用户名: 密码: 验证码:
鲫鱼视网膜水平细胞谷氨酸受体对γ-氨基丁酸转运体的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平细胞是视网膜内核层的抑制性中间神经元,接受来自光感受器细胞的谷氨酸能输入,同时通过GABA转运体释放GABA,参与水平细胞对光感受器细胞的反馈调节,及双极细胞和神经节细胞的中心外周拮抗的感受野的形成。谷氨酸可以激活水平细胞膜上的包括NMDA受体和AMPA受体在内的谷氨酸受体。已有报道证明激活鳐鱼视网膜水平细胞的AMPA受体可以抑制GABA转运体电流。我们应用全细胞膜片钳技术,在鲫鱼视网膜上也发现了类似的现象,激活鲫鱼视网膜水平细胞的AMPA受体也可以抑制GABA转运体电流。由于NMDA受体是最近在鲫鱼水平细胞上发现的,其功能尚不清楚。我们因此对激活NMDA受体是否能调节GABA转运体电流进行了研究。实验结果显示,激活水平细胞的NMDA受体可以抑制GABA转运体电流。NMDA受体的阻断剂AP-5(100μM)可以消除这个效应。说明这种效应是通过激活NMDA受体来实现的。当使用无钙的Ringer’s液灌流的时候,这种NMDA对GABA转运体的抑制就会被解除。当胞内钙库的钙释放和回收被20μM ryanodine + 2μM thapsigargin灌流3 min所阻断后,NMDA对GABA转运体的抑制作用也会被减弱。在全细胞模式膜片钳形成的时候,电极内液中10 mM的BAPTA经5 min扩散到细胞内后,这种NMDA的抑制效应也被削弱。以上结果说明激活NMDA受体可以通过影响胞内钙过程来调节GABA转运体的活动。进一步地,基于本实验室以前的工作,用数学方程构建了一个含有内质网膜和细胞膜的细胞模型来定量地分析NMDA引起的Ca2+动力学及GABA转运体电流的变化。模型结果提示,胞内钙库活动参与NMDA受体对GABA转运体活动的调节。
     除了鲫鱼,在大鼠和人的视网膜水平细胞上也存在NMDA受体,但是水平细胞上NMDA受体的生理功能尚不清楚。本文在鲫鱼视网膜水平细胞上发现激活NMDA受体可以抑制GABA转运体的活动。在生理条件下,视网膜光感受器细胞在暗中持续释放谷氨酸,水平细胞上的钙通透的AMPA受体和NMDA受体均会被激活,胞外钙离子就会通过这两种受体进入胞内,发挥抑制GABA转运体的作用。相对于AMPA受体的快速失敏,NMDA受体的失敏很慢。提示生理条件下NMDA受体在对GABA转运体的抑制性调控可能发挥更重要的作用。
Horizontal cells are interneurons in the outer retina, which receive glutamate input from photoreceptors, and release GABA via GABA transporters. Horizontal cells are responsible for the formation of the antagonistic surround receptive field property of the retinal bipolar cells and ganglion cells. Glutamate can activate glutamate receptors on horizontal cells, including AMPA receptors and NMDA receptors. It has been reported that activation of AMPA receptors inhibits GABA transporter currents on skate retinal horizontal cells. We have observed similar inhibition on carp horizontal cells using patch-clamp technique. Recently, it was reported that functional NMDA receptors are expressed in carp retinal horizontal cells, but the relevant functions of NMDA receptors in the horizontal cells are not fully understood. We consequently explored whether activation of NMDA receptors on horizontal cells could also alter the activity of GABA transport in these cells. Our results show that activation of NMDA receptors inhibited GABA transporter currents on carp retinal horizontal cells. Application of AP5 (100μM) eliminated the inhibition, which indicates NMDA receptors are necessary. When the extracellular Ca2+ was removed from the Ringer's solution, the NMDA inhibitory effect on the GABA transporter current was eliminated. The suppression effect could be attenuated when the Ca2+ release and Ca2+ uptake of intracellular Ca2+ store were blocked after the cell had been pre-incubated with 20μM ryanodine plus 2μM thapsigargin for 3 min. After achieving the whole-cell configuration, the retinal horizontal cell was loaded with 10 mM BAPTA by diffusion from the patch pipette for 5 min, and then the NMDA modulation of GABA transporters was suppressed. These results suggest that the activation of NMDA receptors inhibits GABA transporter-mediated current by affecting Ca2+ processes in the retinal horizontal cells. Furthermore, a model containing endoplasmic reticulum (ER) membrane processes and plasma membrane processes was constructed for quantitative analyses of the NMDA-triggered Ca2+ dynamics and its modulation of GABA transporters. The model results suggest that the intracellular Ca2+ store is involved in the NMDA modulation of GABA transporters.
     It is reported that NMDA receptors are expressed in retinal horizontal cells of carp, rat and human, but physiological function of the NMDA receptors is not clear. In present study, our results show that activation of NMDA receptors in carp retinal horizontal cells inhibit GABA transporter current. Under physiological conditions, photoreceptors release glutamate continually in the darkness. AMPA receptors and NMDA receptors on the retinal horizontal cells are activated, and extracellular calcium influx can occur through these glutamate receptors. Since AMPA receptors display very rapid and significant desensitization, and NMDA receptors do not desensitize as quickly or as fully, NMDA receptors might play a significant role in the regulation of GABA transporter activities under physiological conditions.
引文
[1] Kreitzer MA, Andersen KA, and Malchow RP. Glutamate modulation of GABA transport in retinal horizontal cells of the skate. J Physiol, 2003; 546(Pt 3): 717-31.
    [2] Shen Y, Liu XL, and Yang XL. N-methyl-D-aspartate receptors in the retina. Mol Neurobiol, 2006; 34(3): 163-79.
    [3] Field GD and Chichilnisky EJ. Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci, 2007; 30: 1-30.
    [4] He S, Dong W, Deng Q, Weng S, and Sun W. Seeing more clearly: recent advances in understanding retinal circuitry. Science, 2003; 302(5644): 408-11.
    [5] Kolb H. How the retina works. American Scientist, 2003; 91(1): 28-35.
    [6] Bringmann A, Skatchkov SN, Pannicke T, Biedermann B, Wolburg H, Orkand RK, and Reichenbach A. Muller glial cells in anuran retina. Microsc Res Tech, 2000; 50(5): 384-93.
    [7] Newman EA. Glial modulation of synaptic transmission in the retina. Glia, 2004; 47(3): 268-74.
    [8] Newman EA and Zahs KR. Modulation of neuronal activity by glial cells in the retina. J Neurosci, 1998; 18(11): 4022-8.
    [9] Tsuiki E, Fujita A, Ohsaki Y, Cheng J, Irie T, Yoshikawa K, Senoo H, Mishima K, Kitaoka T, and Fujimoto T. All-trans-retinol generated by rhodopsin photobleaching induces rapid recruitment of TIP47 to lipid droplets in the retinal pigment epithelium.Invest Ophthalmol Vis Sci, 2007; 48(6): 2858-67.
    [10] Lu T and Yang XL. Carp retinal horizontal cells: dissociation, morphology and physiological characteristics. Chin J Neuroanat, 1995; 11(4): 299-306.
    [11] Kamermans M, van Dijk BW, and Spekreijse H. Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells. J Gen Physiol, 1991; 97(4): 819-43.
    [12] Cadetti L and Thoreson WB. Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings. J Neurophysiol, 2006; 95(3): 1992-5.
    [13] Tatsukawa T, Hirasawa H, Kaneko A, and Kaneda M. GABA-mediated component in the feedback response of turtle retinal cones. Vis Neurosci, 2005; 22(3): 317-24.
    [14] Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, and Weiler R. Hemichannel-mediated inhibition in the outer retina. Science, 2001; 292(5519): 1178-80.
    [15] Mangel SC. Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. J Physiol, 1991; 442: 211-34.
    [16] Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol, 2004; 73(2): 127-50.
    [17] Shen Y, Zhang M, Jin Y, and Yang XL. Functional N-methyl-D-aspartate receptors are expressed in cone-driven horizontal cells in carp retina. Neurosignals, 2006; 15(4): 174-9.
    [18] Borden LA. GABA transporter heterogeneity: pharmacology and cellularlocalization. Neurochem Int, 1996; 29(4): 335-56.
    [19] Nelson N. The family of Na+/Cl- neurotransmitter transporters. J Neurochem, 1998; 71(5): 1785-803.
    [20] Clark JA. Analysis of the transmembrane topology and membrane assembly of the GAT-1 gamma-aminobutyric acid transporter. J Biol Chem, 1997; 272(23): 14695-704.
    [21]胡佳华.γ-氨基丁酸转运蛋白Ⅰ(GAT1)在小鼠中枢神经系统中的生理功能[博士论文].中国科学院上海生物化学与细胞生物学研究所, 2003.
    [22] Matskevitch I, Stegen C, Wagner CA, Moschen I, Bindels R, Van Os C, Broer S, and Lang F. Acute regulation of the betaine/GABA transporter BGT-1 expressed in Xenopus oocytes by extracellular pH. Kidney Blood Press Res, 2000; 23(6): 356-9.
    [23] Radian R, Ottersen OP, Storm-Mathisen J, Castel M, and Kanner BI. Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci, 1990; 10(4): 1319-30.
    [24] Kanner BI. Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol, 2006; 213(2): 89-100.
    [25] Matskevitch I, Wagner CA, Stegen C, Broer S, Noll B, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, and Lang F. Functional characterization of the Betaine/gamma-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes. J Biol Chem, 1999; 274(24): 16709-16.
    [26] Gaspary HL, Wang W, and Richerson GB. Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J Neurophysiol, 1998; 80(1): 270-81.
    [27] Richerson GB and Wu Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol, 2003; 90(3): 1363-74.
    [28] Yazulla S. Evoked efflux of [3H]GABA from goldfish retina in the dark. Brain Res, 1985; 325(1-2): 171-80.
    [29] Yazulla S and Kleinschmidt J. Carrier-mediated release of GABA from retinal horizontal cells. Brain Res, 1983; 263(1): 63-75.
    [30] Paoletti P and Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol, 2007; 7(1): 39-47.
    [31] Mayer ML and Westbrook GL. Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol, 1987; 394: 501-27.
    [32] Burnashev N, Zhou Z, Neher E, and Sakmann B. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol, 1995; 485 ( Pt 2): 403-18.
    [33] Ozawa S, Kamiya H, and Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Prog Neurobiol, 1998; 54(5): 581-618.
    [34] Dingledine R, Borges K, Bowie D, and Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev, 1999; 51(1): 7-61.
    [35]沈吟. N-甲基-D-天冬氨酸受体和甘氨酸受体介导的对视网膜水平细胞和双极细胞活动的调制[博士论文].复旦大学生命科学学院, 2006.
    [36] Rosenmund C, Stern-Bach Y, and Stevens CF. The tetrameric structure of a glutamate receptor channel. Science, 1998; 280(5369): 1596-9.
    [37] Ferrer-Montiel AV and Montal M. Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc Natl Acad Sci U S A, 1996; 93(7): 2741-4.
    [38] Song I and Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci, 2002; 25(11): 578-88.
    [39] Donevan SD and Rogawski MA. Intracellular polyamines mediate inward rectification of Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropio -nic acid receptors. Proc Natl Acad Sci U S A, 1995; 92(20): 9298-302.
    [40] Blaschke M, Keller BU, Rivosecchi R, Hollmann M, Heinemann S, and Konnerth A. A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc Natl Acad Sci U S A, 1993; 90(14): 6528-32.
    [41] Van Damme P, Van Den Bosch L, Van Houtte E, Callewaert G, and Robberecht W. GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol, 2002; 88(3): 1279-87.
    [42] Yamakura T, Sakimura K, Mishina M, and Shimoji K. The sensitivity of AMPA-selective glutamate receptor channels to pentobarbital is determined by a single amino acid residue of the alpha 2 subunit. FEBS Lett, 1995; 374(3): 412-4.
    [43] Huang SY and Liang PJ. Ca2+-permeable and Ca2+-impermeable AMPA receptors coexist on horizontal cells. Neuroreport, 2005; 16(3): 263-6.
    [44] Okada T, Schultz K, Geurtz W, Hatt H, and Weiler R. AMPA-preferring receptors with high Ca2+ permeability mediate dendritic plasticity of retinal horizontal cells. Eur J Neurosci, 1999; 11(3): 1085-95.
    [45] Klooster J, Studholme KM, and Yazulla S. Localization of the AMPA subunit GluR2 in the outer plexiform layer of goldfish retina. J Comp Neurol, 2001; 441(2): 155-67.
    [46]黄仕勇.鲫鱼视网膜水平细胞的Ca2+动力学和突触可塑性[博士论文].中国科学院上海生命科学研究院, 2005.
    [47] Liu SQ and Cull-Candy SG. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature, 2000; 405(6785): 454-8.
    [48] Huang SY, Hu JF, Gong HQ, and Liang PJ. Postsynaptic calcium pathway contributes to synaptic plasticity between retinal cones and luminosity-type horizontal cells. Sheng Li Xue Bao, 2006; 58(5): 407-14.
    [49] Carafoli E. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A, 2002; 99(3): 1115-22.
    [50] Carafoli E, Santella L, Branca D, and Brini M. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol, 2001; 36(2): 107-260.
    [51] Hayashida Y and Yagi T. On the interaction between voltage-gated conductances and Ca2+ regulation mechanisms in retinal horizontal cells. J Neurophysiol, 2002; 87(1): 172-82.
    [52] Hayashida Y, Yagi T, and Yasui S. Ca2+ regulation by the Na+-Ca2+ exchanger in retinal horizontal cells depolarized by L-glutamate. Neurosci Res, 1998; 31(3): 189-99.
    [53] Keizer J and Levine L. Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ oscillations. Biophys J, 1996; 71(6): 3477-87.
    [54] Schubert T, Weiler R, and Feigenspan A. Intracellular calcium is regulated bydifferent pathways in horizontal cells of the mouse retina. J Neurophysiol, 2006; 96(3): 1278-92.
    [55] Huang SY, Liu Y, and Liang PJ. Role of Ca2+ store in AMPA-triggered Ca2+ dynamics in retinal horizontal cells. Neuroreport, 2004; 15(15): 2311-5.
    [56] Wang XL, Jiang XD, and Liang PJ. Intracellular calcium concentration changes initiated by N-methyl-D-aspartic acid receptors in retinal horizontal cells. Neuroreport, 2008; 19(6): 675-8.
    [57] Destexhe A, Mainen ZF, and Sejnowski TJ. An efficient method for computing synapticconductances based on a kinetic model of receptor binding. Neural Comput, 1994; 6: 14-8.
    [58] Garduno J, Elenes S, Cebada J, Becerra E, and Garcia U. Expression and functional characterization of GABA transporters in crayfish neurosecretory cells. J Neurosci, 2002; 22(21): 9176-84.
    [59]鲁涛.鲫鱼水平细胞上非NMDA受体的门控和调制特性及离子通透性[博士论文].中国科学院上海生理研究所, 1991.
    [60] Takahashi K, Miyoshi S, Kaneko A, and Copenhagen DR. Actions of nipecotic acid and SKF89976A on GABA transporter in cone-driven horizontal cells dissociated from the catfish retina. Jpn J Physiol, 1995; 45(3): 457-73.
    [61] Schwartz EA. Transport-mediated synapses in the retina. Physiol Rev, 2002; 82(4): 875-91.
    [62] Sutko JL, Airey JA, Welch W, and Ruest L. The pharmacology of ryanodine and related compounds. Pharmacol Rev, 1997; 49(1): 53-98.
    [63] Thastrup O, Cullen PJ, Drobak BK, Hanley MR, and Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci U S A, 1990; 87(7): 2466-70.
    [64] Kachoei BA, Knox RJ, Uthuza D, Levy S, Kaczmarek LK, and Magoski NS. A store-operated Ca2+ influx pathway in the bag cell neurons of Aplysia. J Neurophysiol, 2006; 96(5): 2688-98.
    [65] Lu T, Shen Y, and Yang XL. Desensitization of AMPA receptors on horizontal cells isolated from crucian carp retina. Neurosci Res, 1998; 31(2): 123-35.
    [66] Blanco R and de la Villa P. Ionotropic glutamate receptors in isolated horizontal cells of the rabbit retina. Eur J Neurosci, 1999; 11(3): 867-73.
    [67] Yang JH, Maple B, Gao F, Maguire G, and Wu SM. Postsynaptic responses of horizontal cells in the tiger salamander retina are mediated by AMPA-preferring receptors. Brain Res, 1998; 797(1): 125-34.
    [68] Fletcher EL, Hack I, Brandstatter JH, and Wassle H. Synaptic localization of NMDA receptor subunits in the rat retina. J Comp Neurol, 2000; 420(1): 98-112.
    [69] Grunder T, Kohler K, Kaletta A, and Guenther E. The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. J Neurobiol, 2000; 44(3): 333-42.
    [70] Picaud S, Hicks D, Forster V, Sahel J, and Dreyfus H. Adult human retinal neurons in culture: Physiology of horizontal cells. Invest Ophthalmol Vis Sci, 1998; 39(13): 2637-48.
    [71] DeVries SH and Schwartz EA. Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J Physiol, 1989; 414: 351-75.
    [72] Zhang DQ and McMahon DG. Gating of retinal horizontal cell hemi gap junction channels by voltage, Ca2+, and retinoic acid. Mol Vis, 2001; 7: 247-52.
    [73] Kaneda M, Mochizuki M, Aoki K, and Kaneko A. Modulation of GABAC response by Ca2+ and other divalent cations in horizontal cells of the catfish retina. J Gen Physiol, 1997; 110(6): 741-7.
    [74] Linn CL and Gafka AC. Modulation of a voltage-gated calcium channel linked to activation of glutamate receptors and calcium-induced calcium release in the catfish retina. J Physiol, 2001; 535(Pt 1): 47-63.
    [75] Davis SF and Linn CL. Mechanism linking NMDA receptor activation to modulation of voltage-gated sodium current in distal retina. Am J Physiol Cell Physiol, 2003; 284(5): C1193-204.
    [76] Beckman ML, Bernstein EM, and Quick MW. Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci, 1999; 19(11): RC9.
    [77] Kheifets V and Mochly-Rosen D. Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol Res, 2007; 55(6): 467-76.
    [78] Law RM, Stafford A, and Quick MW. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J Biol Chem, 2000; 275(31): 23986-91.
    [79] Corey JL, Davidson N, Lester HA, Brecha N, and Quick MW. Protein kinase C modulates the activity of a cloned gamma-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter. J Biol Chem, 1994; 269(20): 14759-67.
    [80] Quick MW, Corey JL, Davidson N, and Lester HA. Second messengers, trafficking-related proteins, and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1. J Neurosci, 1997; 17(9): 2967-79.
    [81] Kamermans M and Spekreijse H. The feedback pathway from horizontal cells to cones. A mini review with a look ahead. Vision Res, 1999; 39(15): 2449-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700