–103.
    [167]H. P. Utech, M. Flemings. Elimination of solute banding in indium antimonide crystals growth ina magnetic field. J. Appl. Phys.,1966,37(5):2021~2023.
    [168]W. E. Langlois, K. J. Lee. Czochralski crystal growth in an axial magnetic field: effects of jouleheating. J. Crystal Growth,1983,62(3):481~484.
    [169]A. Lipchin, R. A. Brown. Comparison of three turbulence models for simulation of meltconvection in Czochralski crystal growth of silicon. J. Crystal Growth,1999,205(1-2):71-91.
    [170]S. Kenjeres, K. Hanjalic. Numerical simulation of magnetic control of heat transfer in thermalconvection. Int. J. Heat Fluid Flow,2004,25(3):559–568.
    [171]R. Rakoczy. Enhancement of solid dissolution process under the influence of rotating magneticfield. Chem. Eng. Processing,2010,49(1):42–50.
    [172]M. Sussman, P. Smereka, S. Osher. A level set approach for computing solutions toincompressible two-phase flow. J. Comput. Phys.,1994,114(1):146–159.
    [173]R. P. Fediw, T. Aslam, B. Merriman. A nonoscillatory Eulerian approach to interface inmultimaterial flows. J. Comput. Phys.,1999,152(2):457–492.
    [174]G. Son, V. K. Dhir. Numerical Simulation of Film Boiling near Critical Pressures with a level setmethod. J Heat Trans.,1998,120:183–192.
    [175]J. U. Brackbill, D. B. Kothe, C. Zemach. A continuum method for modeling surface tension. J.Comput. Phys.,1992,100(2):335–354.
    [176]A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comput.,1968,22(104):745-762.
    [177]K. Goda. A Multistep technique with implicit difference schemes for calculating two orthree-dimensional cavity flows. J. Comp. Phys.,1979,30(1):76-96.
    [178]J. B. Bell, P. Colella, H.M. Glza. A second order projection method for the incompressibleNavier-Stokes equations. J. Comp. Phys.,1989,85(1):257-284.
    [179]M. J. Ni, S. Komori, M. Abdou. A variable-density projection method for interfacial flows.Numer. Heat Trans., B2003,44(6):553–574.
    [180]A. K. Sen. Thermocapillary convection in a rectangular cavity with a deformable interface. Phys.Fluids,1986,29(11):3881–3883.
    [181]J. N. Koster. Early mission report on the four ESA facilities: biorack; Bubble, drop and particleunit; Critical point facility and advanced protein crystallization facility flown on the IML-2spacelab mission. ESA Microgravity News.1994,7:2–7.
    [182]梅尔兹科奇,流动显示.科学出版社,1991:1-11.
    [183]M. Francon. Interférométrie par double réfraction en lumière blanche. Rev. Opt.,1952,31(1):65-80.
    [184]G. Nomarski. Remarques sur le fonctionnemen des dispositifs interférentiels à polarisation. J.Phys. Radium1956,17(1):15-35.
    [185]F. Mayinger. Optical Measurements: Techniques and Applications, Springer, Berlin,1994.
    [186]R. J. Goldstein. Fluid Mechanics Measurements, Hemisphere, New York,1983.
    [187]G. S. Settles. Schlieren and Shadowgraph Techniques, Springer, New York,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700