用户名: 密码: 验证码:
一维中孔分子筛的合成及其对烷烃临氢异构性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长链正构烷烃临氢异构催化剂可以将影响柴油和润滑油低温流动性能的正构烷烃支链化,并将其转化为油品中的有效成份,所以研究和开发长链正构烷烃临氢异构催化剂,对提高柴油和润滑油品质及增加油品收率有重要意义。通常认为烷烃临氢异构所用的双功能催化剂采用中等强度酸性、一维中孔分子筛作为酸性载体,贵金属Pt或Pd作为金属组分,对长链正构烷烃具有高异构选择性。一维中孔分子筛的研究通常集中在比较其与有交叉孔道或大孔分子筛对正构烷烃临氢异构的影响,而对一维中孔分子筛之间临氢异构性能差别的研究较少。因此,研究一维中孔分子筛的合成及其载Pt催化剂的正构烷烃临氢异构性能,对开发高性能长链烷烃临氢异构催化剂,具有重要的现实意义。
     本论文采用水热法合成了四种典型的一维中孔分子筛SAPO-41、SAPO-11、ZSM-12和ZSM-22,利用XRD、SEM、N2吸附脱附、XRF、MAS NMR、TG等手段表征了分子筛样品的晶相、相对结晶度、形貌、孔性质、元素组成、原子环境和孔内包含物等性质。合成的四种一维中孔分子筛结晶度均较高,热稳定性好。对合成SAPO-41和ZSM-12的影响因素进行了系统研究,确定了合成纯相SAPO-41和ZSM-12的参数范围。采用逐步升温法改进了SAPO-41分子筛合成方法,该法可以将晶化时间由50h缩短到35h,并且能够引入较多的Si,提高了SAPO-41分子筛酸性位数量。当采用高孔容拟薄水铝石作为铝源合成SAPO-41时,发现首先生成大量SAPO-11,然后完全转化为SAPO-41。同时为了降低ZSM-12的酸强度,合成了富铝的ZSM-12分子筛。
     对一维中孔分子筛SAPO-41、SAPO-11、ZSM-12和ZSM-22的孔道性质和酸性进行了讨论。利用微反装置研究了一维中孔分子筛载铂催化剂上正十二烷的临氢异构性能,催化评价结果表明,Pt/ZSM-12和Pt/ZSM-22活性高于Pt/SAPO-11和Pt/SAPO-41,Pt/SAPO-11、Pt/SAPO-41和Pt/ZSM-22催化剂的异构选择性较高, n-C_(12)转化率为85%-90%时,异构收率达到最大值70%-78%。Pt/SAPO-11、Pt/SAPO-41和Pt/ZSM-22上目的产物-端甲基十二烷异构体选择性较Pt/ZSM-12高,并且只有Pt/ZSM-12的产物中包含具有大孔分子筛特征产物的乙基十二烷异构体。Pt/SAPO-11、Pt/SAPO-41和Pt/ZSM-22上的裂化产物随碳数变化基本呈对称分布,而Pt/ZSM-12催化剂上的裂化产物由于二次裂化随碳数变化呈现不对称的分布。
     探讨了烷烃临氢异构的反应机理,以及一维中孔分子筛的酸性和孔道结构对其载铂催化剂上正十二烷临氢异构性能的影响。一维中孔分子筛的酸性主要影响正十二烷临氢异构的反应活性,特别是较低温度时的反应活性。正十二烷临氢异构反应的异构选择性主要由孔道结构决定,十二元环的Pt/ZSM-12上各种单甲基十二烷异构体的含量与PCP假说相近,而十元环的Pt/SAPO-11、Pt/SAPO-41和Pt/ZSM-22上端甲基十二烷异构体含量相比PCP假说较多。
     根据一维中孔分子筛载铂催化剂上正十二烷的临氢异构结果和正碳离子机理,建立了一维中孔分子筛载铂催化剂上烷烃临氢异构反应网络,并给出了各反应的动力学方程,分子筛酸性和孔道结构分别影响反应速率方程中的本征速率常数和吸附平衡常数,从而造成催化反应速率不同。
     为增强烷烃吸附性能,在制备SAPO-11分子筛的反应混合物中,引入碳黑作为介孔模板剂,制备了含有10nm-30nm直径介孔的中孔与介孔复合SAPO-11。该中孔与介孔复合SAPO-11的结晶度较高,具有和常规SAPO-11相近的酸性。载Pt中孔与介孔复合SAPO-11催化剂上的正十二烷临氢异构反应表明,与常规SAPO-11制备的催化剂相比,该催化剂在563K的较低反应温度下,具有较高的异构选择性和异构收率,分别达到92.6%和83.1%。在与工业相近的操作条件下,研究了操作条件对Pt/中孔与介孔复合SAPO-11催化剂上烷烃临氢异构化性能的影响,并对Pt/中孔与介孔复合SAPO-11催化剂寿命进行了评价。实验结果表明,Pt/中孔与介孔复合SAPO-11催化剂在与工业相近的反应条件下,同样具有良好的反应活性和异构选择性,分别达到36.7%和95%,并且在与工业相近的反应压力和氢烷摩尔比条件下,该催化剂具有较好的稳定性。
The removal of long chain normal paraffins from diesel and lubricating oils is essential to produce oils with acceptable cold flow property. Long-chain n-alkane hydroisomerization catalysts can isomerize normal paraffins to isoparaffins which are efficient parts in the oils. Therefore, it is significant to develop high quality long-chain n-alkane hydroisomerization catalysts for excellent properties of diesel or lubricating oils and more oils yield. Bifunctional catalysts with mild strength acid, monodimentional medium-pore molecular sieve as acid function and Pt or Pd as metal function are generally found to be high isomers selective. Otherwise the monodimentional medium-pore molecular sieves are of different types and properties, and n-alkane hydroisomerization porformances of monodimentional medium-pore molecular sieves were seldom researched. Thus it is of actual benefit to research synthesis of monodimentional medium-pore molecular sieves and their effects on n-alkane hydroisomerization porformances.
     In this paper, four typical monodimentional medium-pore molecular sieves SAPO-41, SAPO-11, ZSM-12 and ZSM-22 were synthesized with hydrothermal method and characterized by XRD, SEM, N2 adsorption desorption, XRF, MAS NMR, TG for crystalline phase, crystallinity, morphology, pore properties, elemental composition, atom environment, embraced materials. The samples of SAPO-41, SAPO-11, ZSM-12 and ZSM-22 obtained were highly crystallized and thermally stablized. The influencing factors of SAPO-41 and ZSM-12 syntheses were sysmetically researched, and the condition regions of pure SAPO-41 and ZSM-12 were determined. Gradual Heating was used to synthesize SAPO-41, the crystallization time was reduced from 50h to 35h, and more Si was induced resulting in more acid sites with this method. When the pseudo-boehmite with higher pore volume was used, a large amount of SAPO-11 was occured and then thansformed to SAPO-41 completely. Al-rich ZSM-12 was synthesized in order to reduce its acid strength.
     The pore channel structute and acidity of SAPO-41, SAPO-11, ZSM-12 and ZSM-22 were discussed. The hydroisomerization performances of n-dodecane over Pt/monodimentional medium-pore molecular sieves were tested. The catalytic performances indicate that the activities of n-dodecane over Pt/ZSM-12 and Pt/ZSM-22 are higher than that over Pt/SAPO-11 and Pt/SAPO-41, in the meantime Pt/SAPO-11, Pt/SAPO-41 and Pt/ZSM-22 show higher isomers selectivity which reaches 70~80% under 85%-90% n-C_(12) conversion. The selectivity of objective products namely end-methyl-C_(11) over Pt/SAPO-11, Pt/SAPO-41 and Pt/ZSM-22 is higher than that over Pt/ZSM-12, and only Pt/ZSM-12 produces ethyl-C_(10) which is usually occurred over large-pore molecular sieves. The cracked products are symmetrical with carben number over Pt/SAPO-11, Pt/SAPO-41 and Pt/ZSM-22, and they are asymmetrical over Pt/ZSM-12 due to secondary cracking.
     The n-alkane hydroisomerization mechanisms and the effects of acdity and pore channel structure on n-dodecane hydroisomerization were discussed. The conversion activity of n-dodecane is dependent on the acidity of molecular sieves, especially at low temperature. And the selectivity to isomers in hydroisomerization of n-dodecane is highly influenced by the pore channel structure of molecular sieves. The contents of methyl isomers over 12-ring Pt/ZSM-12 are close to that of PCP hypothesis, and 10-ring Pt/SAPO-11, Pt/SAPO-41 and Pt/ZSM-22 produce more end-methyl-C11.
     The reaction scheme of n-alkane hydroisomerization over monodimentional medium-pore molecular sieves loaded with Pt was established according to the catalytic results and n-alkane carboncation mechanism, and the kinetic equations were provided. The intrinsic rate constant and physisorption equilibrium contant are determined by the acidity or pore channel structure, respectively, and then lead to the diffences of n-alkane hydroisomerization rate.
     Mesoporous SAPO-11 was synthesized hydrothermally by using carbon black and di-n-propylamime (DPA) as templates for the expected mesopores and micropores, respectively. Mesoporous SAPO-11 was highly crystallized and the mesopore diameters are in range of 10nm-30nm. Mesoporous SAPO-11 has the same acidity with conventional one. The mesoporous SAPO-11 exhibited higher isomers selectivity (92.6%) and yield (83.1%) compared with conventional one at low reaction temperature 563K. The performance of n-dodecane hydroisomerization over Pt/mesoporous SAPO-11 was examined under industrial conditions. And the long term property was also evaluated. The results indicate that Pt/mesoporous SAPO-11 showed good reaction activity (36.7%) and isomers slectivity (95%). And that catalyst shows good stability under industrial reaction pressure and H_2/n-C_(12) ratio.
引文
1高滋.沸石催化与分离技术[M].中国石化出版社, 1999: 95-149, 190-206
    2 Deldari H. Suitable Catalysts for Hydroisomerization of Long-chain Normal Paraffins[J]. Appl. Catal. A Gen. 2005, 293: 1-10
    3水天德.现代润滑油生产工艺[M].中国石化出版社, 1997: 1-22
    4陈肖青.努力发展我国润滑油基础油生产的加氢技术[J].炼油设计, 2001, 31(1): 7-11
    5 López C M, Sazo V, Pérez P, et al. n-Pentane Hydroisomerization on Pt-promoted Acid Zeolites[J]. Appl. Catal. A Gen., 2010, 372: 108-113
    6 Park K C, Ihm S K. Comparison of Pt/zeolite Catalysts for n-Hexadecane Hydroisomerization[J]. Appl. Catal. A Gen., 2000, 203: 201-209
    7 Gopal S, Smirniotis P G. Factors Affecting Isomer Yield for n-Heptane Hydroisomerization over As-synthesized and Dealuminated Zeolite Catalysts Loaded with Platinum[J]. J. Catal., 2004, 225: 278-287
    8黄卫国,李大东,石亚华等.分子筛催化剂上正十六烷的临氢异构化反应[J].催化学报, 2003, 24: 651-657
    9李到,任杰,孙予罕. Ni/P-HY催化剂上正构烷烃的加氢转化[J].石油化工, 2002, 31(5): 349-352
    10 Saxena S K, Kamble R, Singh M, et al. Effect of Acid Treatments on Physico-chemical Properties and Isomerization Activity of Mordenite[J]. Catal. Tod., 2009, 141: 215-219
    11王军,林臻,张玉辉. Pt/脱铝Y沸石催化剂上正庚烷加氢异构化[J].石油化工, 2001, 30(7): 509-512
    12 Wang G, Liu Q, Su W, et al. Hydroisomerization Activity and Selectivity of n-Dodecane over Modified Pt/ZSM-22 Catalysts[J]. Appl. Catal. A Gen., 2008, 335: 20-27
    13 Lucas A de, Ramos M J, Dorado F, et al. Influence of the Si/Al Ratio in the Hydroisomerization of n-Octane over Platinum and Palladium Beta Zeolite-based Catalysts with or without Binder[J]. Appl. Catal. A Gen., 2005, 289: 205-213
    14 W?ltz C, Jentys A, Lercher J A. Improving Bifunctional Zeolite Catalysts for Alkane Hydroisomerization via Gas Phase Sulfation[J]. J. Catal., 2006, 237:337-348
    15王利军,黄茜丹,赵伟等. SAPO-11分子筛改进合成及正十二烷加氢异构化性能[J].化学学报, 2002, 60(6): 1122-1124
    16 Sinha A K, Sivasanker S. Hydroisomerization of n-Hexane over Pt-SAPO-11 and Pt-SAPO-31 Molecular Sieves[J]. Catal. Tod., 1999, 49: 293-302
    17黎胜可,王海燕,魏民等.β-MO2C/SAPO-11催化剂上正十二烷临氢异构化研究[J].石油炼制与化工, 2010, 41: 21-25
    18 Gagea B C, Lorgouilloux Y., Altintas Y, et al. Bifunctional Conversion of n-decane over HPW Heteropoly Acid Incorporated into SBA-15 during Synthesis[J]. J. Catal., 2009, 265: 99-108
    19 Li J, Tan Y, Zhang Q, Han Y. Characterization of an HZSM-5/MnAPO-11 Composite and its Catalytic Properties in the Synthesis of High-octane Hydrocarbons from Syngas[J]. Fuel, 2010, 89: 3510-3516
    20孙霞,黄卫国,康小洪.复合分子筛催化剂在正十六烷临氢异构化反应中协同作用的研究[J].石油炼制与化工, 2010, 41: 1-6
    21 Roldán R, Romero F J, Jiménez-Sanchidrián C, et al. Influence of Acidity and Pore Geometry on the Product Distribution in the Hydroisomerization of Light Paraffins on Zeolites[J]. Appl. Catal. A Gen., 2005, 288: 104-115
    22 Patrigeon A, Benazzi E, Travers Ch, et al. Influence of the Zeolite Structure and Acidity on the Hydroisomerization of n-Heptane[J]. Catal. Tod., 2001, 65: 149-155
    23 Zhang W, Smirniotis P G. Effect of Zeolite Structure and Acidity on the Product Selectivity and Reaction Mechanism for n-Octane Hydroisomerization and Hydrocracking[J]. J. Catal., 1999, 182: 400-416
    24 Taylor R J, Petty R H. Selective Hydroisomerization of Long Chain Normal Paraffins[J]. Appl. Catal. A Gen., 1994, 119: 121-138
    25 Maesen Th L M, Schenk M, Vlugt T J H, et al. The Shape Selectivity of Paraffin Hydroconversion on TON-, MTT-, and AEL-type Sieves, Hydroisomerization of Pentane, Hexane and Heptane for Improving the Octane Number of Gasoline[J]. J. Catal., 1999, 188: 403-412
    26 Raybaud P, Patrigeon A, Toulhoat H. The Origin of the C7-Hydroconversion Selectivities on Y,β, ZSM-22, ZSM-23, and EU-1 Zeolites[J]. J. Catal., 2001, 197: 98-112
    27 Soualah A, Lemberton J L, Pinard L, et al. Hydroisomerization of Long-chain n-Alkanes on Bifunctional Pt/Zeolite Catalysts: Effect of the Zeolite Structureon the Product Selectivity and on the Reaction mechanism[J]. Appl. Catal. A Gen., 2008, 336: 23-28
    28 Mériaudeau P, Tuan Vu A, Nghiem V T, et al. SAPO-11, SAPO-31 and SAPO-41 Molecular Sieves: Synthesis, Characterization and Catalytic Properties in n-Octane Hydroisomerization[J]. J. Catal., 1997, 169: 55-66
    29 Mériaudeau P, Tuan Vu A, Sapaly G. Pore Size and Crystal Size Effects on the Selective Hydroisomerisation of C8 Paraffins over Pt-Pd/SAPO-11, Pt-Pd/SAPO-41 Bifunctional Catalysts[J]. Catal. Tod., 1999, 49: 285-292
    30 Mériaudeau P, Tuan Vu A, Sapaly G. Synthesis and Characterization of SAPO-41: Effect of Silicon Content and the Crystal Size on the Hydroisomerization of n-Octane over Pt-Pd/SAPO-41[J]. Micropor. Mesopor. Mater., 1998, 26: 161-173
    31 Martens J A, Parton R, Uytterhoeven L, et al. Selective Conversion of Decane into Branched Isomers: A Comparison of Platinum/ZSM-22, Platinum/ZSM-5 and Platinum/USY Zeolite Catalysts[J]. Appl. Catal., 1991, 76: 95-116
    32 Hu Y, Wang X, Guo X. Effects of Channel Structure and Acidity of Molecular Sieves in Hydroisomerization of n-Octane over Bi-functional Catalysts[J]. Catal. Lett., 2005, 100: 59-65
    33 van Donk S, Janssen A H, Bitter J H, et al. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts[J]. Catal. Rev., 2003, 45: 297-319
    34 Wei X, Smirniotis P G. Synthesis and Characterization of Mesoporous ZSM-12 by Using Carbon Particles[J]. Micropor. Mesopor. Mater., 2006, 89: 170-178
    35 Zhang S, Chen S, Dong P. Synthesis, Characterization and Hydroisomerization Performance of SAPO-11 Molecular Sieves with Caverns by Polymer Spheres[J]. Catal. Lett., 2009, 9: 186-193
    36 Chica A, Diaz U, Fornés V, Corma A. Changing the Hydroisomerization to Hydrocracking Ratio of Long Chain Alkanes by Varying the Level of Delamination in Zeolitic (ITQ-6) Materials[J]. Catal. Tod., 2009, 147: 179-185
    37金昌磊,马波,张喜文等.不同分子筛载体制备的Pt催化剂对正辛烷加氢异构反应的催化性能[J].石油学报(石油加工), 2008, 24: 509-514
    38 Walendziewski J, Pniak B. Synthesis, Physicochemical Properties and Hydroisomerization Activity of SAPO-11 Based Catalysts[J]. Appl. Catal. A Gen., 2003, 250: 39-47
    39 Eswaramoorthi I, Lingappan N. Ni-Pt Loaded SilicoaluminophosphateMolecular Sieves for Hydroisomerisation of n-Heptane[J]. J. Mol. Catal. A Chem., 2004, 218, 229-239
    40 Karthikeyan D, Lingappan N, Sivasankar B. Hydroisomerization of n-Octane over Bifunctional Ni-Pd/HY Zeolite Catalysts[J]. Ind. Eng. Chem. Res., 2008, 47: 6538-6546
    41 Alvarez F, Ribeiro F R, Perot G, et al. Hydroisomerization and Hydrocracking of Alkanes: 7. Influence of the Balance between Acid and Hydrogenating Functions on the Transformation of n-Decane on PtHY Catalysts[J]. J. Catal., 1996, 162: 179-189
    42 Talebi G, Sohrabi M, Royaee S J, et al. Synthesis and Activity Measurement of the some Bifunctional Platinum Loaded Beta zeolite Catalysts for n-Heptane Hydroisomerization[J]. J. Ind. Eng. Chem., 2008, 14(5): 614-621
    43 H?chtl M, Jentys A, Vinek H. Alkane Conversion over Pd/SAPO Molecular Sieves: Influence of Acidity, Metal Concentration and Structure[J]. Catal. Tod., 2001, 65: 171-177
    44 H?chtl M, Jentys A, Vinek H. Hydroisomerization of Heptane Isomers over Pd/SAPO Molecular Sieves: Influence of the Acid and Metal Site Concentration and the Transport Properties on the Activity and Selectivity[J]. J. Catal., 2000, 190: 419-432
    45 H?chtl M, Jentys A, Vinek H. Acidity of SAPO and CoAPO Molecular Sieves and their Activity in the Hydroisomerization of n-Heptane[J]. Micropor. Mesopor. Mater., 1999, 31: 271-285
    46 Saberi M A, Le Van Mao R. Comparative Study of the Kinetic Behavior of the Bifunctional and Trifunctional Catalysts in the Hydroisomerization of n-Heptane. Appl[J]. Catal. A Gen., 2003, 242: 139-150
    47 Le Van Mao R, Saberi M A. Catalysts for the Hydroisomerization of n-Heptane, Prepared according to the Concept of‘Triangular’Site Configuration (Acid/Metal/Desorption-transfer Promoting Sites) [J]. Appl. Catal. A Gen., 2000, 199: 99-107
    48刘维桥,尚通明,周全法等.金属助剂对Pt/SAPO-11催化剂物化及异构性能影响[J].燃料化学学报, 2010, 38: 212-217
    49刘维桥,刘平,蒋海燕等. Ni对Pt/SAPO-11催化剂物化及异构性能影响[J].无机化学学报, 2010, 26: 1218-1224
    50刘维桥,雷卫宁,刘平等. Zn对Pt/SAPO-11催化剂物化及异构性能影响[J].化学学报, 2010, 68: 1781-1786
    51 Liu Y, Liu C, Liu C. Sn-modified Pt/SAPO-11 Catalysts for Selective Hydroisomerization of n-Paraffins[J]. Energy Fuels, 2004, 18: 1266-1271
    52柳云骐,田志坚,徐竹生等. SAPO-11分子筛在长链烷烃临氢反应中的选择效应[J].石油大学学报(自然科学版), 2002, 26(5): 88-90
    53刘月明,张凤美. Pd/SAPO-11双功能催化剂异构化性能研究[J].石油学报(石油加工), 2000, 16(3): 85-89
    54 Dorado F, Romero R, Ca?izares P, et al. Influence of Palladium Incorporation Technique on n-Butane Hydroisomerization over HZSM-5/Bentonite Catalysts[J]. Appl. Catal. A Gen., 2004, 274: 79-85
    55 Roldán R, Beale A M, Sánchez-Sánchez M, et al. Effect of the Impregnation Order on the Nature of the Metal Particles of Bi-functional Pt/Pd-supported Zeolite Beta Materials and on their Catalytic Activity for the Hydroisomerization of Alkanes[J]. J. Catal., 2008, 254: 12-26
    56 Weitkamp J. The Influence of Chain Length in Hydrocracking[A]. In Hydrocracking and Hydrotreating[C]. ACS. 1975: 1-27
    57 Calemma V, Peratello S, Perego C. Hydroisomerization and Hydrocracking of Long Chain n-Alkanes on Pt/Amorphous SiO2-Al2O3 Catalysts[J]. Appl. Catal. A Gen., 2000, 190:207-218
    58 Rossetti I, Gambaro C, Calemma V. Hydrocracking of Long Chain Linear Paraffins[J]. Chem. Eng. J., 2009, 154: 295-301
    59 Sinha A K, Sivasanker S, Ratnasamy P. Hydroisomerization of n-Alkane over Pt-SAPO-11 and Pt-SAPO-31 Synthesized from Aqueous and Nonaqueous Media[J]. Ind. Eng. Chem. Res., 1998, 37: 2208-2214
    60 Gopal S, Smirniotis P G. Pt/H-ZSM-12 as a Catalyst for the Hydroisomerization of C5-C7 n-Alkanes and Simultaneous Saturation of Benzene[J]. Appl. Catal. A Gen., 2003, 247: 113-123
    61 Claude M C, Martens J A. Monomethyl-branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H-ZSM-22 Bifunctional Catalyst[J]. J. Catal., 2000, 190: 39-48
    62 Claude M C, Vanbutsele G, Martens J A. Dimethyl Branching of Long n-Alkanes in the Range from Decane to Tetracosane on Pt/H-ZSM-22 Bifunctional Catalyst[J]. J. Catal., 2001, 203: 213-231
    63 Geng C, Zhang F, Gao Z, et al. Hydroisomerization of n-Tetradecane over Pt/SAPO-11 Catalyst[J]. Catal. Tod., 2004, 93-95, 485-491
    64 Campelo J M, Lafont F, Marinas J M. Hydroconversion of n-Dodecane overPt/SAPO-11 Catalyst[J]. Appl. Catal. A Gen., 1998, 170: 139-144
    65 Thybaut J W, Narasimhan C S L, Denayer J F, et al. Acid-metal Balance of a Hydrocracking Catalyst: Ideal versus Nonideal Behavior[J]. Ind. Eng. Chem. Res., 2005, 44: 5159-5169
    66 Fúnez A, Thybaut J W, Marin G B, et al. Assessment of Dominant Factors Affecting Liquid Phase Hydroisomerization on Bifunctional Zeolites[J]. Appl. Catal. A Gen., 2008, 349: 29-39
    67曾昭槐.择型催化[M].中国石化出版社, 1994: 1-2
    68 Baerlocher Ch, Meier W M, Olson D H. Atlas of Zeolite Framework Types. 5th edition[M]. Elsevier. 2001
    69 Robson H. Verified Syntheses of Zeolitic Materials. 2nd edition[M]. Elsevier. 2001: 19-46
    70 Ernst S, Jacobs P A, Martens J A, et al. Synthesis of Zeolite ZSM-12 in the System (MTEA)2O-Na2O-SiO2-Al2O3-H2O[J]. Zeolites, 1987, 7: 458-462
    71 Gopal S, Y.oo K, Smirniotis P G. Synthesis of Al-rich ZSM-12 Using TEAOH as Template. Micropor[J]. Mesopor. Mater., 2001, 49: 149-156
    72 Yoo K, Kashfi R, Gopal S, et al. TEABr Directed Synthesis of ZSM-12 and its NMR Characterization[J]. Micropor. Mesopor. Mater., 2003, 60: 57-68
    73 Zhang W, Smirniotis P G, Gangoda M, et al. Br?nsted and Lewis Acid Sites in Dealuminated ZSM-12 andβZeolites Characterized by NH3-STPD, FTIR and NMR Spectroscopy[J]. J. Phys. Chem. B, 2000, 104: 4122-4129
    74 Lee H, Zones S I, Davis M E. Synthesis of Molecular Sieves Using Ketal Structure-directing Agents and their Degradation inside the Pore Space[J]. Micropor. Mesopor. Mater., 2006, 88: 266-274
    75 Jacobs P A, Martens J A. Synthesis of High-Silica Aluminosilicate Zeolites[M]. Elsevier. 1987
    76许宁,阚秋斌,齐润国等.高硅分子筛ZSM-22的动态合成及表征[J].催化学报, 2002, 4(23): 367-370
    77 Kumar N, Lindfors L E, Byggningsbacka R. Synthesis and Characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 Zeolite Catalysts and their Catalytic Activity in the Aromatization of n-Butane[J]. Appl. Catal. A Gen., 1996, 139: 189-199
    78 Tian Z, Liang D, Lin L. Research and Development of Hydroisomerization and Hydrocracking Catalysts in Dalian Institute of Chemical Physics[J]. Chin. J. Catal., 2009, 30: 705-710
    79 Wang B, Tian Z, Li P, et al. Synthesis of ZSM-23/ZSM-22 Intergrowth Zeolite with a Novel Dual-template Strategy[J]. Mater. Res. Bull., 2009, 44(12), 2258-2261
    80 Lok B M, Messina C A, Patton R L, et al. USP, 4440871. 1984
    81 Miller S J, Wilson C R. USP, 5879655. 1999
    82 Miller S J. USP, 5942104. 1999
    83 Prakash A M, Chilukuri S V V, Bagwe R P, et al. Silicoaluminophosphate Molecular Sieves SAPO-11, SAPO-31 and SAPO-41: Synthesis, Characterization and Alkylation of Toluene with Methanol[J]. Micropor. Mater., 1996, 6: 89-97
    84刘月明,张凤美,舒兴田.用DPA和/或DIPA模板剂合成SAPO-11分子筛[J].石油学报(石油加工), 2002, 18(6): 26-30
    85 Hu Y, Wang X, Li S, et al. Effect of the Template on Synthesis of SAPO-11 for Hydroisomerization of n-Octane[J]. React. Kinet. Catal. Lett., 2005, 86(1): 45-50
    86王利军,黄茜丹,赵伟等. SAPO-11分子筛模板剂理论筛选及改进合成[J].无机化学学报, 2002, 18(6): 559-561
    87刘平,任杰,孙予罕.模板剂对SAPO-11的物化及异构性能的影响[J].燃料化学学报, 2008, 36:610-615
    88 Liu P, Ren J, Sun Y. Synthesis, Characterization and Catalytic Properties of SAPO-11 with High Silicon Dispersion[J]. Catal. Comm., 2008, 9: 1804-1809
    89 López C M, Escobar V, Arcos M E, et al. Synthesis, Characterization and Catalytic Behaviour of SAPO-11 Obtained at Low Crystallization Times and with Low Organic Agent Content[J]. Catal. Tod., 2008, 133-135: 120-128
    90 Mériaudeau P, Tuan VuA, Lefebvre F, et al. Isomorphous Substitution of Silicon in the AlPO4 Framework with AEL Structure: n-Octane Hydroconversion[J]. Micropor. Mesopor. Mater., 1998, 22: 435-449
    91 Sinha A K, Sainkar S, Sivasanker S. An Improved Method for the Synthesis of the Silicoaluminophosphate Molecular Sieves SAPO-5, SAPO-11 and SAPO-31[J]. Micropor. Mesopor. Mater., 1999, 31: 321-331
    92 Liu P, Ren J, Sun Y. Acidity and Isomerization Activity of SAPO-11 Synthesized by an Improved Hydrothermal Method[J]. Chin. J. Catal., 2008, 29: 379-384
    93 Huang X, Wang L, Kong L, et al. Improvement of Catalytic Properties of SAPO-11 Molecular Sieves Synthesized in H2O-CTAB-Butanol System[J].Appl. Catal. A Gen., 2003, 253: 461-467
    94 Yang X, Xu Z, Ma H, et al. Synthesis of SAPO-11 and MgAlPO-11 Molecular Sieves in Water-Butanol Biphase Media[J]. Chin. J. Catal., 2007, 28: 187-189
    95 Blasco T, Chica A, Corma A. Changing the Si Distribution in SAPO-11 by Synthesis with Surfactants Improves the Hydroisomerization Dewaxing Properties[J]. J. Catal., 2006, 242: 153-161
    96 Sinha A K, Seelan S. Characterization of SAPO-11 and SAPO-31 Synthesized from Aqueous and Non-aqueous Media[J]. Appl. Catal. A Gen., 2004, 270: 245-252
    97张胜振,陈胜利,董鹏.含HF体系中SAPO-11分子筛的合成与表征[J].催化学报, 2006, 27(10): 868-874
    98 Wang L, Guo C, Huang X, et al. Synthesis of High Si-containing SAPO-11 by Post-Si Method[J]. Chem. Lett., 2002, 31: 1012-1013
    99 Lutz W, Kurzhals R, Sauerbeck S, et al. Hydrothermal Stability of Zeolite SAPO-11[J]. Micropor. Mesopor. Mater., 2010, 132: 31-36
    100 Lesch D A, Wilson S T. Eur. Pat. Appl. 254075. 1988
    101 Chen J, Thomas J M. Synthesis of SAPO-41 and SAPO-44 and their Performance as Acidic Catalysts in the Conversion of Methanol to Hydrocarbons[J]. Catal. Lett., 1991, 11: 199-208
    102 Hu Y, Wang X, Guo X, et al. Hydroisomerization of n-Octane over Pt/SAPO-41 Catalyst[J]. Chin. J. Catal., 2004, 25(2): 87-88
    103 Ma Y, Li N, Ren X, et al. Synthesis of SAPO-41 from a New Reproducible Route Using H3PO3 as the Phosphorus Source and its Application in Hydroisomerization of n-Decane[J]. J. Mol. Catal. A Chem., 2006, 250: 9-14
    104 van Bekkum H, Flanigen E M, Jacobs P A, et al. Introduction to Zeolite Science and Practice, 2nd Edition[M]. Elsevier. 2001
    105 Martens J A, Jacobs P A. Evidence for Branching of Long-chain n-Alkane via Protonated Cycloalkanes Larger than Cyclopropane[J]. J. Catal., 1990, 124: 357-366
    106 Martens J A. Selective conversion of decane into branched isomers : A comparison of platium/ZSM-22, platium/ZSM-5 and platium/USY zeolite Catalysts[J]. Appl. Catal. A Gen., 1991, 76, 95-116
    107 Hagen J. Industrial Catalysis[M]. Wiley-VCH. 2002: 244
    108 Sastre M, Chica A, Corma A. On the Mechanism of Alkane Isomerization (isodewaxing) with Unidirectional 10-Member Ring Zeolites - A MolecularDynamics and Catalytic Study[J]. J. Catal., 2000, 195: 227-236
    109 Maesen T L M, Krishna R, van Baten J M, et al. Shape-selective n-Alkane Hydroconversion at Exterior Zeolite Surfaces[J]. J. Catal., 2008, 256: 95-107
    110 Ernst S, Weitkamp J, Martens J A, et al. Synthesis and Shape-selective Properties of ZSM-22[J]. Appl. Catal. A Gen., 1989, 48: 137-143
    111 Martens J A, Vanbutsele G, Jacobs P A, et al. Evidences for Pore Mouth and Key-lock Catalysis in Hydroisomerization of Long n-Alkanes over 10-Ring Tubular Pore Bifunctional Zeolites[J]. Catal. Tod., 2001, 65: 111-116
    112 Souverijns W, Martens J A, Froment G F, et al. Hydrocracking of Isoheptadecane on Pt/H-ZSM-22[J]. J. Catal., 1998, 174: 177-184
    113 Blomsma E, Martens J A, Jacobs P A. Reaction Mechanisms of Isomerization and Cracking of Heptane on Pd/H-Beta Zeolite[J]. J. Catal., 1995, 155: 141-147
    114 Blomsma E, Martens J A, Jacobs P A. Mechanisms of Heptane Isomerization on Bifunctional Pd/ H-Beta Zeolite[J]. J. Catal., 1996, 159: 323-331
    115徐如人,庞文琴.分子筛与多孔材料化学[M].科学出版社, 2004
    116 Kikhtyanin O V, Toktarev A V, Ayupov A B, et al. Influence of Crystallinity on the Physico-chemical Properties of SAPO-31 and Hydroconversion of n-Octane over Pt Loaded Catalysts[J]. Appl. Catal. A Gen., 2010, 378: 96-106
    117 Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites, 4th Ed[M]. Elsevier. 2001
    118赵修松,王清遐,李宏愿. ZSM-12沸石的合成[J].应用化学, 1993, 6(10): 80-82
    119 St?cker M. Gas Phase Catalysis by Zeolites[J]. Micropor. Mesopor. Mater., 2005, 82: 257-292
    120 Sastre G, Lewis D W, Catlow C R A. Mechanisms of Silicon Incorporation in Aluminophosphate Molecular Sieves[J]. J. Mol. Catal. A Chem., 1997, 119: 349- 356
    121 Girgis M J, Tsao Y P. Impact of Catalyst Metal-acid Balance in n-Hexadecane Hydroisomerization and Hydrocracking[J]. Ind. Eng. Chem. Res., 1996, 35: 386-396
    122邓景发.催化作用原理导论[M].吉林人民出版社, 1981:463-464
    123黄开辉,万惠林.催化原理[M].科学出版社, 1983:268-281
    124 Lucas A de, Sánchez P, Dorado F, et al. Kinetic Model of the n-Octane Hydroisomerization on PtBeta Agglomerated Catalyst: Influence of theReaction Conditions[J]. Ind. Eng. Chem. Res., 2006, 45: 978-985
    125 van de Runstraat A, Kamp J A, Stobbelaar P J, et al. Kinetics of Hydro-isomerization of n-Hexane over Platinum Containing Zeolites[J]. J. Catal., 1997, 171: 77-84
    126 Martens G G, Marin G B, Martens J A, et al. Fundamental Kinetic Model for Hydrocraking of C8 to C12 Alkanes on Pt/US-Y Zeolites[J]. J. Catal., 2000, 195: 253-267
    127 López C M, Sazo V, Pérez P, et al. Synergy between Shape Selective and Non-shape Selective Bifunctional Zeolites Modelled via the Single-Event MicroKinetic(SEMK) Methodology[J]. Chem. Eng. Sci., 2010, 65: 174-178
    128 van Bokhoven J A, Tromp M, Koningsberger D C, et al. An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite: The Dominant Role of Adsorption[J]. J. Catal., 2001, 202: 129-140
    129 Bauer F, Karge H G. Characterization of Coke on Zeolites[A]. Mol. Sieves.[C], 2007, 5: 249-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700