用户名: 密码: 验证码:
土壤水分胁迫对黄土丘陵区3个树种叶片气体交换的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半干旱黄土丘陵区是我国典型的生态脆弱地区,而水分是制约植被恢复与重建的主要因素。本文针对半干旱黄土丘陵区干旱缺水的主要特征,在山西省方山县峪口镇,以山杏(Prunus armeniaca)、沙棘(Hippophae rhamnoides)和油松(Pinus tabulaeformis)3个树种为试验材料,进行盆栽试验设计,运用气体交换和叶绿素荧光监测技术与分析理论,阐明不同树种光合速率、蒸腾速率、水分利用效率等气体交换参数及叶绿素荧光参数在土壤饱和湿度至凋萎湿度内的连续变化过程;揭示不同树种光合特征参数发生显著变化的土壤水分临界点及其变化机制;确定维持不同树种较高光合速率和水分利用效率的土壤水分范围。研究成果对丰富和发展树木光合生理与水分生理研究具有理论价值,对科学指导黄土丘陵区合理树种选择、立地配置和适地适树具有实践价值。主要研究成果如下:
     (1)植物叶片气体交换参数对土壤水分和光照强度有明显的阈值响应
     根据光合速率、蒸腾速率、水分利用效率等气体交换参数与土壤水分关系的分析结果,初步确定了3个树种以提高光合生产力与水分利用效率为核心的适宜土壤水分条件、植物水分最大亏缺及适宜的光强范围。
     ①山杏、沙棘和油松生长适宜的土壤水分范围分别为:36.39%~80.90%、38.49%~82.86%、35.72%~80.83%;土壤水分最大亏缺分别为:28.33%、30.00%、27.61%;光照强度范围分别为:600~1400μmol·m~(-2)·s~(-1)、500~1600μmol·m~(-2)·s~(-1)、400~1600μmol·m~(-2)·s~(-1)。3个树种在轻度水分胁迫下能获得较高的光合速率和水分利用效率,有较高的光合生产力。
     ②3个树种的AQY、Rd和LCP对土壤水分具有明显的阈值响应。植物对弱光的利用能力由高到低的顺序为:山杏、沙棘、油松;对光合产物的消耗由多到少的顺序为:沙棘、山杏、油松;耐荫性由高到低的顺序为:沙棘、油松、山杏。
     (2)CO_2浓度和土壤水分胁迫对植物叶片气体交换参数的影响
     ①研究在不同水分条件下植物叶片气体交换参数对CO_2浓度水平的响应,有助于阐明植物对CO_2浓度和水分条件的响应特性。各CO_2浓度下,P_n在RWC为65.71%左右时维持较高值,高于或低于此值,P_n逐渐降低。在各水分条件下,随着CO_2浓度的升高,P_n没有出现下降的现象。重度水分胁迫时,随着CO_2的增加,P_n、T_r和G_s没有发生明显的变化,均维持在很低的水平,说明严重的水分胁迫使植物气孔基本已经关闭,严重影响了植物的正常生理活动。
     ②3个树种的CE、Γ和R_p对土壤水分的变化具有明显的阈值响应。山杏和沙棘在重度水分胁迫下, CE和R_p均达到最小值,随着水分胁迫的缓解,其值逐渐增大。Г对土壤水分的响应过程与CE呈现相反的规律,轻度水分胁迫下达到最低值,土壤水分增加或减少都会使Г增加。
     (3)叶绿素荧光参数对土壤水分胁迫的影响
     在土壤干旱胁迫下,3个树种的叶绿素荧光参数表现为F_o上升,F_m、F_v/F_m等值下降。而各树种的qP和NPQ则表出现不同的变化规律。山杏的qP随着土壤水分胁迫程度的加剧,呈逐渐增大的趋势,而沙棘则表现出与山杏相反的趋势;山杏和油松的NPQ在轻度水分胁迫下最大,其后有所减小。而沙棘的NPQ则在CK时最大,在轻度水分胁迫时达到最小值,其后随着水分胁迫的加剧又逐渐增大。
Semi-arid loess hilly region, in which water is the main factor of restricting vegetation restoration and plant restoration and reconstruction, is the typical ecological fragile area in our contry. Aiming at the main character of drought and water shortage in this region, pot experiment of Prunus armeniaca, Hippophae rhamnoides and Pinus tabulaeformis were arranged in Yukou, Fangshan, Shanxi. Based on the monitoring technology and analysis theory of gas exchange and chlorophyll fluorescence, processes and characteristics of continuous variation of different tree species’leaf gas exchange parameters such as photosynthetic rate, transpiration rate and water use efficiency and chlorophyll fluorescence parameters in the range from soil saturated humidity to wilting humidity were elucidated, soil water critical points at which photosynthetic parameters change significantly and its changing machanism were revealed, soil water ranges maintaining high photosynthetic rate and water use efficiency of different tree species were determined. The results of this research can have theoretical value to enrich and develop photosynthetic physiology and water physiology of tree, and have practical value to scientifically direct tree species choice, site allocation and favored trees for suitable land in loess hilly region. The main results are as followes:
     (1) Plant leaf gas exchange parameters have clear threshold value responses to soil water and light intensity.
     According to the relationships between phtosynthetic rate and soil water, transpiration rate and soil water, water use efficiency and soil water, suitable soil water range, maximum water deficit and suitable light intensity range of keeping high photosynthetic productivity and water use efficiency of 3 tree species were preliminary determined.
     ①Suitable soil water ranges for Prunus armeniaca, Hippophae rhamnoides and Pinus tabulaeformis growing were respectively 36.39%~80.90%, 38.49%~82.86% and 35.72%~80.83% ; light intensity were repectively 600~1400μmol·m~(-2)·s~(-1), 500~1600μmol·m~(-2)·s~(-1) and 400~1600μmol·m~(-2)·s~(-1). Under mild water stress, the 3 tree species can keep high photosynthetic rate, water use efficiency and photosynthetic productivity.
     ②AQY、Rd and LCP of the 3 tree species had clear threshold value responses to soil water. The ability of using weak light of Prunus armeniaca was bigger than that of Hippophae rhamnoides, and the ability of Hippophae rhamnoides was bigger than that of Pinus tabulaeformis.The consumption of photosynthetic product of Hippophae rhamnoides was more than that of Prunus armeniaca , and the consumption of Prunus armeniaca was more than that of Pinus tabulaeformis. The shade tolerance of Hippophae rhamnoides was larger than that of Pinus tabulaeformis, and the tolerance of Pinus tabulaeformis was larger than that of Hippophae rhamnoides.
     (2) Influences of CO_2 concentration and soil water stress to plant leaf gas exchange parameters.
     ①The research of responses of plant leaf gas exchange parameters to CO_2 concentration in different water conditions was benefit to elucidate response characteristics of plant to CO_2 concentration and soil water. In each CO_2 concentration, P_n was largest when the RWC was 65.71%. And in each soil water condition, P_n did not decrease when CO_2 concentration increased. Under heavy water stress, P_n、T_r and G_s all kept low level and did not change significantly, which showed that leaf stomata nearly closed in heavy water stress condition and plant normal physiological activities were influenced badly.
     ②CE、Γand R_p of the 3 tree species had clear threshold value responses to soil water. Under heavy water stess, CE and R_p of Prunus armeniaca and Hippophae rhamnoides were both at their lowest values, and both of their values incressed when water stress was alleviated. Response process ofГto soil water was opposite to that of CE to soil water.Гreached its lowest value and it increased when soil water increased or decreased.
     (3) Influences of chlorophyll fluorescence parameters to soil water
     When the experimental trees were in soil water stress conditions, their Fo increased, F_m and F_v/F_mdecreased. But the changing characteristics of qP and NPQ were different. qP of Prunus armeniaca increased as degree of soil water stress aggravated while that of Hippophae rhamnoides showed the opposite trend; NPQ of Prunus armeniaca and Pinus tabulaeformis reached their highest level under mild water stress. To the contrary, NPQ of Hippophae rhamnoides had the biggest value in the CK condition and the smallest value in mild water stress condition.
引文
[1]蔡时青,许大全.大豆叶片CO_2补偿点和光呼吸的关系[J].植物生理学报,2000,26(6):545~550
    [2]蔡锡安,彭少麟,赵平,等.三种乡土树种在二种林分改造模式下的生理生态比较[J].生态学杂志,2005,24(3):243~250
    [3]常杰,蒋高明.第一届全国植物生理生态学学术研讨会纪要[J].植物学通报,1999,6(6):719
    [4]陈根云,颜日辉,李立人.水稻Rubisco小亚基前体cDNA的克隆及其产物向豌豆叶绿体的运输[J].植物生理学报,1998,24(3):293~299
    [5]陈金平,刘祖贵,段爱旺,等.土壤水分对温室盆栽番茄叶片生理特性的影响及光合下降因子动态[J].西北植物学报,2004,24(9):1559~1593
    [6]陈阳,曾福礼.黄瓜叶片光合电子传递对水分胁迫的响应[J].西北植物学报,2001,23(3):456~461
    [7]陈贻竹,李晓萍,夏雨,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报, 1995, 3(4):79~86
    [8]陈志辉,张良诚.水分胁迫对柑桔光合作用的影响[J].浙江农业大学学报,1992,18(2):60~66
    [9]程积民,万惠娥.中国黄土高原植被建设与水土保持[M].北京,中国林业出版社,2002
    [10]董华英,董婕.黄土高原植被建设中的问题与对策探讨.国土与自然资源研究[J],2007,(1):64~65
    [11]董永华.干旱胁迫下植物体内的生理变化.作物抗旱生理及节水技术[M].北京:气象出版社,2001
    [12]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14~18
    [13]冯志立,冯玉龙,曹坤芳.光强对砂仁叶片光合作用光抑制及热耗散的影响[J].植物生态学报, 2002,26(1):77~82
    [14]高峻,孟平,吴斌,等.杏-丹参林药复合系统中丹参光合和蒸腾特性的研究[J].北京林业大学学报, 2006,28(2):64~67
    [15]龚垒.树木的光合作用与物质生产[M].北京科学技术出版社,1989
    [16]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293~297
    [17]郭延平,周慧芬,曾光辉,等.高温胁迫对柑橘光合速率和光系统II活性的影响[J].应用生态学报, 2003, 14(6): 867~870
    [18]韩文军,廖飞勇,何平.大气二氧化碳浓度倍增对闽楠光合性状的影响[J].中南林学院学报,2003,23(2): 62~65
    [19]胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响[J].园艺学报,2001,28(l):41~46
    [20]胡文海.强光对番茄低温弱光胁迫后不同叶片恢复的影响[J].井冈山师范学院学报.2002,23(5):34~36
    [21]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,34(2):78~89
    [22]黄伟,任华中,张福漫.低温弱光对番茄苗期生长和光合作用的影响[J].中国蔬菜.2002,(4):15~17
    [23]蒋高明主编.植物生理生态学[M].北京:高等教育出版社,2004
    [24]姜卫兵,高光林,俞开锦,等.水分胁迫对果树光合作用及同化代谢的影响研究进展[J].果树学报,2002,19(6):416~420
    [25]李昌晓,钟章成.池杉幼苗对不同土壤水分水平的光合生理响应[J].林业科学研究,2006,19(1):54~60
    [26]李合生主编.现代植物生理学[M].北京:高等教育出版社,2001
    [27]李嘉瑞,任小林,王民柱.干旱对果树光合的影响及水分胁迫信息传递[J].干旱地区农业研究,1996,14(3):67~72
    [28]李淑容,谈锋.杜仲对不同光强度的适应性研究[J].西南师范大学学报,1995,20(3):290~296
    [29]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26(2):0266~0275
    [30]李燕,薛立,吴敏.树木抗旱机理研究进展[J].生态学杂志,2007,26(11):1857~1866
    [31]梁一民,侯喜录,李代琼.黄土丘陵区林草植被快速建造的理论与技术[J].土壤侵蚀与水土保持学报,1999, 5(3):1~5
    [32]刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对光合的限制[J].植物生理学通讯,1990,(4):24~27
    [33]刘贤赵,康绍忠.不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响[J].生态学报,2002,22(12):2264~2271
    [34]刘学师等.水分胁迫对果树光合作用及相关因素的影响[J].河南职业技术师范学院学报,2003,31(1):45~48
    [35]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601~606
    [36]罗俊,张木清,林彦铨,等.甘蔗苗期叶绿素荧光参数与抗旱性关系研究[J].中国农业科学, 2004, 37(11): 1718~1721
    [37]罗俊,张木清,吕建林,等.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J].福建农业大学学报,2000,(l):24~30
    [38]缪世利,植物生理生态学研究进展,见:刘建国主编,当代生态学博论,中国科学技术出版社,1992,103~109
    [39]彭镇华,董林水,张旭东,等.黄土高原水土流失严重地区植被恢复策略分析[J].林业科学研究,2005,18(4):471~478
    [40]蒲光兰,周兰英,胡学华,等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究, 2005,23(3):44~48
    [41]綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,2006,17(5):835~838.
    [42]沈允刚.地球上最重要的化学反应––光合作用[M].北京:清华大学出版社,2000
    [43]沈允刚,施教耐,许大全.动态光合作用[M].北京:科学出版社,1998
    [44]沈允钢,王天铎.光合作用:从理论到农业[M].上海:上海科学技术出版社,1978
    [45]史胜青,袁玉欣,杨敏生,等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响[J].林业科学,2004,40(1):168~173
    [46]束怀瑞,果树栽培生理学[M].北京:农业出版社.1993
    [47]唐晓蕴.水分胁迫下光合特性的研究[C].浙江农业大学博士学位论文,1995
    [48]王邦锡,何军贤,黄久常.水分胁迫导致光合作用下降的非气孔因素[J].植物生理学报,1992,18(1):77~83
    [49]王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996
    [50]王建程,严昌荣,卜玉山.不同水分与养分水平对玉米叶绿素荧光特性的影响[J].中国农业气象, 2005, 26(2):95~98
    [51]王可玢,许春晖,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报,1997,13(2):273~278
    [52]王可玢,赵福洪,王孝宣,等.用体内叶绿素a荧光动力学鉴定番茄的抗冷性[J].植物学通报, 1996, 13(2):29~33.
    [53]王克勤.集水造林与水分生态[M].北京:中国林业出版社,2002
    [54]王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应[J].作物学报,2005,31(2): 264~266
    [55]王永,张健海,英张峰,等.低温弱光对不同黄瓜品种幼苗光合作用的影响[J].园艺学报,2001,28(3):230~234
    [56]王正秋.黄土高原造林中几个问题的思考[J].中国水土保持,2000,(4):37~39.
    [57]汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响[J].中国农业科学,2004, 37(8):1245~1250
    [58]韦振泉,林宏辉,何军贤,等.水分胁迫对小麦捕光色素蛋白复合物的影响[J].西北植物学报,2000,20(4):555~560
    [59]许长城,赵世杰.干早胁迫下大豆与玉米破坏的防御[J].植物生理学报,1998,24(l):17~23
    [60]许大全.光合作用效率[M].上海:上海科学技术出版社,2001
    [61]许大全,沈允钢.光合作用的限制因素.见:余叔文,汤章城主编,植物生理与分子生物学(第二版).北京:科学出版社,1998
    [62]杨建伟,梁宗锁,韩蕊莲等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(5):630~636
    [63]杨维西.试论我国北方地区人工植被的干化问题[J].林业科学,1996,32(1):78~84
    [64]杨晓青,张岁歧,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004, 24(5):812~816
    [65]曾小平,赵平,蔡锡安等.不同土壤水分条件下焕镛木幼苗的生理生态特性[J].生态学杂志,2004,23(2):26~31
    [66]周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学学报,2004,30(2): 153~160
    [67]周玉梅,韩士杰,张军辉,等.CO_2含量升高对水曲柳幼苗净光合与水分利用的影响[J],东北林业大学学报,2001, 29(6):29~31
    [68]张成军,陈国祥,施大伟.两种高产小麦旗叶光合功能衰退特性比较[J].植物研究,2005,25(2):163~168
    [69]张大鹏.葡萄叶片光合速率与量子效率日变化的研究与利用[J].果树科学,1990,7(4):193~200
    [70]张殿发,张祥华.西部地区退耕还林急需解决的问题及建议[J].中国水土保持,2001,(3):9~11
    [71]张光灿,刘霞,贺康宁等.金矮生苹果叶片气态交换参数对土壤水分的响应[J].植物生态学报. 2004,28(1):66~72
    [72]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M].北京:中国林业出版社,2000
    [73]张金屯.黄土高原植被建设的理论与技术问题[J].水土保持学报,2005,18(5):120~123
    [74]张良诚,吴光林,张上隆.水分胁迫对温州蜜柑光合特性的影响[J].园艺学报,1988,15(2):93~98
    [75]张木清,陈如凯,吕建林,等.甘蔗叶绿体荧光参数、MDA含量及膜透性与耐旱性的影响[J].福建农业大学学报,1999,28(1):1~7
    [76]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报, 2005, 25(6): 1184~119
    [77]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444~448
    [78]张守仁,高荣孚,王连军.杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应[J].植物生态学报,2004,28(2):143~149
    [79]张往祥,曹福亮.高温期间水分对银杏光合作用和光化学效率的影响[J].林业科学研究,2002,15(6):672~679
    [80]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报, 2000,34(3):248 ~251
    [81]赵天宏,王美玉,张巍巍,等.大气CO_2浓度升高对植物光合作用的影响[J].生态环境,2006,15(5):1096~1100
    [82]朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报, 2006,28(2):57~63
    [83]邹琦.作物在水分逆境下的光合作用[J].作物杂志,1994(5):1~4
    [84]Bader M R, Ruuska S, Nakano H. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubiscooxygenase[J].Biological Sciences, 2000,1402:1433~1445
    [85]Ball MC, Butterworth JA. Application of chlorophyll fluorescence to forest ecology[J]. Australian Journal of Plant Physiology.1994(22):311~319
    [86]Barker D H, Stark L R, Zimpfer J F, et al. Evidence of drought-induced stress on biotic crust moss in the Mojave Desert[J]. Plant, Cell and Environment, 2005,28(7): 939~947
    [87]Bates, C.G&J.Jr.Roeser. Light intensities required for growth of coniferous seedlings[J]. AmerieanJournal of Botany,1928(15):185~194
    [88]Beerling D.J. Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO_2 and temperature[J]. Acta Oecologica, 1997,18: 697~712
    [89]Bertamini M, Nedunchezhian N. Photoinhibition of photosynthesis in mature and young leaves of grapevine[J]. Plant Science, 2003, 164 (4): 635~644
    [90]Bilger W, Bjorkman O. Role of xanthophyII cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research, 1990, 25: 173~185
    [91]Blackman, F.F&G.L. Matthaei. Experimental studies on vegetable ecology[M].In:Chabot,B.F&H.A. Mooney eds. Physiological ecology of north American Plant communities.NewYork: ChaPman and Hall,1905
    [92]Blardman NK. Comparative photosynthesis of sun and shade plants[J].Annual Review of plant Physiology.1977,28:355~377
    [93]Bowes G. Growth at elevated CO_2: photosynthetic responses mediated through Rubisco[J]. Plant, Cell and Environment, 1991, 14: 795~806
    [94]Brestic M, Conic G, Fryer M J, et a1. Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress[J].Planta, 1995, 196: 450~457
    [95]Briggs, G.E. Experimental researehes on vegetable assimilation and respiration. The Characteristic activity resulting from deficiency of nutrient salts[J].Proceedings of RoyalSociety Bulletin.1922(94):10~35
    [96]Burnce J.A. Nonstomata linhibition of Photosynthesis at low water potentials in intact leaves of speciest fom a variety of habitatats [J]. Plant Physoil,1977,59:345~350
    [97]Centritto M, Loreto F, Massacci A, et al. Improved growth and water use efficiency of cherry saplings under reduced light intensity[J]. Ecological Research, 2000, 15 (4): 385~392
    [98]Coleman J S, Bazzaz F A. Effects of CO_2 and temperature on growth and resource of co-occurring C3 and C4 annuals. Ecology, 1992, 73: 1244~1259
    [99]Cure JD, Acock B. Crop response to carbon dioxide doubling: a literature survey[J]. Agriculture and Forest Meteorology,1996,38:127~145
    [100]Curtis P S, Wang X. Ameta_analysis of elevated CO_2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113: 299~313
    [101]Demmig-Adams B, Biorkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants[J]. Planta, 1987, 171~184
    [102]Demmig B, Winter K, Krüger A , et al. Photoinhibition and zeaxanthin formation in intact leaves[J]. Plant physiol, 1997,84(2):218~224
    [103]Dodd IC, Critchley C, Woodall GS, et al. Photoinhibition in differently colorded juvenile leaves of Syzygium species[J]. JExper bot, 1998,49:1437~1445
    [104]Drake B G, Gonzalez-Meler M A, Long S P. More efficient plants, a consequence of rising atmospheric corbon dioxide[J]. Annu. Rev. P1ant Physiol. Plant Mol. Biol., 1997, 48: 609~639
    [105]Ellsworth D S. CO_2 enrichment in a maturing pine forest: are CO_2 exchange and water status in the canopy affected[J]. Plant, Cell and Environ., 1999, 22: 461~472
    [106]E Phrath J E,Manar A,Brarda B A. Eeffcts of moisture stress on stomatal reslstance and photosynthetic ratein cotton (Gossypiam hisutam).I.Conortl level of stress[J].Field Crop Res,1990,(23):117~136
    [107]Farquhar G D, Sharkey T D.Stomatal conductance and photosynthesis[J].Ann.Res.Plant Physiol,1982,33:317~342
    [108]Flexas J, Escalona J M, Medrano H. Water stress induces different levels ofphotosynthesis and electron transport rate regulation in grapevines[J]. Plant, cell and environment, 1999, 22 (1): 39~48
    [109]Flexas J, Ribas-CarbóM, Bota J, et al. Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO_2 concentration[J]. New Phytologist, 2006, 172 (1): 73~82
    [110]Flore J.A,Lakso A.N.Environmental and Physiologieal reuglaion of Photosynthesis in fruit crops[J].Hort.Rev,1989,11:111~157
    [111]Fracheboud Y, Haldimann P, Leipner J ,et al. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize[J].Journal of Experimental Botany,1999, 50(338):1533~1540
    [112]Frey N M. Dry matter accumulation in kernels of Maize[J]. Crop Science,1982,21:118~122
    [113]Gamon JA,Serrano L,Surfus JS.The Photochemical reflectance index:an optical indicator of Photosynthetic radiation use efficiency across species,functional types,and nutrient levels[J]. Oecologia,1977,112(4):492~501
    [114]Genty B, Briantais J M, Baker N R, et al. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica Biophysica Acta, 1989, 990: 87~92
    [115]Giersch C, Rubison S P. Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts[J]. Photosynth Res., 1987, 14: 211~217
    [116]Goulden M L, Munger J W, Fan S M, et al. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability[J]. Science, 1996, 271: 1576~1578
    [117]Graan T,Boyer J S. Very high CO_2 Partially restores photosynhtesisin sunnower at low water photential [J].Plant,1990,(181):378~384
    [118]Gunasekera, D.and Berkowitz, G A. Usc of transgenic plants with ribulosc-l,5-bisPhoPhate Carboxylasc/Oxygcnase antisense DNA to vcaluate the rate limitation of Photosynthesis under water stress[J].Plant Physiol,1993,103:629~635
    [119]Gunderson C A. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO_2[J]. Plant, Cell and Environ., 1993, 16: 797~807
    [120]Gununuluur S, Hobbs S L A, Physiological responses of drought tolerant and drought susceptible durum wheat genotypes[J]. Photosynthetica,1989,(23):479~485
    [121]Guy F M, Julieta N A, Khanyisa B M, et al. Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna[J]. Global Change Biology, 2004, 10 (3): 309~317
    [122]Haberlandt,G.Physiology Pflanzenanatomie[M].LeiPzig:Engelmannl,1884
    [123]Haldimann P, Feller U. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves[J]. Plant, Cell and Environment, 2005, 28 (3): 302~317
    [124]Havan X M, Tardy F. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophylls-cycle pigments[J].Planta,1996,198:324~333
    [125]Hill D. Crop water production function[J]. Advances in irrigation,1983,2:61~69. Hoover,W.H.,E.S.Johnston & F.S. Braeckett.1933. Carbon dioxide assimilation in a higher plant.Smithsonian Mise[J]. Collection,87(16):1~31
    [126]Holmgren M.Combined effects of shade and drought on tulip poplar seedlings:trade-off in tolerance or facilitation[J].Oikos,2000,90:67~78
    [127]Hsiao.T.C.plant respons to water stress[J]. Ann.Re.vplant physiol,1973,24:519~570
    [128]Huber S C, Rogers H H, Israel D W. Effect of CO_2 enrichment on photosynthesis and photosynthate partitioning in soybean leaves[J]. Physiologia Plantarum, 1984, 62: 95~101
    [129]Jinke L. Effect of water stress on the photosynthesis of tea[C]. Journal of Fujian Agrieultural University.1998,27(4):423~427
    [130]Johnson D.W., Ball T., Walker R.F. Effects of elevated CO_2 and nitrogen on nutrient uptake in pondrosa pine seedlings[J]. Plant Soil., 1995, 168~169
    [131]Johnson G N, Young A J, Scholes J D. The dissipation of excess excitation energy in British plant species[J]. Plant Cell and Enviroment,1993,16:673~679.
    [132]Johnson H B, Polley H M, Mayeux H S.. Increasing CO_2 and plant-plant interactions:effects on nature vegetation[J]. Vegetation, 1993,104/105:157~170
    [133]Jones HG, Luton MT,Higgs K,et al. Experiment control of water status in an apple orchard [J]. Hort Sci,1983,(58):301
    [134]Kate M, Johnson G N. Chlorophyll fluorescence-apratical guide[J].J Exp of Bot,2000, 51(345):659~668
    [135]Knapp A K. Gas exchange dynamics in C3 and C4 grasses consequences of differences in stomatal conductance[J]. Ecology, 1993, 74: 113~123
    [136]Krause G H. Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanisms[J]. Physiologia Plantarum, 1988, 74: 566~574
    [137]Kruskopf M, Flynn K J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate[J]. New Phytologist, 2006, 169 (3): 525~536
    [138]Landsberg,J.J.and Jones,H.G,Apple orehards. In Water deficits and plant growth (Vol.Vl)[J]. Newyork Academic Press,1981
    [139]Li X, Jiao DM, Liu YL, et al. Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at late stage of development under national condition[J]. Acta Botanica Sinica,2002, 44(4): 413~421
    [140]LlusiàJ, Pe?uelas J, Munné-Bosch S. Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress[J]. Physiologia Plantarum, 2005, 124 (3): 353~361
    [141]Long S P, Humphries S. Photoinhibition of photosynthesis in nature[J].Ann Rev Plant Physiol Plant Mol Biol,1994,45:633~662
    [142]Lu C M, Zhang J H.Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants[J].J Exp of Bot,1999, 50(336):1199~1206.
    [143]Massacci A, Iannellima. The effect of growth at lowtemperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves[J].J Exp Bot,1995,46:119~127.
    [144]Medrano H, Keys A J, Lawlor D W, et al. Improving plant production by selection for survival at low CO_2 concentrations. J. Exp.Bot., 1995, 46: 1389~1396
    [145]Mitton J B, Garant M C, Yoshino A M. Variation in allozymes and stomatal size inpinyou(Pinusedulis,Pinaceae),associated with soil moisture[J]. American Journal of Botany,1998,85:1262~1265
    [146]Morison J I L, Gifford R M. Stomatal sensitivity to carbon dioxide and humidity[J]. Plant Physiol., 1983, 71: 789~796
    [147]Mousseau M, Saugier B. The effect of increased CO_2 on gas exchange and growth of forest tree species[J]. Journal of Experimental Botany, 1992, 43: 1121~1130
    [148]Murray D R. Plant response to carbon dioxide[J]. Ameri. J. Bot., 1995, 82 (5): 690~697
    [149]Nobel P S.Physicochemical and environmental plant physiological responses to environmental parameters[M].San Diego:Academic Press,1999
    [150]Ogren E, Evans JR. Photoinhibition in situ in six species of Eucalyptus[J]. Australian Journal of Plant Physiology.1992(19):223~232
    [151]Osmond C B, Bj?rkman ?. Simultaneous measurement of O2 effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex[J]. Carnegie Institution of Washington Yearbook, 1972, 77: 141~148
    [152]Polley H W, Johnson H B, Mayeux H S. Increasing CO_2 comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology, 1994, 75: 976~988
    [153]Prasanna N,Joun S B.Choroplast tesPonse to low leaf water potential[J].Plant Physiol,1976,57(3):704~709
    [154]Roden J S, Wiggins D J, Ball M C. Photosynthesis and growth of two rain forest species in simulated gaps under elevated CO_2[J]. Ecology, 1997, 75: 385~393
    [155]Rogers H H. Responses of selected plant species to elevated carbon dioxide in the field[J]. J. Environ. Qual., 1985,12: 569~574
    [156]Rohacek K. ChlorophyⅡfluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. Photosynthetica,2002, 40(1): 13~29
    [157]SchimPer,A.F.W.1898. Pflanzengeopraphie auf physiologische grundlage. Jena: Fishcher.(English Translation,1903.Oxford:Clarenden Press)
    [158]Schreiber U, Biiger W, Neubauer C. Chlorophyll fluorescence as a nondestructive indicator for rapid assessment of in vivo photosynthesis[J]. Ecological Studies, 1994, 100: 49~70
    [159]Sharkyt D. Water tress effects on photosynthesis [J].Photosynthetica,1990,24: 65~70
    [160]Smimoff N,Colombe SV. Drought influence the activity of enzymes of the chloroplast peroxide scavenging system[J].J Exp Bot,1988,(38):1097~1105
    [161]Strand M,Lundmark T.Effect of forest hardening and freezing stress on in vivo chlorophyll fluorescence of scots pine seedlings[J]. Plant Cell Environ., 1988, 18: 998~1004
    [162]Tissue D T, Griffin K L, Thomas R B. Effects of low and elevated CO_2 on C3 and C4 annuals.Ⅱ. Photosynthesis and leaf biochemistry[J]. Oecologia, 1995, 101: 21~28
    [163]Usuda H, Shim G ,Oawara K.Phosphate deficiency in maizeП. Enzyme activity[J]. Plant Cwuwue Physiol,1991,32(8):1313
    [164]Walker B, Steffen W. An overview of the implication of global change for natural and managed terrestrial ecosystem[J]. Conservation Ecology, 1997, 1: 2~20
    [165]Warming, E.De Pasammofile vegetioner in Danmark. Foren: vid.Medd.1891
    [166]Weis E, Berry J A.Plants and high temperatrue stress[J]. Symp Soc Exp Biol,1988, 42: 329~346
    [167]Wong, SC, Cowan IR and Farquhar GD. Leaf conductance in relation to assimilation in Encalyptus Pauciflora Sieb. Wx Spreng: Influence of irradiance and partial pressure of carbon dioxide[J]. Plant Physiology.1978(62):670~674
    [168]Zapata J M, Gasulla F, Esteban-Carrasco A, et al. Inactivation of a plastid evolutionary conserved gene affects PSⅡelectron transport, life span and fitness of tobacco plants[J]. New Phytologist, 2007, 174 (2): 357~366
    [169]Zelitch I. The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis[J]. Arc. Biochem. Biophy. 1974, 163: 367~377
    [170]Zhang G C, Liu X, He K N. Fitting soil moisture environment of trees growth on Loess Plateau in semi-arid region[J]. Journal of Soil and Water Conservation, 2001, 15 (4): 1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700