用户名: 密码: 验证码:
轻烃催化裂解多级孔分子筛的构建及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯、丙烯等低碳烯烃作为石油化工的重要基础原料,在石油化学工业中起着举足轻重的作用。其传统生产方式主要通过管式炉蒸汽裂解法制备得到。然而随着丙烯衍生物需求量的增加,通过蒸汽裂解法联产得到的丙烯产量远不能满足国内外市场对丙烯日益增长的需要。此外蒸汽热裂解技术还存在能耗和设备投资过高、裂解原料选择范围较窄、环境污染较为严重等问题。因此,近年来低碳烯烃的原料和工艺正向多元化方向发展,一些新的工艺技术不断涌现。在探索替代传统的蒸汽热裂解制取低碳烯烃的诸多研究中,烃类催化裂解制低碳烯烃是最具有发展前景的方法之一。影响催化裂解的因素除原料组成、操作条件和反应装置外,其中研究和开发具备良好催化性能的催化剂是该技术的关键。
     分子筛经改性后可获得合理的孔道结构和合适的酸性质,是一类最有研发前景的轻烃催化裂解催化剂。因此,本文首先对各种分子筛进行了孔道结构和酸性质的表征分析,并以正庚烷的催化裂解为模型反应,考察了分子筛的催化轻烃裂解反应性能,探索了分子筛的催化性能与催化剂的孔道结构和酸性质的内在关系。研究表明分子筛含有适当的酸量和酸强度以及一定的微介孔比率有利于提高正庚烷的转化率以及乙烯和丙烯的选择性。在此基础上考察了硅铝摩尔比和均相反应器转速对ZSM-5分子筛催化性能的影响。发现高硅ZSM-5较弱的酸性和酸强度可以抑制氢转移反应的发生,有利于丙烯选择性的提高。均相反应器转速的增大使得ZSM-5分子筛的晶粒变小,酸性变强,其催化性能显著提高。
     其次,系统研究了Y203改性对ZSM-5分子筛物化性能的影响。主要考察了Y203含量、焙烧温度以及ZSM-5硅铝比对Y203改性ZSM-5分子筛催化性能的影响。同时采用一种有别于ZSM-5的ZRP-1分子筛为载体,制备得到了一系列Y203改性的ZRP-1分子筛,考察了Y203改性对ZRP-1分子筛物化性能及其对正庚烷催化性能的影响。结果表明,Y2O3-ZSM-5和Y2O3-ZRP-1的物化性质随着Y203含量的增加产生了显著的变化。当Y203含量较低时,酸性质较孔结构变化更为明显;而当Y203含量较高时,催化剂为核壳结构式的多级孔催化剂,其孔道结构和酸性质都产生了显著的变化。此外焙烧温度和ZSM-5分子筛的硅铝比对Y2O3-ZSM-5的孔道结构和酸性质的影响作用明显。研究认为选择合适硅铝比的ZSM-5分子筛对其进行Y203改性,有望获得稳定性好、催化性能优异的催化剂。
     最后,本文采用水热合成法,首次合成得到了HZSM-5-ZRP-1多级孔分子筛。讨论了ZRP-1含量和加入方式对HZSM-5-ZRP-1多级孔分子筛催化性能的影响。考察了Hβ、HY和丝光沸石含量分别对HZSM-5-Hp、HZSM-5-HY和HZSM-5-Mordenite多级孔分子筛的孔道结构和酸性质的影响。结果表明,HZSM-5-ZRP-1多级孔分子筛的孔结构性质明显有别单一的HZSM-5和ZRP-1。其微孔和介孔之间的比率重新得到了调整。不同含量的Hβ、 HY和丝光沸石的加入也使得相对应的HZSM-5-Hβ、HZSM-5-HY和HZSM-5-Mordenite多级孔分子筛的孔道结构各不相同。HZSM-5-ZRP-1多级孔分子筛的酸性质基本位于HZSM-5和ZRP-1之间,但其强酸位的酸强度明显要高于HZSM-5和ZRP-1,其酸位L/B的比率也明显要大于ZRP-1和HZSM-5本身。HZSM-5-Hβ、HZSM-5-HY和HZSM-5-Mordenite多级孔分子筛的酸性质有别于HZSM-5和各自所对应的分子筛,不仅催化剂的酸量和酸强度发生了变化,而且产生了新的酸位。实验结果表明在ZSM-5合成体系中加入适量的ZRP-1、Hβ、HY和丝光沸石,可以显著提高催化剂的活性以及乙烯和丙烯的选择性。
Light alkene (ethylene, propylene, etc.) as the important chemical raw materials are produced mainly by thermal cracking of naphtha in the current chemical industry. Nowadays, the traditional methods for propylene production cannot satisfy the growing demand of high quality petrochemical materials. Therefore, some new technologies have been studied and developed, in which catalytic cracking of hydrocarbons to produce ethylene and propylene has been considered as one of the most effective technologies to produce light olefins since it can not only reduce reaction temperature but also adjust the product distributions compare with conventional thermal cracking process. In addition, more propylene can be obtained in catalytic cracking reaction, which can satisfy the increasing demand of propylene driven primarily by the high growth rate of polypropylene. In numerous factors, the development of catalysts with good performances is the key of studies on catalytic cracking.
     Molecular sieve has been considered as one of the most effective catatyst for catalytic cracking of light hydrocarbons. Therefore, in the present work, firstly, the catalytic performance of the zeolites with different pore structures and acid properties were investigated in cracking of n-heptane. The relationship between the catalytic performance of the zeolites and pore structures was disccussed as well as the acidic properties. It was found that the suitable acid properties, such as the strength and amount of acid sites and the appropriate ratio of microporosity/mesoporosity of catalysts were favorable for enthancing the conversion of n-heptane and selectivity of ethylene and propylene. In addition, the effect of SiO2/Al2O3ratio and rotating speed of homogeneous reactor in the process of ZSM-5synthesis was tested. The results indicated that ZSM-5with higher SSiO2/Al2O3ratio were helpful for the selectivity of propylene, because their lower strength and amount of acid sites suppressed the secondarty reaction of the alkenes. High silica ZSM-5with smaller particles had stronger acidic properties and showed better catalytic performance.
     Secondly, the physicochemical properties and catalytic performances of Y2O3-ZSM-5and Y2O3-ZRP-1were investigated, the effect of different Y2O3loading amounts、calcination temperature and SiO2/Al2O3ratio of ZSM-5on the Y2O3-ZSM-5were discussed. The results indicated that the physicochemical properties and catalytic performances of Y2O3-ZSM-5and Y2O3-ZRP-1samples were quite different from those of ZSM-5and ZRP-1, respectively. Their acid properties changed apparently compared with the physical properties in condition of lower Y2O3loading amounts, in this case, the acid properties were considered as the principal factor for their catalytic performances. On the other hand, both of the acid properties and pore structures simultaneously changed in the presence of relatively high Y2O3loading amounts. Accordingly the conversion of n-heptane and distributions of products were also changed. The reason should due to the integrated zeolite structures and suitable acid properties. It was also found that the calcination temperature and SiO2/Al2O3ratio had effect on the Y2O3-ZSM-5performance.
     Besides, a series of HZSM-5-ZRP-1hierarchical molecular sieve was synthesized by adding different contents of ZRP-1to the procedure of hydrothermal synthesis of ZSM-5. Analogously, HZSM-5-Hβ、HZSM-5-HY and HZSM-5-Mordenite were also obtained. It was indicated that the physicochemical properties and catalytic performances of ZSM-5-ZRP-1samples are quite different from those of HZSM-5or ZRP-1. ZSM-5-ZRP-1samples have a lot of mesopores and suitable amount of B+L acid sites compared with HZSM-5or ZRP-1as well as higher L/B ratio. The properties of HZSM-5-Hβ、HZSM-5-HY and HZSM-5-Mordenite had a significant change, not only changed the physical properties, but also the acid properties, such as the strength and amount of acid sites. Moreover, new acid site was formed. The results indicated that the higher conversion of n-heptane and selectivitiy of olefins (ethylene plus propylene) were obtained over ZSM-5-ZRP-1samples as well as HZSM-5-Hβ、HZSM-5-HY and HZSM-5-Mordenite hierarchical molecular sieve.
引文
[1]Meng X H, Gao J S, Li L, Xu C M. Advances in catalytic pyrolysis of hydrocarbons. Pet. Sci. Technol,2004,22(9):1327-1341
    [2]刘俊涛,谢在库,徐春明,钟思青,白尔铮.C4烯烃催化裂解增产丙烯技术进展.化工进展,2005,(12):1347-1351
    [3]Zheng W, Cheng D G, Zhu N, Chen F Q, Zhan X L. Studies on the structure and catalytic performance of S and P promoted Na-W-Mn-Zr/SiO2 catalyst for oxidative coupling of methane. J. Natr. Gas. Chem.,2010,19(1):15-20
    [4]付有成.天然气制烯烃技术进展.石化技术与应用,2000,18(6):164-166
    [5]姚国欣.因地制宜合理选择丙烯生产技术.现代化工,2004,24(8):4-11
    [6]Meng X H, Xu C M, Gao J S, Zhang Q. Effect of catalyst to oil weight ratio on gaseous product distribution during heavy oil catalytic pyrolysis. Chem. Eng. Process.,2004,43 (8):965-970
    [7]Corma A, Martinez C, Melo F V, Sauvanaud L, Carriat J Y. A new continuous laboratory reactor for the study of catalytic cracking. Appl. Catal, A,2002, 232(1/2):247-263
    [8]Towfighi J, Zimmermann H, Karimzadeh R, Akbarnejad M M. Steam cracking of naphtha in packed bed reactors. Ind. Eng. Chem. Res.2002,41(6):1419-1424
    [9]王魏,谢朝钢.催化裂解(DCC)新技术的开发与应用.石油化工技术经济,2005,21(1):8-13
    [10]Poltkin J S. The changing dynamics of olefin supply/demand. Catal. Today,2005, 106(1/4):10-14
    [11]Kolts J H. Olefin Production over Catalytic oxides of Mn and at least one of Nb and a lanthanide. US Patent,4579997,1986
    [12]Kolts J H. Conversion of C3 and C4 hydrocarbons to less saturated hydrocarbons. US Patent,4621163,1986
    [13]Kolts J H. Propylene and ethylene selectivity with H2S. US Patent,4658081, 1987
    [14]李小明,宋芙蓉.催化裂解制烯烃的技术进展.石油化工,2002,31(7):569-573
    [15]何素珍.催化裂解工艺是国内乙烯原料多元化的必由之路.石油化工技术经济,2005,21(6):15-17
    [16]李连福,袁旭.重油生产低碳烯烃技术进展及应用建议.乙烯工业,2007,19(4):8-14
    [17]沙颖逊,崔中强,王明党,王国良,张洁.重质油裂解制烯烃的HCC工艺.石油化工,1999,28(9):618-621
    [18]钱伯章.增产丙烯技术及其进展.石油炼制与化工,2001,32(11):19-23
    [19]张执刚,谢朝钢,施至诚.催化热裂解制取乙烯和丙烯的工艺研究.石油炼制与化工,2001,32(5):21-24
    [20]谢朝钢,汪燮卿,谢志雄.催化热裂解(CPP)制取烯烃技术的开发及其工业试验.石油炼制与化工,2001,32(12):7-10
    [21]于国良.低碳烯烃的生产技术进展及工业应用.齐鲁石油化工,2006,34(1):58-63
    [22]王巍.催化裂化生产丙烯技术的开发与应用.炼油技术与工程,2005,35(2):20-23
    [23]乔映宾,段启伟.石油化工技术的新进展.化工进展,2003,22(2):109-113
    [24]何细藕.乙烯裂解炉技术进展.现代化工,2001,21(9):13-17
    [25]杨上明.我国乙烯工业发展思路及建议.当代化工,2003,11(4):17-21
    [26]袁晴棠.试论我国乙烯工业的发展.石油化工,1995,24(2):128-132
    [27]程义贵,茅文显,贺英侃.烃类催化裂解制烯烃技术进展.石油化工,2001,30(4):311-314
    [28]刘媛媛.轻烃裂解催化剂的反应与再生行为研究[硕士学位论文].杭州,浙江大学,2008
    [29]王国清.乙烯生产新工艺进展.石油化工,2002,31(8):662-667
    [30]戴伟,罗晴,王定博.烯烃转化生产丙烯的研究进展.石油化工,2008,37(5):425-433
    [31]徐占武.催化裂解多产丙烯新技术.炼油技术与工程,2006,36(8):4-8
    [32]Chodorge J A, Commereuc D, Cosyns J, Duee D, Torck B. Process and installation for the conversion of the olefinic C4 cut into polyisobutene and propylene. EP Patent,0742234,2001
    [33]Steffens T R, Ladwig P K. Process for selectively producing light olefins. US Patent,6455750,2002
    [34]王定博,马志元,李普阳.一种制备乙烯和丙烯的方法.CN Patent,02131461,2002
    [35]Chen F Q, Zheng W, Zhu N, Cheng D G, Zhan X L. Oxidative coupling of methane over Na-W-Mn-Zr-S-P/SiO2 catalyst:Effect of S, P addition on the catalytic performance. Catal Lett.,2008,125(3/4):348-351
    [36]国外动态.鲁奇公司开发甲醇制丙烯工艺.石油炼制与化工,2001,32(4):58
    [37]Chodorge J A, Commereuc D, Cosyns J, Duee D, Torck B. Process and plant for the conversion of olefinic C4 cuts to polyisobutene and to propylene. US Patent, 6207115,2001
    [38]Schwab P, Breitscheidel B, Schulz B, Schulz M, Miiller U. Metathesis catalyst, and its preparation and vlsc.US Patent,6130181,2000
    [39]Abrevaya H, Abdo S F, Patton R L. Catalytic naphtha cracking catalyst and process.US Patent,7314964,2008
    [40]Abrevaya H, Abdo S F, Patton R L.Catalytic naphtha cracking catalyst and process. US Patent,6867341,2005
    [41]Meng X H, Xu C M, Gao J S, Zhang Q.Effect of catalyst to oil weight ratio on gaseous product distribution during heavy oil catalytic pyrolysis. Chem. Eng. Process.,2004,43(8):965-970
    [42]Sang S Y, Chang F X, Liu Z M, He C Q, He Y L, Xu L. Difference of ZSM-5 zeolites synthesized with various templates. Catal. Today,2004,93-95:729-734
    [43]Yoo K S, Gopal S, Smirniotis P G. Enhancement of n-hexane cracking activity over modified ZSM-12 zeolites. Ind. Eng. Chem. Res.,2005,44(13):4562-4568
    [44]Jung J S, Park J W, Seo G. Catalytic cracking of n-octane over alkali-treated MFI zeolites. Appl. Catal, A,2005,288(1/2):149-157
    [45]Filimonov I N, Jeong S M, Lee W H, Kang J H, Song J H. Hydrocarbon cracking catalyst using chemical liquid deposition and method for preparing the same. US Patent,7381678,2008
    [46]Xie C G, Li Z T, Shi W Y, Wang X Q. Process for production of ethylene and propylene by catalytic pyrolysis of heavy hydrocarbons. US Patent,6210562, 2001
    [47]Wakui K, Nakamura Y, Haysshi M. Process for producing olefin by catalytic cracking of hydrocarbon. US Patent,0116544,2006
    [48]Lu Y J, Zhao Z, Xu C M, Duan A J, Zhang P. Effects of calcination temperature on the acidity and catalytic performances of HZSM-5 zeolite catalysts for the catalytic cracking of n-butane. J. Nat. Gas Chem.,2005,14(4):213-220
    [49]Lu J Y, Zhao Z, Xu C M, Duan A J, Wang X N, Zhang P. Catalytic cracking of isobutane over HZSM-5, FeHZSM-5, CrHZSM-5 catalysts with different SiO2/Al2O3 ratios. J. Porous Mater.,2008,15(2):213-220
    [50]Erofeev V I, Adyaeva L V, Ryabova N V. Effect of high-temperature steam treatment of high-silica zeolites of the ZSM-5 type on their acidity and selectivity of formation of lower olefins from straight-run naphthas. Russ. J. Appl. Chem.,2003,76(1):95-98
    [51]Erofeev V I, Adyaeva L V, Ryabov Y V. Pyrolysis of straight-run naphtha on ZSM-5 zeolites modified with alkaline-earth metal cations. Russ. J. Appl. Chem., 2001,74(2):235-237
    [52]Wang X N, Zhao Z, Xu C M, Duan A J, Zhang L, Jiang G Y. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins. J. Rare Earths,2007,25(3):321-328
    [53]Zhu X X, Liu S L, Song Y Q, Xu L Y. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts. Catal. Lett.,2005,103(3/4): 201-210
    [54]Lu Y J, Zhao Z, Xu C M, Zhang P, Duan A J. FeHZSM-5 molecular sieves-Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene. Catal. Commun.,2006,7(4):199-203
    [55]Lu J Y, Zhao Z, Xu C M, Duan A J, Zhang P. CrHZSM-5 zeolites-highly efficient catalysts for catalytic cracking of isobutane to produce light olefins. Catal. Lett., 2006,109(1/2):65-70
    [56]Blasco T, Corma A, Martinez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J. Catal,2006,237(2): 267-277
    [57]Jiang G Y, Zhang L, Zhao Z, Zhou X Y, Duan A J, Xu C M, Gao J S. Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins. Appl. Catal, A,2008,340(2):176-182
    [58]Zhao G L, Teng J W, Xie Z K, Jin W Q, Yang W M, Chen Q L, Tang Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. J. Catal.,2007,248(1):29-37
    [59]Xue N H, Chen X K, Nie L, Guo X F, Ding W P, Chen Y, Gu M, Xie Z K. Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5. J. Catal,2007,248 (1):20-28.
    [60]Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojima T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N. Catalytic cracking of naphtha to light olefins. Catal. Surv. Jpn.,2000,4(2):157-167
    [61]Xue N H, Nie L, Fang D M, Guo X F, Shen J Y, Ding W P, Chen Y. Synergistic effects of tungsten and phosphorus on catalytic cracking of butene to propene over HZSM-5. Appl. Catal, A,2009,352(1/2):87-94
    [62]Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F. Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts. Catal. Lett.,2002,18(1/2):83-88
    [63]Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F. Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts. Catal. Lett,2002,84(3/4):259-264
    [64]Zhao G L, Teng J W, Xie Z K, Yang W M, Chen Q L, Tang Y. Catalytic cracking reactions of C4-olefin over zeolites H-ZSM-5, H-mordenite and H-SAPO-34. Stud. Surf. Sci. Catal,2007,170(2):1307-1312
    [65]Bortnovsky O, Sazama P, Wichterlova B.Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes role of topology and acid site strength and concentration. Appl. Catal, A,2005,287(2):203-213
    [66]Wang B, Gao Q, Gao J D, Dong J, Wang X L, Suo J S. Synthesis, characterization and catalytic C4 alkene cracking properties of zeolite ZSM-23. Appl Catal, A,2004,274(1/2):167-172
    [67]Souza M J B, Silva A O S, Pedrosa A M G, Araujo A S. Catalytic properties of HZSM-12 zeolite in the n-heptane catalytic cracking. React. Kinet. Catal. Lett., 2005,84(2):287-293
    [68]Komatsu T, Ishihara H, Fukui Y, Yashima T. Selective formation of alkenes through the cracking of n-heptane on Ca2+ exchanged ferrierite. Appl. Catal, A, 2001,214(1):103-109
    [69]Ji D, Wang B, Qian G, Gao Q, Lu G M, Yan L, Suo J S. A highly efficient catalytic C4 alkane cracking over zeolite ZSM-23. Catal Commun.,2005,6(4): 297-300
    [70]Xu G L, Zhu X X, Niu X L, Liu S L, Xie S J, Li X J, Xu L Y. One-pot synthesis of high silica MCM-22 zeolites and their performances in catalytic cracking of 1-butene to propene. Microporous Mesoporous Mater,2009,118(1/3):44-51
    [71]Castaneda R, Corma A, Fornes V, Martinez-Triguero J, Valencia S. Direct synthesis of a 9×10 member ring zeolite (Al-ITQ-13):A highly shape-selective catalyst for catalytic cracking. J. Catal,2006,238(1):79-87
    [72]Liu Y, Pinnavaia T J. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking. J. Am. Chem. Soc,2003,125(9):2366-2377
    [73]Zhao G L, Teng J W, Zhang Y H, Xie Z K, Yue Y H, Chen Q L, Tang Y. Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions. Appl. Catal, A,2006,299:167-174
    [74]Xu B, Bordiga S, Prins R, van Bokhoven J A. Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Appl. Catal., A,2007,333 (2):245-253
    [75]Li H F, Shen B J, Wang X H, Shen S K. Thermal and hydrothermal stability of La-modified ETS-10 and its cracking ability. Catal Lett.,2005,99(3/4):165-169
    [76]Chen T J, Davis M, Martens L R M, Janssen M J G, Ruziska P A. Method for selectively producing propylene by catalytically cracking an olefinic hydrocarbon feedstock. US Patent,0179491,2002
    [77]Chen T J, Davis M, Martens L R M, Janssen M.J G, Ruziska P A. Method for selectively producing propylene by catalytical cracking an olefinic hydrocarbon feedstock. US Patent,0139636,2003
    [78]Zhu X X, Liu S L, Song Y Q, Xu L Y. Catalytic cracking of C4 alkenes to propene and ethene:Influences of zeolites pore structures and Si/Al2 ratios. Appl. Catal.,A,2005,288(1/2):134-142
    [79]Chen T J, Janssen M J G, Martens L R M, Mertens M M, Ruziska P A, Zhao L L, Van den Berge J M. Hydrocarbon conversion to propylene with high silica medium pore zeolite catalysts. US Patent,6656345,2003
    [80]Zhu X X, Liu S L, Song Y Q, Xie S J, Xu L Y. Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite. Appl. Catal, A,2005,290(1/2): 191-199
    [81]Song J H, Chen P, Kim S H,Somorjai G A, Gartside R J, Dautzenberg F M. Catalytic cracking of n-hexane over MoO2. J. Mol. Catal. A:Chem.,2002, 184(1/2):197-202
    [82]Pant K K, Kunzru D. Catalytic pyrolysis of n-heptane on unpromoted and potassium promoted calcium aluminates. Chem. Eng. J.,2002,87(2):219-225
    [83]Xie Z K, Yao H, Yang W M, Ma G W, Xiao J X, Chen L. Fluid-bed catalyst for the preparation of ethylene and propylene by catalytic cracking. US Patent, 0042904,2007
    [84]Jeong S M, Chae J H, Lee W H. Study on the catalytic pyrolysis of naphtha over a KVO3/α-Al2O3 catalyst for production of light olefins. Ind. Eng. Chem. Res., 2001,40(26):6081-6086
    [85]Kumar V A, Pant K K, Kunzru D. Potassium-containing calcium aluminate catalysts for pyrolysis of n-heptane. Appl. Catal, A,1997,162(1/2):193-200
    [86]Al-Yassir N, Le Van.Mao R. Thermal stability of alumina aerogel doped with yttrium oxide, used as a catalyst support for the thermocatalytic cracking (TCC) process:An investigation of its textural and structural properties. Appl. Catal, A, 2007.317(2):275-283
    [87]Elaloui E, Begag R, Pommier B, Pajonk G M. Thermostable yttria-doped inorganic oxide catalyst supports for high temperature reactions. Stud. Surf. Sci. Catal.,2000,143:331-335
    [88]Al-Yassir N, Le Van Mao R. Physico-chemical properties of mixed molybdenum and cerium oxides supported on silica-alumina and their use as catalysts in the thermal-catalytic cracking (TCC) of n-hexane. Appl. Catal, A,2006, 305(2):130-139
    [89]Al-Yassir N, Le Van Mao R. Catalysts for the thermo-catalytic cracking (TCC) process:interactions between the yttria in yttria-doped alumina aerogel and the mono-oxide MoO3, CeO2, and bi-oxide MoO3-CeO2 species. Appl. Catal., A, 2007,332(2):273-288
    [90]Le Van Mao R, Vu N T, Al-yassir N, Francois N, Monnier J. The thermocatalytic cracking process for the production of light olefins and transportation fuels from gas oils. Top. Catal,2006,37(2/4):107-112
    [91]Le Van Mao R, Melancon S, Gauthier-Campbell C, Kletnieks P. Selective deep catalytic cracking process (SDCC) of petroleum feedstocks for the production of light olefins. I. the catlever effect obtained with a two reaction-zones system on the conversion of n-hexane. Catal. Lett.,2001,73(2/4):181-186
    [92]Shi Z C, Zhang F M, Liu S H. Catalysts for catalytic pyrolysis process for the production of light olefins and the preparation thereof. US Patent,6211104,2001
    [93]Melancon S, Le Van Mao R, Kletnieks P, Ohayon D, Intern S, Saberi M A, McCann D. Selective deep catalytic cracking process of hydrocarbon feedstocks for the production of light olefins:Ⅱ. Cooperative effect of thermal cracking and catalytic reactions observed in a 1-zone reactor. Catal. Lett.,2002,80(3/4): 103-109
    [94]Le Van Mao R, Al-Yassir N, Nguyen D T T. Experimental evidence for the pore continuum in hybrid catalysts used in the selective deep catalytic cracking of n-hexane and petroleum naphthas. Microporous Mesoporous Mater.,2005, 85(1/2):17-182
    [95]Al-Yassir N, Le Van Mao R, Heng F. Cerium promoted and silica-alumina supported molybdenum oxide in the zeolite-containing hybrid catalyst for the selective deep catalytic cracking of petroleum naphthas. Catal. Lett.,2005, 100(1/2):1-6
    [96]Le Van Mao R. Hybrid catalyst for the deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks. US patent,0014593,2004
    [97]Le Van Mao R. Catalysts for deep catalytic cracking of petroleum naphthas and other hydrocarbon feedstocks for the selective production of light olefins and method of making thereof. US Patent,7098162,2006
    [98]Shibasaki M, Ootake N. Process for making a catalyst for cracking heavy oil. US Patent,6858555,2005
    [99]Li X F, Shen B J, Guo Q X, Gao J S. Effects of large pore zeolite additions in the catalytic pyrolysis catalyst on the light olefins production. Catal. Today,2007, 125:270-277
    [100]Chen T J, Keusenkothen P F, Wu J J, Buchanan J S, Cao G, Iaccino L L, Stern D L, Vincent M J. Hydrothermally stable catalyst and its use in catalytic cracking. US Patent,7615143,2009
    [101]Chen T J, Buchanan J S, Henry B E, Keusenkothen P F, Ruziska P A, Stern D L. Multi component catalyst and its use in catalytic cracking. US Patent,7326332, 2008
    [102]Zhang X, Wang J W, Zhong J, LiuA S, Gao J K. SAPO-11/HBeta composites for catalytic cracking of 2-butylene:Effects of defect structure. Catal. Lett., 2006,111(3/4):213-219
    [103]Zhang X, Wang J W, Zhong J, Liu A S, Gao J K. Characterization and catalytic performance of SAPO-11/Hp composite molecular sieve compared with the mechanical mixture. Microporous Mesoporow Mater.,2007,108(1/3):1-21
    [104]Corma A, Diaz-Cabanas M J, Martinez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002,418:514-517
    [105]Ogura M, Shinomiya S Y, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal., A,2001. 219(1/2):33-43
    [106]Groen J C, Maldonado L, Berrier E, Bruckner A, Moulijn J A, Perez-Ramirez J. Alkaline treatment of iron-containing MFI zeolites. Influence on mesoporosity development and iron speciation. J. Phys. Chem. B,2006, 110(41):20369-20378
    [107]Jin L J, Zhou X J, Hu H Q, Ma B. Synthesis of 2,6-dimethylnaphthalene by methylation of 2-methylnaphthalene on mesoporous ZSM-5 by desilication. Catal. Commun.,2008,10(3):336-340
    [108]Bjorgen M, Joensen F, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5 improved catalyst performance by treatment with NaOH. Appl. Catal., A,2008,345(1):43-50
    [109]Groen J C, Bruckner A, Berrier E, Maldonado L, Moulijn J A, Perez-Ramirez J. Iron site modification upon alkaline treatment of Fe-ZSM-5 zeolites-opportunities for improved N2O decomposition activity. J. Catal.,2006, 243(1):212-216
    [110]Holm M S, Svelle S, Joensen F, Beato P, Christensen C H, Bordiga S, Bjorgen M. Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. Appl. Catal., A,2009, 356(1):23-30
    [111]Tao Y S, Kanoh H, Kaneko K. Developments and structures of mesopores in alkaline-treated ZSM-5 zeolites. Adsorption,2006,12(5/6):309-316
    [112]Gao X H, Tang Z C, Lu G X, Cao G Z, Li D, Tan Z G. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sei.,2010,12(1):1278-1282
    [113]Zhao L, Shen B J, Gao J S, Xu C M. Investigation on the mechanism of diffusion in mesopore structured ZSM-5 and improved heavy oil conversion. J. Catal.,2008,258(1):228-234
    [114]Li Y N, Liu D, Liu S L, Wang W, Xie S J, Zhu X X, Xu L Y. Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites. J. Nat. Gas Chem.,2008,17(1):69-74
    [115]Caicedo-Realpe R, Perez-Ramirez J. Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments. Microporous Mesoporous Mater.,2010,128(1/3):91-100
    [116]Mei C S, Wen P Y, Liu Z C, Liu H X, Wang Y D, Yang W M, Xie Z K, Hua W M, Gao Z. Selective production of propylene from methanol mesoporosity development in high silica HZSM-5. J. Catal,2008,258(l):243-249.
    [117]Abello S, Bonilla A, Perez-Ramirez J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Appl. Catal, A,2009,364(1/2):191-198.
    [118]Thibault-Starzyk F, Stan I, Abello S, Bonilla A, Thomas K, Fernandez C, Gilson J P, Perez-Ramirez J. Quantification of enhanced acid site accessibility in hierarchical zeolites-the accessibility index. J. Catal.,2009,264(1):11-14
    [119]Ogura M, Shinomiya S Y, Tateno J, Nara Y, Kikuchi E, Matsukata M. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chem. Lett.,2000,29(8):882-883
    [120]Song Y Q, Feng Y L, Liu F, Kang C L, Zhou X L, Xu L Y, Yu G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance. J. Mol. Catal. A:Chem.,2009,310(1/2):130-137
    [121]Groen J C, Moulijn J A, Perez-Ramirez J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination. Microporous Mesoporous Mater,2005, 87(2):153-161
    [122]Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, De Jong K P, Moulijn J A, Perez-Ramirez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J. Am. Chem. Soc.,2005,127(31): 10792-10793
    [123]Groen J C, Peffer L A A, Moulijn J A, Perez-Ramirez J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids Surf., A,2004,241(1/3):53-58
    [124]Groen J C, Moulijn J A, Perez-Ramirez J. Desilication:on the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem.,2006, 16:2121-2131
    [125]Groen J C, Hamminga G M, J Moulijna A, Perez-Ramirez J. In situ monitoring of desilication of MFI-type zeolites in alkaline medium. Phys. Chem. Chem. Phys.,2007,9:4822-4830.
    [126]Li Y N, Liu S L, Zhang Z K, Xie S J, Zhu X X, Xu L Y. Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites improved reaction stability,Appl. Catal, A,2008,338(1/2):100-113
    [127]Li Y N, Liu S L, Xie S J, Xu L Y. Promoted metal utilization capacity of alkali-treated zeolite preparation of Zn-ZSM-5 and its application in 1-hexene aromatization.Appl. Catal, A,2009,360(1):8-16
    [128]Jin F, Cui Y G, Li Y D. Effect of alkaline and atom-planting treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis. Appl. Catal, A,2008,350(1):71-78
    [129]Song Y Q, Zhu X X, Song Y, Wang Q X, Xu LY. An effective method to enhance the stability on-stream of butene aromatization post-treatment of ZSM-5 by alkali solution of sodium hydroxide. Appl. Catal, A,2006, 302(1):69-77
    [130]Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J. Catal,2010,269(1):219-228.
    [131]Gopalakrishnan S, Zampieri A, Zampieri A. Mesoporous ZSM-5 zeolites via alkali treatment for the direct hydroxylation of benzene to phenol with N2O. J. Catal,2008,260(1):193-197
    [132]Wang P, Shen B J, Gao J S. Synthesis of MAZ/ZSM-5 composite zeolite and its catalytic performance in FCC gasoline aromatization. Catal Commun.,2007, 8(7):1161-1166
    [133]Zhang C M, Liu Q, Xu Z, Wan K S. Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment. Microporous Mesoporous Mater.,2003, 62(3):157-163
    [134]万克树,刘茜,张存满.热处理ZSM-5制备微孔-介孔双孔分子筛.无机材料学报,2003,18(5):1098-1101
    [135]Zhang H M, Ma G W. Synthesis of ZSM-5/MOR co-crystalline Zeolite without template and the catalytic application thereof. China Petroleum Processing and Petrochemical Technology,2009, (1):51-57
    [136]马忠林,赵天波,宗保宁.ZSM-5/丝光沸石混晶分子筛的合成、表征及性能研究.石油学报:石油加工,2004,20(2):21-27
    [137]Lombard A, Simon-Masseron A, Rouleau L, Cabiac A, Patarin J. Synthesis and characterization of core/shell Al-ZSM-5/silicalite-1 zeolite composites prepared in one step. Microporous Mesoporous Mater.,2010,129(1/2):220-227
    [138]Josh P N, Niphadkar P S, Desai P A, Patti R, Bokade V V. Toluene alkylation to selective formation of p-xylene over co-crystalline ZSM-12/ZSM-5 catalyst. J. Nat. Gas Chem.,2007,16(1):37-41
    [139]郭群,贾卫,赵忠林,于峰,李瑞丰.Y/ZSM-5复合分子筛的合成及表征.太原理工大学学报,2008,39(3):222-225
    [140]Suzuki K, Aoyagi Y, Katada N, Choi M, Ryoo R, Niwa M. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina. Chem. Eng. J.,2008,132(1/4):38-45
    [141]Sun Y Y, Prins R. Friedel-crafts alkylations over hierarchical zeolite catalysts. Appl. Catal, A,2008,336(1/2):11-16
    [142]Chen H Y, Xi H X, Cai X Y, Qian Y. Experimental and molecular simulation studies of a ZSM-5-MCM-41 micro-mesoporous molecular sieve. Microporous Mesoporous Mater.,2009,118 (1/3):396-402
    [143]陈洪林,申宝剑,潘惠芳.水热脱铝ZSM-5/Y复合分子筛的表征及催化裂化性能.物理化学学报,2004,20(8):854-859
    [144]Goncalves M L, Dimitrov L D, JordaO M H, Wallau M, Urquieta-Gonzalez E A. Synthesis of mesoporous ZSM-5 by crystallisation of aged gels in the presence of cetyltrimethylammonium cations. Catal. Today,2008,133/135:69-79
    [145]Chu N B, Yang J H, Wang J Q, Yu S X, Lu J M, Zhang Y, Yin D H. A feasible way to enhance effectively the catalytic performance of methane dehydroaromatization. Catal. Commun.,2010,11(6):513-517
    [146]Chu N B, Yang J H, Li C Y, Cui J Y, Zhao Q Y, Yin X Y, Lu J M, Wang J Q. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous Mesoporous Mater.,2009, 118(1/3):169-175
    [147]贾卫,郭群,崔晓静,潘大海,李瑞丰.以乙二胺为模板剂合成Y/ZSM-5复合分子筛.石油化工,2006,35(9):832-836
    [148]Zheng J J, Zhang X W, Zhang Y, Ma J H, Li R F. Structural effects of hierarchical pores in zeolite composite. Microporous Mesoporous Mater.,2009, 122(1/3):264-269
    [149]刘百军,曾贤君,王辉,黄永,汪梅ZSM-5、ZSM-57和丝光沸石间的转晶规律.物理化学学报,2007,23(4):503-507
    [150]刘百军,曾贤君,何琳琳,赵震.ZSM-5/MOR复合分子筛催化剂对混合C4烃转化反应的催化性能.催化学报,2008,29(9):940-944
    [151]刘百军,曾贤君.ZSM-5/ZSM-57复合分子筛催化剂上混合C4烃的催化转化反应.物理化学学报,2009,25(10):2055-2060
    [152]Liu L P, Xiong G, Wang X S, Cai J, Zhao Z. Direct synthesis of disordered micro-mesoporous molecular sieve. Microporous Mesoporous Mater.,2009, 123(1/3):221-227
    [153]Chen G D, Jiang L, Wang L Z, Zhang J L. Synthesis of mesoporous ZSM-5 by one-pot method in the presence of polyethylene glycol. Microporous Mesoporous Mater.,2010,134(1/3):189-194
    [154]Fan Y, Lei D, Shi G, Bao X J. Synthesis of ZSM-5-SAPO-11 composite and its application in FCC gasoline hydro-upgrading catalyst. Catal. Today,2006, 114(4):388-396
    [155]Song Y H, Jeong K E, Kim C U, Jeong S Y. Physicochemical characteristics of ZSM-5-SAPO-34 composite catalyst for MTO reaction. J. Phys. Chem. Solids, 2010,71(4):600-603
    [156]葛学贵,吴金平,黄少云,石磊,魏建新.稀土LA掺杂ZSM-5/MCM-41介微孔复合分子筛的合成与表征.地球科学:中国地质大学学报,2008,33(1):61-66
    [157]Chen H L, Shen B J, Pan H F. In situ formation of ZSM-5 in NaY gel and characterization of ZSM-5/Y composite zeolite. Chem. Lett.,2003,32(8): 726-727
    [158]Shen B J, Chen H L, Guo J T, Pan H F. Synthesis, characterization, and catalytic performance of a ZSM-5/Y composite. Bull. Chem. Soc. Jpn.,2005, 78(12):2238-2244
    [159]陈洪林,申宝剑,潘惠芳.ZSM-5/Y复合分子筛的酸性及其重油催化裂化性能.催化学报,2004,25(9):715-720
    [160]申宝剑,陈洪林,潘惠芳.ZSM-5/Y复合分子筛在烃类催化裂化催化剂中的应用研究.燃料化学学报,2004,32(6):745-748
    [161]Xu L, Wu S J, Guan J Q, Wang H S, Ma Y Y, Song K, Xu H Y, Xing H J, Xu C, Wang Z Q, Kan Q B. Synthesis, characterization of hierarchical ZSM-5 zeolite catalyst and its catalytic performance for phenol tert-butylation reaction. Catal Commun.,2008,9(6):1272-1276
    [162]Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids Surf., A,2009,340(1/3):126-130
    [163]Wang L F, Zhang Z, Yin C Y, Shan Z C, Xiao F S. Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous Mesoporous Mater.,2010,131(1/3):58-67
    [164]Chou Y H, Cundy C S, Garforth A A, Zholobenko V L. Mesoporous ZSM-5 catalysts:Preparation, characterization and catalytic properties. Part I: Comparison of different synthesis routes. Microporous Mesoporous Mater., 2006,89(1/3):78-87
    [165]Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv. Mater.,2004, 16(8):727-732
    [166]Fang Y M, Hu H Q, Chen G H. Zeolite with tunable intracrystal mesoporosity synthesized with carbon aerogel as a secondary template. Microporous Mesoporous Mater.,2008,113(1/3):481-489
    [167]Zhu H B, Liu Z C, Kong D J, Wang Y D, Yuan X H, Xie Z K. Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. J. Colloid Interface Sci.,2009,331(2):432-438
    [168]Liu Y, Zhang W P, Liu Z C, Xu S T, Wang Y D, Xie Z K, Han X W, Bao X H. Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR. J. Phys. Chem. C,2008, 112(39):15375-15381
    [169]Tao Y S, Kanoh H, Hanzawa Y, Kaneko K. Template synthesis and characterization of mesoporous zeolites. Colloids Surf, A,2004,241(1/3):75-80
    [170]Tao Y S, Tanaka H, Ohkubo T, Kanoh H, Kaneko K. Pore structures of ZSM-5 synthesized in the mesopore spaces of a carbon aerogel. Adsorpt. Sci. Technol., 2003,21(2):199-203
    [171]Tao Y S, Hattori Y, Matumoto A, Kanoh H, Kaneko K. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating. J. Phys. Chem. B,2005,109(1):194-199
    [172]Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angew. Chem. Int. Ed.,2006,45(45):7603-7606
    [173]Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity:In situ sugar decomposition for templating of hierarchical zeolites. Chem. Mater.,2007,19 (12):2915-2917
    [174]Kustov A L, Egeblad K, Kustova M, Hansen T W, Christensen C H. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia. Top. Catal,2007, 45(1/4):159-163
    [175]宋春敏,姜杰,乔柯,孟祥滨,阎子峰.微孔-介孔复合结构分子筛的合成及表征研究.分子催化,2006,20(4):294-299
    [176]许峰,顾建峰,关乃佳,袁忠勇.Mg改性ZSM-5/AlPO4-5复合分子筛用于甲苯甲醇侧链烷基化反应.石油学报(石油加工),2008,24(z1):346-349
    [177]Goto Y, Fukushima Y,Ratu P, Imada Y, Kubota Y, Sugi Y,Ogura M, Matsukata M. Mesoporous material from zeolite. J. Porous Mater.,2002,9(1): 43-48
    [178]张哲,宗保宁.ZSM-5(核/AlPO4-5(壳)双结构分子筛的合成与催化裂化性能.催化学报,2003,24(11):856-860
    [179]赵天波,张慧英,李凤艳,宗保宁.丝光沸石/ZSM-5昆晶催化新材料的研究.石油化工高等学校学报,2005,18(1):1-3
    [180]张慧英,赵天波,李凤艳,宗保宁.ZSM-5/MOR混晶分子筛的研究.石油炼制与化工,2004,35(8):50-53
    [181]孔德金,刘志成,房鼎业.外延生长法合成择形功能的核壳ZSM-5/Silicalite-1分子筛.催化学报,2009,30(9):885-890
    [182]Vu D V, Miyamoto M, Nishiyama N, Ichikawa S, Egashira Y, Ueyama K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous Mesoporous Mater,2008,115(1/2):106-112
    [183]Louis B, Ocampo F, Yun H S, Tessonnier J P, Maciel Pereira M. Hierarchical pore ZSM-5 zeolite structures:From micro-to macro-engineering of structured catalysts. Chem. Eng. J.,2010,161(3):397-402
    [184]Ocampo F, Yun H S, Maciel Pereira M, Tessonnier J P, Louis B. Design of MFI zeolite-based composites with hierarchical pore structure:A new generation of structured catalysts. Cryst. Growth Des.,2009,9(8):3721-3729
    [185]Gora L, Sulikowski B, Serwicka E M. Formation of structured silicalite-I/ ZSM-5 composites by a self-assembly process. Appl. Catal, A,2007, 325(2):316-321
    [186]李福祥,吴岚,秦梦庚,窦涛.中孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究.燃料化学学报,1998,26(2)102-106
    [187]Kong D J, Zheng J L, Yuan X H, Wang Y D, Fang D Y. Fabrication of core-shell structure via overgrowth of ZSM-5 layers on mordenite crystals. Microporous Mesoporous Mater.,2009,119(1/3):91-96
    [188]孔德金,邹薇,郑均林,祁晓岚,房鼎业MFI/MFI核壳分子筛合成的影响因素及结晶动力学.物理化学学报,2009,25(9):1921-1927
    [189]童伟益,孔德金,刘志成,郭杨龙,房鼎业ZSM-5/Silicalite-1核壳分子筛含氟水热体系的合成及表征.催化学报,2008,29(12):1247-1252
    [190]童伟益,刘志成,孔德金,祁晓岚,郭杨龙.核壳型复合分子筛ZSM-5/Nano-β的合成与表征.高等学校化学学报,2009,30(5):959-964
    [191]Shen N, Zhao T B, Tong Y C, Li F Y, Xu K. Hierarchically structured zeolite ZSM-5 synthesized by nanocasting technique. Chem. Lett.,2006, 35(7):702-703
    [192]Xia Y D, Mokaya R. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J. Mater. Chem.,2004,14:863-870
    [193]He C, Li J J, Li P, Cheng J, Hao Z P, Xu Z P. Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Appl. Catal, B,2010,96(3/4):466-475
    [194]Qi J, Zhao T B, Xu X, Li F Y, Sun G D. High activity in catalytic cracking of large molecules over a novel micro-micro/mesoporous silicoaluminophosphate. J. Porous Mater,2010,18(1):69-81
    [195]周志华,鲁金明,巫树锋,周敬林,王金渠.两步晶化法制备MCM-48/ZSM-5复合分子筛.无机材料学报,2009,24(2):325-329
    [196]Wang D J, Liu Z N, Wang H, Xie Z K, Tang Y. Shape-controlled synthesis of monolithic ZSM-5 zeolite with hierarchical structure and mechanical stability. Microporous Mesoporous Mater.,2010,132(3):428-434
    [197]张强,李春义,山红红,杨朝合.气相转移法合成ZSM-5/SAPO-5复合分子筛.高等学校化学学报,2007,28(11):2030-2034
    [198]张强,李春义,山红红,杨朝合.气相转移法与水热合成法合成ZSM-5/SAPO-5核壳结构复合分子筛的比较.催化学报,2007,28(6):541-546
    [199]Serrano D P, Aguado J, Morales G, Rodriguez J M, Peral A, Thommes M, Epping J D, Chmelka B F. Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater.,2009,21(4):641-654
    [200]Wang Y R, Tuel A. Nanoporous zeolite single crystals:ZSM-5 nanoboxes with uniform intracrystalline hollow structures. Microporous Mesoporous Mater., 2008,113(1/3):286-295
    [201]Fan Y, Bao X J, Shi G. Hβ/HZSM-5 composite carrier supported catalysts for olefins reduction of FCC gasoline via hydroisomerization and aromatization. Catal. Lett.,2005,105(1/2):67-75
    [202]Song Y, Liu S L, Wang Q X, Xu L Y, Zhai Y C. Coke burning behavior of a catalyst of ZSM-5/ZSM-11 co-crystallized zeolite in the alkylation of benzene with FCC off-gas to ethylbenzene. Fuel Process. Technol,2006,87(4):297-302
    [203]张振莉,周亚松,李长喜,徐春明.HZSM-5/Hβ复合分子筛的正辛烷临氢异构化和芳构化性能.燃料化学学报,2008,36(2):160-165
    [204]Corma A, Orchilles A V. Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater.,2000,35-36:21-30
    [205]Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts:Alkanes and alkenes. Cat. Rev.-Sci. Eng.,2001,43(1):85-146
    [206]Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:A review. Appl. Catal, A,2011, 398(1/2):1-17
    [207]Jeong S M, Chase J H. Catalytic pyrolysis of naphtha on the KVO3-based catalyst. Catal. Today,2002,74(10):257-264
    [208]侯典国,汪燮卿,谢朝钢,施至诚.催化热裂解工艺机理及影响因素.乙烯工业,2002,14(4):1-5
    [209]张刘军,高金森,徐春明.催化裂解C4烃类的研究现状与应用.天然气与石油,2005,23(3):48-51
    [210]戴厚良.烃类裂解制乙烯催化剂研究进展.当代石油石化,2003,11(9):9-13
    [211]Kotrel S, Knozinger H, Gates B C. The Haag-Dessau mechanism of protolytic cracking of alkanes. Microporous Mesoporous Mater,2000,2000,35-36:11-20
    [212]Caeiro G, Carvalho R H, Wang X, LemosM A N D A, Lemos F, Guisnet M, Ramoa Ribeiro F. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts. J. Mol. Catal. A:Chem.,2006,255(1/2):131-158
    [213]Wojciechowski B W. The reaction mechanism of catalytic cracking: Quantifying activity, selectivity, and catalyst decay. Cat. Rev.-Sci. Eng.,1998, 40(3):209-328
    [214]胥月兵,陆江银,王吉德.正丁烷脱氢制正丁烯催化剂.化学进展,2007,19(10):1481-1487
    [215]朱宁.轻烃催化裂解催化剂的催化机理及其动力学研究[博士研究论文].杭州浙江大学,2010
    [216]颜志鹏.轻烃催化裂解制乙烯丙烯催化剂的开发研究[硕士研究论文].杭州,浙江大学,2008
    [217]王岳,李凤艳,赵天波,吴诗德,董林茂,吴永前.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能.石油化工高等学校学报,2005,18(4):20-23
    [218]潘维成,黄擎字,廉红蕾,贾明君,张文祥.钴离子交换H型及Na型ZSM-5的表征及乙烷氨氧化反应性能.吉林天学学报(理学版),2005,43(6):830-834
    [219]黄仲涛,耿建铭.工业催化.第二版.北京:化学工业出版社,2006:78
    [220]高滋,何鸣元,戴逸云.沸石催化与分离技术,第一版.北京:中国石化出版社,1999:9-13
    [221]Higgins J B, LaPierre R B, Schlenker J L, Rohrman A C, Wood J D, Kerr G T, Rohrbaugh W J. The framework topology of zeolite beta. Zeolites,1988, 8(6):446-452
    [222]Horsley J A, Fellmann J D, Derouane E G, Freeman C M. Computer-assisted screening of zeolite catalysts for the selective isopropylation of naphthalene. J. Catal.,1994,147(1):231-240
    [223]李军,张凤美,李黎声,陈西波SAPO-34分子筛研究进展.化工进展,2005,24(4):434-440
    [224]Shu X T, Fu W, He M Y, Zhou M, Shi Z C, Zhang S G. Rare earth-containing high-silica zeolite having penta-sil type structure and process for the same.US Patent,5232675,1993
    [225]Zhu N, Wang Y, Cheng D G, Chen F Q, Zhan X L. Experimental evidence for the enhanced cracking activity of n-heptane over steamed ZSM-5/mordenite composite zeolites. Appl. Catal, A,2009,362 (1/2):26-33
    [226]吉媛媛,王焕茹,满毅,司宇辰.ZSM-5分子筛晶粒尺寸对石脑油催化裂解性能的影响.石油化工,2010,39(8):844-848
    [227]Hirai T, Asada Y, Komasawa I. Preparation of Y2O3:Eu3+ nanoparticles in reverse micellar systems and their photoluminescence properties. J. Colloid Interface Sci.,2004,276(2):339-345
    [228]Kopylov Y L, Kravchenko V B, Komarov A A, Lebedeva Z M, Shemet V V. Nd:Y2O3 nanopowders for laser ceramics. Opt. Mater.,2007,29(10):1236-1239
    [229]Srinivasan R, Yogamalar R, Chandra Bose A. Synthesis and structureal studies on nanocrystalline yttrium oxide. Adv. Sci. Lett.,2009,2(l):65-69
    [230]王荧光,桂建舟,张晓彤,孙兆林.纳米ZSM-5分子筛的合成与表征.光谱实验室,2005,22(2):225-229
    [231]王清遐,蔡光宇,周智远,陈国权.非有机胺型ZSM-5沸石催化剂的研究.催化学报,1982,3(4):284-289
    [232]张新,王鼎聪,李萍,赵杉林.超增溶自组装原味合成ZSM-5纳米分子筛.工业催化,2008,16(12):43-46
    [233]吴洪达,郭敏,黄小花,陈钦,梁慧.超细氧化钇合成与表征.无机盐工业,2009,41(3):19-21
    [234]Huang Z G, Sun X D, Xiu Z M, Chen S W, Tsai C T. Precipitation synthesis and sintering of yttria nanopowders. Mater. Lett.,2004,58(15):2137-2142
    [235]单学蕾,关乃佳,曾翔,陈继新,项寿鹤.不同硅铝比的Cu-ZSM-5/堇青石整体式催化剂的NO分解反应性能.催化学报,2001,22(3):242-244
    [236]Nawaz Z, Qing S, Gao J X, Tang X P, Wei F. Effect of Si/Al ratio on performance of Pt-Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins. J. Ind. Eng. Chem.,2010,16(l):57-62
    [237]柯明,王燮卿,张凤美.磷改性ZSM-5分子筛催化裂解制乙烯性能的研究.石油学报,2003,19(4):28-35
    [238]朱向学.C4烯烃催化裂解制丙烯/乙烯[博士研究论文].大连,中国科学院大连化学物理研究所,2005
    [239]贺方,谢朝钢.ZRP分子筛改性对催化热裂解乙烯产率影响的机理研究.石油 炼制与化工,2003,34(12):12-16
    [240]舒玉瑛,马丁,田丙伦,徐奕德,包信和.甲烷在Mo/ZRP-1催化剂上无氧脱氢芳构化反应.催化学报,1999,20(3):279-284
    [241]陈红梅,孟长功.Na分子筛合成的研究.应用化工,2007,36(7):689-692
    [242]姜杰.宋春敏,阎子峰,王慧欣.无胺体系中ZSM-5分子筛合成的研究.石油炼制与化工,2008,39(4):16-20
    [243]毛东森,郭强胜,卢冠忠.分子筛晶粒大小及磷改性对ZSM-5催化剂甲醇转化制丙烯的影响.石油学报,2009,25(4):503-508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700