用户名: 密码: 验证码:
改性沸石负载杂多酸烷烃异构化催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备了改性USY、丝光沸石(HM)和Beta沸石负载磷钨酸(PW)及贵金属Pt的双功能催化剂,在微型固定床催化反应器上考察了这种负载型杂多酸催化剂在正庚烷临氢异构化反应中的催化性能。利用NH_3-TPD、低温N2吸附、热分析(TG-DSC)、红外光谱(FTIR)以及XRD等技术对催化剂样品进行了较详细的物化表征,并对催化剂在正庚烷临氢异构化反应中的作用规律和本质进行讨论。
    对一系列Pt-PW/USY负载型杂多酸催化剂进行了较详细的物化表征。催化剂的XRD图谱显示,杂多酸负载量达到20%时,改性沸石载体仍然保持较高的结晶度,且杂多酸在载体上呈高度分散。负载杂多酸前后比表面积的测定显示,杂多酸使改性沸石载体的中孔面积急剧降低,微孔面积略微降低,因此杂多酸主要分散在改性沸石载体的二次孔内。红外测试表明,杂多酸和改性沸石载体发生了某种物理相互作用,催化剂上杂多阴离子一级结构得到较好保持。热分析(TG-DSC)显示,负载型杂多酸的热稳定性大大提高,即使加热到700℃以上也未见杂多酸分解,而纯杂多酸在610℃已经分解。NH_3-TPD表征显示,负载型杂多酸改善了沸石的酸性,不仅使其酸密度大大增加,而且使其产生了新的强酸中心。
    考查了这类负载型杂多酸催化剂在正庚烷临氢异构化反应中的催化性能。首先研究了Pt-PW/USY催化剂体系。正庚烷临氢异构化结果表明:USY载体的最佳水热处理温度和时间分别为650℃和5h;通过改变催化剂的焙烧温度和还原温度,能在对异构化选择性影响不大的前提下有效地调节催化剂活性,催化剂在200℃焙烧且不经H2预还原时,催化活性达到极大值, 并且在10h的初步稳定性考察过程中显示出十分稳定的活性和选择性;Pt-PW/USY催化剂上异构化反应是按照金属-酸性双功能机理进行,活性组份Pt和PW均起关键作用。与Pt/USY催化剂相比,负载型杂多酸催化剂不仅提高了正庚烷的转化率而且提高了异构化产物的选择性。例如,相同条件下,0.4%Pt/USY的活性和选择性为49.0%和77.0%,而0.4%Pt-10%PW/USY的催化活性提高了16.1%,异构化选择性提高了5.2%。
    对于Pt-PW/Hβ催化剂体系,Hβ载体的水热处理条件,催化剂的焙烧温度和还原温度对正庚烷临氢异构化反应的影响规律以及它们的最佳条件与Pt-PW/USY催化剂上的结果相似。与Pt/Hβ催化剂相比,负载型杂多酸催化剂
    
    Pt-PW/Hβ的活性为39.6%,提高近11.7%,异构化选择性为88.5%,降低了8.5%。
    Pt-PW/HM催化剂体系的研究显示,HM载体的最佳水热处理温度和水热处理时间分别为400℃和5h,催化剂的最佳焙烧温度和最佳还原温度均为200℃。此时催化剂的催化活性最大,为80.2%。但是,由于改性丝光沸石整体的一维孔道对反应中间物种的扩散限制,导致异构化选择性大大降低,仅为36.0%。反应温度的考察显示,负载型杂多酸催化剂低温活性高,从异构化反应的热力学平衡角度看,低温有利于多支链烷烃的生成,因此较低反应温度下的高活性是负载型杂多酸催化剂的一个优势。
    最后,本文将上述改性沸石载体与MCM-22沸石和中孔材料SBA-15的催化性能进行了对比研究。研究显示,催化剂的酸性和孔结构都是影响催化剂性能的主要因素,催化剂的总酸量大且具有开放的孔道系统,其催化活性和选择性高。改性USY和Hβ为载体的催化剂的催化性能优于中孔材料SBA-15为载体的催化剂。相同条件下,前两种催化剂的催化活性分别高于Pt-PW/SBA-15催化剂近34.0%,27.0%,同时异构化选择性保持近80.0%。
    总之,改性的微孔沸石负载杂多酸催化剂既具有沸石的孔道系统、热和水热稳定性好、比表面积大,又有强酸性和低温活性高等特点,是一种集二者优势于一体并具有工业应用潜力的新型催化材料,在正庚烷临氢异构化反应中表现出良好的转化率和异构化产物选择性。
12-tungstophosphoric acid (PW) containing Platinum (Pt) catalysts supported on modified zeolites such as USY, modernite and Beta zeolite were prepared. The catalysts were tested in n-heptane hydroisomerization reaction with a fixed bed continuous flow microreactor. Their physicochemical properties were characterized by N2 adsorption, temperature programmed desorption of ammonia (NH_3-TPD), infrared spectrum (IR), thermogravimetry-differential scanning calorimetry (TG-DSC), and X-ray diffraction (XRD) techniques. Based on these characterizations, the catalytic performances of the catalysts in n-heptane hydroisomerization are discussed in detail.
    For a series of Pt-PW/USY catalysts, XRD patterns show that the modified USY zeolite retains the perfect crystallinity of Y zeolite upon loading PW with the concentration of 20%, and PW is highly dispersed on the surface of the support. The BET surface area of catalyst shows that PW mainly leads to the drastical decrease of surface area of the mesopores in PW/USY, indicating that PW anions might largely locate in the mesopores of the modified USY. The IR result shows that PW physically interacts with the modified zeolite with its Keggin primary structure unaltered. The TG-DSC measurement of the catalysts reveals that the supported heteropolyacid is thermally stable when heated up to 700℃, in contrast, the pure PW decomposes upon heating at 610℃. NH_3-TPD profiles show that not only acid amount but also acid strength are improved by introducing PW into USY.
    Heteropolyacid catalysts supported on different zeolites were tested in the n-heptane hydroisomerization reaction. By measuring catalytic performances of Pt-PW/USY catalysts, it is found that both hydrothermal treatment temperature and time for the USY support influence the catalytic activity remarkably. It is revealed that 650℃ and 5h are the optimal hydrothermal treatment temperature and time, respectively. Moreover, the pretreatment conditions for the catalyst influence the conversion of n-heptane substantially, and at the same time, the isomerization selectivity comparatively remains stable. The Pt-PW/USY catalyst with a calcination
    
    temperature of 200℃ without prereduction possesses the maximum activity. On the other hand, the reaction results over the catalysts with different PW and Pt loadings lead to the conclusion that n-heptane hydroisomerization over this kind of catalyst follows the classical bifunctional mechanism. Compared with Pt/USY catalysts, Pt-PW/USY catalysts improve not only the conversion of n-hetane but also the selectivity to isomers. For example, under the same reaction conditions, the catalytic activity and isomerization selectivity of 0.4%Pt/USY catalyst are 49.0% and 77.0%, and they are increased over 0.4%Pt-10%PW/USY by 16.1% and 5.2%, respectively.
    Very similar results are achieved over Pt-PW/Hβcatalysts to those over Pt-PW/USY. The Pt-PW/Hβcatalyst exhibits the conversion of n-heptane of 39.6% and a high selectivity to isomers of 88.5%, which is much higher than those over Pt/Hβ.
    For Pt-PW/HM catalysts, the optimal hydrothermal treatment temperature and time for modified HM are found to be 400℃ and 5h, respectively, and the optimal calcination and prereduction temperature are both 200℃. At this moment, the catalyst comes to the highest catalytic activity of 80.2%. However, its isomerization selectivity drops to a very low value of 36.0%, probably due to the diffusion limitation of the reaction intermediates inside the unidimensional channel of mordernite zeolite. On the other hand, lower reaction temperature is needed for Pt-PW/HM catalyst to achieve the comparable catalytic activity compared with Pt/HM catalyst, which results in a higher isomerization selectivity over the PW-containing catalyst.
    Comparison of Heteropolyacid catalysts supported on the above modified zeolites with those on meso-structured material SBA-15 was also studied. It is found that the acidity and pore structure of the catalysts are important factors affecting the catalytic performance. High
引文
[1] Symonlak M F. Hydrocarbon Process, 1980, 59(5): 110~114
    [2] Schmidt R J, Weiszmann J A, Johnsen J A. Oil & Gas J, 1985, 83(21): 80~88
    [3] Maesen Th L M, Schenk M, Vlugt T J H, de Jonge J P, Smit B. J Catal, 1999, 188(2): 403~412
    [4] Rabo J A, Gajda G J. Catal Rev Sci Eng, 1989-90, 31: 385~
    [5] Dwyer J, O'Mslley P J. Stud Surf Sci Cat, 1988, 3: 55~
    [6] Baburek E, Novakova J. Appl Catal A: General, 1999, 185: 123~130
    [7] Calemma V, Peratello S. Appl Catal A: General, 2000, 190: 207~218
    [8] US 4877919
    [9] US 5039638
    [10] US 5039639
    [11] Ali L I, Ali A G A, Aboul-Fotouh S M, Aboul-Gheit A K. Appl Catal A: General, 2001, 205: 129~146
    [12] 韩松, 王瑞英, 李承烈, 林峰. 石油炼制与化工, 1998, 29(9): 19~22
    [13] Ramoa R, Guisnet M, Marcilly C. Appl Catal, 1985, 13: 281~288
    [14] Li C L, Novaro O, Mu?oz E, Boldú J L, Bokhimi X, Wang J A, Lómez R. Appl Catal, 2000, 199: 211~220
    [15] 李路汀, 李承烈. 燃料化学学报, 1995, 23(2): 168~173
    [16] Heriques C, Dufresne P, Marcilly C, Ramoa R F. Appl Catal, 1986, 21: 169~177
    [17] Le Van Mao R, Saberi M A. Appl Catal A: General, 2000, 199: 99~107
    [18] Saberi M A, Le Van Mao R, Martin M, Mak A W H. Appl Catal A: General, 2001, 214: 229~236
    [19] Alvarez F, Ribeiro F R, Perot G, Thomazeon C, Guisnet M. J Catal, 1996, 162: 179~186
    [20] 王军, 林臻, 张玉辉, 徐智中, 乔旭. 石油化工, 2001, 30(7): 509~512
    [21] Liu X M, Yan Z F. Catalysis Today, 2001, 68: 145~154
    [22] Alvarez F, Giannetto G, Guisnet M, Perot G. Appl Catal A: General, 1987, 34: 353~365
    
    
    [23] Kuehne M A, Babitz S M, Kung H H, Miller J T. Appl Catal A: General, 1998, 166: 293~299
    [24] Boskovic G, Micic R, Pavlovic P, Putanov P. Catalysis Today, 2001, 65: 123~128
    [25] 祝敬民, 黄国雄, 李承烈. 华东化工学院学报, 1985, 11(2): 139~
    [26] Almanza L O, Narbeshuber T, d'Araujo P, Naccache C, Ben Taarit Y. Appl Catal A: General, 1999, 178: 39~47
    [27] Guisnet M, Alvarez F, Giannetto G, Perot G. Catalysis Today, 1987, 1: 415~433
    [28] Guisnet M, Fouche V. Appl Catal A: General, 1991, 71(2): 137~167
    [29] Tromp M, van Bokhoven J A. J Catal, 2000, 190: 209~214
    [30] Chica A, Corma A, Miguel P J. Catalysis Today, 2001, 65: 101~110
    [31] Canzares P, de Lucas A, Dorado F, Perez D. Appl Catal A: General, 2000, 190: 233~239
    [32] Carvill B T. J Catal,1993, 144: 1~8
    [33] Tromp M, van Bokhoven J A, Garriga Oostenbrink M T, Britter J H, de Jong K P, Koningsberger D C. J Catal, 2000, 190: 209~214
    [34] 王光维, 宁春利, 马春曦, 张天春. 大庆石油学院学报, 1996, 20(3): 34~37
    [35] Camblor M A, Corma A, Villaescusa L A. J Chem Soc Chem Commun, 1997, 749~
    [36] About-Ghei A K, Gheit S A, Al-Oowais A A. Appl Catal A: General, 1998, 170: 27~
    [37] Isabel V M, Escardino A, Corma A. Ind Eng Chem Res, 1987, 26(8): 1495~1500
    [38] 徐东彦, 王光维. 石油学报, 2000, 16(1): 71~74
    [39] Alois L, Andreas J, Hannelore V. Appl Catal A: General, 1999, 176: 119~128
    [40] 王光维, 宁春利, 赵晓非. 石油学报, 1998, 14(1): 52~56
    [41] 赵晓非, 马春曦, 司国海, 白钊. 大庆石油学院学报, 1998, 22(1): 75~77 和100~101
    [42] Chica A, Corma A. J Catal, 1999, 187: 167~176
    [43] Arribas M A, Martnez A. Catalysis Today, 2001,65: 117~122
    [44] Wang Z B, Kamo A, Yoneda T, Komatsu T, Yashima T. Appl Catal A: General, 1997, 159: 119~132
    [45] Maria D R, Jose A C, et al. Ind Eng Chem Res. 1997, 36: 3533~3540
    [46] Canizares P, de Lucas A, Dorado F, Aguirre J. Micropor. Mesopor. Materi. 2001, 42: 245~254
    [47] Souverijns W, Martens J A, Froment G F, Jacobs P A. J Catal, 1998, 174: 177~184
    
    
    [48] Martens J A, Vanbutsele G, Jacobs P A, Denayer J, Ocakoglu R, Baron G, Muňoz Arroyo J A, Thybaut J, Marin G B. Catalysis Today, 2001, 65: 111~116
    [49] Claude M C, Martens J A. J Catal, 2000, 190: 39~48
    [50] Claude M C, Vanbutsele G, Martens J A. J Catal, 2001, 203: 213~231
    [51] Miller S J. Preprints Div Petrol Chem, Am Chem Soc, 1993, 38: 788~
    [52] Campelo J M, Lafont F, Marinas J M. Appl Catal A: General, 1998, 170: 139~144
    [53] Parlitz B, Schrier E, Eckelt H, Lieschke C, Lieschke G, Fricks R. J Catal, 1995, 155: 1~11
    [54] Meriaudeau P, Tuan Vu A, Lefebvre F, Nghiem Vu T, Naccache C. Micopor. Mesopor. Mater. 1998, 26: 161~173
    [55] 张凤美, 刘月明. 石油学报, 2000,16(3): 85~89
    [56] Galperin L B. Appl Catal A: General, 2001, 209: 257~268
    [57] Kim S Y, Goodwin Jr J G, Galloway D. Catalysis Today, 2000, 63: 21~32
    [58] Yori J C, Luy J C, Parera J M. Appl Catal, 1989, 46: 103~
    [59] Xu B Q, Sachtler W M H. J Catal, 1997, 167: 224~
    [60] 缪长喜, 华伟明, 高滋. 催化学报, 1997, 18(1): 13~16
    [61] Ebatini K, Honno H, Tanaka T, Hattori H. J Catal, 1992, 135: 60~
    [62] Ebatini K, Tanaka T, Hattori H, Appl Catal A: General, 1993, 102: 79~
    [63] Iglesia E, Soled S L, Kramer G M. J Catal, 1993, 144: 238~
    [64] Dmayanova S, Grange P, Delmon B. J Catal, 1997, 168: 421~430
    [65] Guevara-Franco M L, Robles-Andrade S, García-Alamilla R, Sandoval
    -Robles G, Domínguez-Esquivel J M. Catalysis Today, 2001, 65: 137~141
    [66] Lei T, Xu J S, Tang Y, Hua W M, Gao Z. Appl Catal A: General, 2000, 192: 181~188
    [67] Parera J M, Grau J M. Appl Catal A: General, 1997, 162: 17~27
    [68] Grau J M, Vera C R, Parera J M. Appl Catal A: General, 1998, 172: 311~326
    [69] Arata K, Hino M. in"Proceedings, 9th International Congress on Catalysis, Calgary, 1988" (M J Phillips and M Ternan, Eds.), p. 1727.Chem.Institute of Canada, Ottawa, 1988.
    [70] Hino M, Arata K. J Chem Soc Chem Commun. 1988, 1259~
    [71] Iglesia E, Barton D G, Soled S L, Moseo S, Baumgartner J E, Gates W E, Fuentes G A, Meitzner G D. in"Proceedings, 11th International Congress on Catalysis, Baltimore, 1996" (Hightower J W, Delgass W N, Iglesia E, and Bell A T, Eds.), Elsevier, Amsterdam, 1996;
    
    Stud Surf Sci Catal, 1996,101: 533~
    [72] Larsen G, Lotero E, Parra R D. in"Proceedings,11th International Congress on Catalysis” Stud. Surf. Sci. Catal, 1996,101: 543~
    [73] Santiesteban J G, Vartuli J C, Han S, Bastian R D, Chang C D. J Catal, 1997, 168: 431~
    [74] 高滋, 陈建民, 姚宇宁, 华伟民. 高等学校化学学报, 1995, 16(1): 111~115
    [75] Zhang S G, Zhang Y L, Tierney J W. Appl Catal A: General, 2000, 193: 155~171
    [76] Santiesteban J G, Calabro D C, Borghard W S, Chang C D, Vartuli J C, Tsao, Y P, Natal-Santia M A, Bastian R D. J Catal, 1999, 183: 314~322
    [77] Kozhevnikov I V. Catal Rev-Sci Eng, 1995, 37(2): 311~352
    [78] Misono M, Okuhara T. Chemtech, 1993, (11): 23~29
    [79] Kozhevinikov I V, Simerna A, Jansen R. Cata Lett, 1995, 30: 24~
    [80] Kresgec T M, Do Rew J S et al. US Patent, 5366945: 1994
    [81] Sole S L, Miseo S, Gates WE. US Patent 5420 092:1995
    [82] Sole S L, Miseo S, Gates WE. US Patent 5391 532:1995
    [83] Trolliet C, Couldurier G, Védrine J C. Topics in Catalysis, 2001, 15 (1): 73~81
    [84] Bardin B B, Davis R J. Topics in Catalysis, 1998, 6: 77~86
    [85] Essayem N, Ben Taarit Y, Gayraud P Y, Sapaly G, Naccache C. J Catal, 2001, 204: 157~162
    [86] Travers C, Essayem N, Delage M, Quelen S. Catalysis Today, 2001, 65: 355~361
    [87] Liu Y Y, Na K, Misono M. Journal of Molecular Catalysis A: Chemical, 1999, 141: 145~153
    [88] Liu Y Y, Koyano G, Misono M. Topics in Catalysis, 2000, 11(12): 239~246
    [89] Yang W, Billy J, Ben Taarit Y, Védrine J C, Essayem N. Catalysis Today, 2002, 73(1-2): 153~165
    [90] Beck J S, Vartuli J C, Kresgec T M. J Am Chem Soc. 1992, 114: 10834~10843
    [91] Chaudhari K, Das T K, Chandwadkar A J, Sivasanke S. J Catal, 1999, 186: 81~90
    [92] Kwang-Cheon P, Son-Ki I. Appl Catal A: General, 2000, 203: 201~209
    [93] Olejniczak Z, Sulikowski B, Kubacka A, Gasior M. Topics in Catalysis 2000, 11(12): 391~400
    [94] 赵景联, 杨树成. 精细石油化工进展, 2000, 1(11): 24~27
    [95] Pamin K, Kubacka A, Olejniczak Z, Haber J, Sulikowski B. Appl Catal A: General, 2000,
    
    194/195: 137~146
    [96] Kawai T, Tsutsumi K. Journal of Colloid and Interface Science, 1999, 212: 310~316
    [97] 刘兴云, 张旭政, 李宣文. 高等学校化学学报, 1997, 18(3): 342~247
    [98] 刘辉, 刘兴云, 李宣文, 徐筱杰. 石油化工. 1998, 27(12): 880-885
    [99] 朱俊, 马莉, 王少阶, 罗锡辉. 武汉大学报, 1999, 45(5): 589~593
    [100] Sasaki Y, Suzuki T, Takamura Y, Saji A, Saka H. J Catal, 1998, 178: 94~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700