用户名: 密码: 验证码:
基于GIServices的SWAT水文模型服务研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在环境建模领域,由于大多数地学模型算法复杂且参数众多,研究人员需要花费大量的时间精力学习如何使用模型及制备输入数据,而且这类模型通常只能在本地计算机上运行,这就限制了模型的推广应用程度和与其它模型的互操作性。SWAT (Soil and Water Assessment Tool)模型是地学模型最优秀代表之一,于1994年由美国农业部研发成功以来,在全球得到了广泛应用,成为水资源及生态环境领域科研与水文业务的重要工具。但是,目前在模型及其输出数据的共享和互操作方面仍存在很大困难,解决该问题的关键是需要构建一个基于Webservices的地理信息服务(Geographic Information Web Services, GISevrices)平台,进而实现人-信息-计算工具协同工作的互动环境。
     Web services技术是将应用程序通过标准接口以独立组件的形式发布在Internet上,可以被网上的用户调用及直接使用,也可以和其它服务进行松散耦合和数据交换。基于Web services发展的地理信息服务是对地理数据服务和地理处理服务的统称,是提高地学领域数据共享程度、空间分析和地理处理互操作性的最有效途径。目前地理信息服务的研究主要集中在数据服务和简单的空间分析服务,对较复杂的地理处理服务和更复杂的环境建模服务的研究相对较少。地理信息服务在水文水资源领域的应用也主要集中在数据服务的发布、集成和处理,将地理信息服务提升到模型(如SWAT模型)层面是亟待解决的前沿问题。
     针对以上问题,本文探析了基于GIServices的SWAT水文模型服务的实现机制,完成了将SWAT模型以Web services的方式在网上发布,支持跨平台和异构环境的调用和集成。为科研人员通过服务接口调用SWAT水文模型服务并直接进行模拟处理,或者将其集成到用户自己的模型中提供了有效途径。
     本文主要研究成果如下:
     (1)在深入研究Web services、地理信息服务、地理处理服务的理论背景和关键技术的基础上,从水文模型服务的实现方法、服务链工作流模式、服务性能制约因素、事务模式和服务粒度设定等多个方面,研究和阐述了水文模型发布为地理信息服务的关键理论和技术问题,提出了基于GIServices的SWAT水文模型服务的实现机制,包括理论框架和技术框架两部分,为实现SWAT模型的Web服务奠定了基础。
     (2)基于提出的SWAT水文模型服务的理论机制和技术框架,构建了SWAT模型水文循环部分所有处理过程的Web服务,即SWAT Web Services,可以广泛应用于在线SWAT水文模拟和基于SWAT模型服务的应用程序创建。SWAT Web Services共包括10个自定义的服务,分别是流域离散化、水文响应单元(HRU)分析、气象数据空间展布、积雪、土壤温度、蒸散发、地表径流、壤中流、地下径流和土壤含水量服务,各服务可以单独调用,也可以进行服务组合。
     (3)基于发布的SWAT Web Services和地理信息服务开源软件平台开发了一个WebGIS原型系统——黑河干流山区水文信息服务及可视化系统。该系统能够通过调用SWAT模型服务实现SWAT模型的在线操作,并实现了二维、三维联动的水文模拟结果空间可视化、基于水文响应单元和水文站点的逐日水文信息时空查询功能、空间数据查询和空间分析等功能。
     综上所述,基于Web services的地理信息服务为提高SWAT模型的互操作性和深层集成提供了有效的技术支持。SWAT水文模型服务可将原来在本地计算机运行的水文模型通过标准的服务接口在网上发布,大大提高了SWAT模型及其模拟结果的可访问性、互操作性和应用范围。此外,由SWAT水文模型服务研发的原型系统(黑河干流山区水文信息服务及可视化系统)中二维、三维联动的地学可视化功能,可有助于加深对水文过程的理解,便于多尺度时空查询及下载应用。总之,本文构建的SWAT水文模型服务有望成为模型层面服务的新范式。
In the field of environmental modeling, most algorithms of geoscientific models are so complex that the users require considerable time to learn how to use them and to prepare the complicated input data. Moreover, these geospatial modules or models are developed and used on a local machine. This situation limits the application and interoperability of geospatial algorithms or environmental models.SWAT (Soil and Water Assessment Tool) model, which was developed by United States Department of Agriculture in1994, is one of the most outstanding and representative geoscientific models. SWAT model has been widely applied in the fields of water resource and ecological environment all over the world. But there are still a lot of limits in sharing and interoperability for the model as well as its simulated result. The critical solution for these challenges is to build a Geographic Information Web Services (GIServices) platform as an interactive environment so as to allow collaborative work among researchers, information and computing equipment.
     Web services are self-defined independent software components accessible over the Internet with standard interfaces to describe a set of operations. The end user can invoke and execute a Web services or bind together different Web services to build their own application. Geographic Information Web services (GIServices), arised with Web services applied in GIS, are Web services that enable users to access geographic information, geoprocessing tools, and environmental models via the Internet. GIServices provide an effective solution to increase geospatial data sharing and geoprocessing interoperability. Most existing GIServices remain in the level of geospatial data and simple geospatial analytical services, so there is little research in complicated geoprocessing services and more complicated environmental models as Web services. Moreover, GIServices in hydrology are mainly concentrated in releasing data services. Therefore, to promote GIServices from data services level to models services level (e.g. SWAT model) is a cutting edge problem to be solved urgently.
     Aiming at above problems, this paper explored the realization mechanism to publish SWAT model as GIServices and implemented the SWAT model exposed as Web services accessed over the internet, supporting to be invoked and integrated at cross-platform and heterogeneous environment. It is a valid approach to allow researchers to invoke SWAT Web services and then execute simulation processing, or integrate them to their own applications.
     The main achievements of this dissertation are as follows.
     (1) In the basis of analyzing difference between geospatial calculations and hydrologic modeling algorithm, a design and implementation strategy for establishing models Web services for SWAT based on GIServices was proposed considering implementation methods, workflow types and transaction patterns of service chain, service granularity balance and other aspects. The design and implementation strategy consists of theoretical framework and technical framework. In the proposed process, to overcome technical challenges, such as the large amount of data required by hydrological models, complex algorithm and time-consuming execution of hydrological models and so on, should be fully taken into account in the research.
     (2) Relying on the theoretical and technical framework of the design and implementation strategy, SWAT was deployed to be exposed as hydrological model services named SWAT Web Services. The SWAT Web Services include ten atomic services developed using our approach, which were Watershed Delineation Service, HRU (Hydrological Response Units) Analysis Service, WeatherData Distribution Service, Snow Service, Soil Temperature Service, Evapotranspiration Service, Surface Runoff Service, Lateral Flow Service, Groundwater Flow Service and Soil Water Service.
     (3) A prototype WebGIS system was provided on account of free softwares to achieve SWAT simulation online by invoking SWAT Web Services, which was Hydrological Information Services and Visualization system for Mountainous Watershed of Heihe Mainstream River. The prototype system was emphasized in functionalities as follows,2D and3D visualized interaction for hydrological simulated results and geospatial information, daily spatio-temporal query for hydrological information on any HRUs and hydrological stations, geospatial data query and geospatial analysis.
     In conclusion, GIServices, grown along with Web services, offers effective support to increase interoperability and deep integration for SWAT model. Via released standard interfaces online, SWAT Web Services dramatically promote the accessibility, interoperability and sharing of SWAT and its outputs among different researchers. In addition, the prototype WebGIS system based on the adoption of SWAT Web services proved that the strategy for establishing SWAT Web services proposed in this research is feasible and practicable. The dynamical2D and3D geovisualized interaction implemented in the prototype system facilitate scientists in improving the understanding of hydrological processes, and daily spatio-temporal query and download of hydrological information on HRUs have enhanced the application scope of SWAT simulated results in future analysis. In summary, SWAT Web Services presented in this research is expected to become a new paradigm for GIServices in models level.
引文
[1]Gassman P W, Reyes M R, Green C H, et al. The soil and water assessment tool: historical development, applications and future research directions [J]. Transactions of the ASABE,2007,50(4):1211-1250.
    [2]Pallos, M S. Service-Oriented Architecture:A Primer[J]. eAI Journal,2001,9:32-35.
    [3]龚健雅,高文秀.地理信息共享与互操作技术及标准[J].地理信息世界,2006,03:18-27.
    [4]Peng Z R, Tsou M H. Internet GIS:distributed geographic information services for the internet and wireless networks[M], John Wiley & Sons,2003.
    [5]Hu S, Bian L. Interoperability of functions in environmental models-a case study in hydrological modeling[J]. International Journal of Geographical Information Science,2009, 23(5):657-681.
    [6]Castronova A M, Goodall J L, Elag M M. Models as Web servicess using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard[J]. Environmental Modelling & Software,2013,41:72-83.
    [7]于海龙.面向Web服务的GIS应用模型复用研究[M].上海交通大学出版社,2012.
    [8]Geller G N, Turner W. The model web:a concept for ecological forecasting[C]. IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain, July 2007.
    [9]Nativi S, Mazzetti P, Geller G N. Environmental model access and interoperability:The GEO Model Web initiative[J]. Environmental Modelling & Software,2013,39:214-228.
    [10]Roman D, Schade S, Berre A J, et al. Model as a Service (MaaS) [C]. AGILE Workshop—Grid Technologies for Geospatial Applications, Hannover, Germany.2009.
    [11]Yang C, Raskin R, Goodchild M, et al. Geospatial cyberinfrastructure:past, present and future[J]. Computers, Environment and Urban Systems,2010,34(4):264-277.
    [12]http://inspire.ec.europa.eu/
    [13]张金区,诸云强,王卷乐,等.而向服务的地学多源数据虚拟整合及其可视化分析[J].地球信息科学学报,2010,12(5):613-619.
    [14]Rautenbach V, Coetzee S, Iwaniak A. Orchestrating OGC Web servicess to produce thematic maps in a spatial information infrastructure[J]. Computers, Environment and Urban Systems,2013,37:107-120.
    [15]Hey T, Trefethen A E. The UK e-science core programme and the grid[J]. Future Generation Computer Systems,2002,18(8):1017-1031.
    [16]何洪林,张黎,黎建辉,等.中国陆地生态系统碳收支集成研究的e-Science系统构建[J].地球科学进展,2012,27(2):246-254.
    [17]Bosin A, Dessi N, Pes B. Extending the SOA paradigm to e-Science environments[J]. Future Generation Computer Systems,2011,27(1):20-31.
    [18]Jesus de J, Walker P, Grant M, et al. WPS orchestration using the Taverna workbench:The eScience approach[J]. Computers & Geosciences,2012,47:75-86.
    [19]http://his.cuahsi.org
    [20]http://www.opendap.org/
    [21]王家耀,成毅,吴明光,等.地理信息系统的演进与发展[J].测绘科学技术学报,2008,04:235-240.
    [22]Tao C V. Development of Web Based GIServices[C]//Proc of GIS 2000 Conference [C/CD]. Toronto.2000.
    [23]Tao C V. Online GIServices[J]. Journal of Geospatial Engineering,2001,3(2):135-143.
    [24]彭壮志.基于Web servicess 的 WebGIS的研究与开发[D].武汉大学,2005.
    [25]Muttiah R S, Wurbs R A. Modeling the impacts of climate change on water supply reliabilities[J]. Water Resources Assoc,2002,27(3):407-419.
    [26]Krysanova V, Arnold J G. Advances in ecohydrological modelling with SWAT-a review[J]. Hydrological Sciences Journal,2008,53(5):939-947.
    [27]Srinivasan R, Ramanarayanan T, Arnold J, et al. Simulation of hydrology and erosion in a Texas watershed using SWAT[J]. Hydrology in the Humid Tropic Environment,1998,253: 175-183.
    [28]Peterson J R, Hamlett J M. Hydrologic calibration of the SWAT model in a watershed containing fragipan soils[J]. Journal of the American Water Resources Association,1998, 34(3):531-544.
    [29]Arnold J G, Muttiah R S, Srinivasan R, et al. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin[J]. Journal of Hydrology,2000, 227(1-4):21-40.
    [30]Schmalz B, Fohrern. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model[J]. Advances in Geosciences,2009,21:91-98.
    [31]Miseon L, Geunae P, Minji P, et al. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery[J]. Journal of Environmental Sciences,2010,22(6):826-833.
    [32]Rosenberg N J, Brown R A, Izaurralde R C, et al. Integrated assessment of Hadley Centre (HadCM2) climate change projections in agricultural productivity and irrigation water supply in the conterminous United States:I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model[J]. Agric For Meteor,2003, 117(1-2):73-96.
    [33]Jha M, Arnold J G, Gassman P W, et al. Climate change sensitivity assessment on upper Mississippi River Basin streamflows using SWAT[J]. J American Water Resour Assoc,2006, 42(4):997-1015.
    [34]Takle E S, Jha M, Anderson C J. Hydrological cycle in the upper Mississippi River Basin: 20th century simulations by multiple GCMs[J]. Geophys Res Letters,2005,32(18): L18407.1-L18407.5.
    [35]Krysanova V, Hatterman F, Wechsung F. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment[J]. Hydrol Process,2005,19(3): 763-783.
    [36]DiLuzio M, Srinivasan R, Arnold J G, et al. ArcView Interface for SWAT2000 User's Guid[M]. Temple, Texas:Texas Water Resources Institute, College Station,2002, Tex as, 7-351.
    [37]Sophocleous M A, Koelliker J K, Govindaraju RS, et al. Integrated numerical modeling for basin wide water management:the case of the Rattlesnake Creek basin in South Central Kansas[J]. J. Hydrol.1999,214(1-4):179-196.
    [38]Nam Won kim, Ⅱ Moon Chung, Yoo Seung Won, et al. Development and application of the integrated SWAT-MODFLOW model[J]. Journal of Hydrology,2008,356:1-16.
    [39]George C, Leon L F. WaterBase:SWAT in an open source GIS[J]. The Open Hydrology Journal 2007,1:19-24.
    [40]Francisco Olivera, Milver Valenzuela, R Srinivasan, et al. ArcGIS-SWAT:A Geodata model and GIS interface for SWAT[J]. Journal of the American Water Resources Association,2006, 295-309.
    [41]White E D, Easton Z M, Fuka D R, et al. Development and application of a physically based landscape water balance in the SWAT model[J]. Hydrological Processes,2010,25(6): 915-925.
    [42]梁犁丽,汪党献,王芳.SWAT模型及其应用进展研究[J].中国水利水电科学研究院学报,2007,5(2):125-131.
    [43]庞靖鹏,徐宗学,刘昌明.SWAT模型研究引用进展[J].水土保持研究,2007,14(3):31-35.
    [44]赖格英,吴顿银,钟业喜,等.SWAT模型的开发与应用进展[J].河海大学学报(自然科学版),2012,40(3):243-251.
    [45]刘昌明,李道峰,田英.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437-445.
    [46]李道峰,田英,刘昌明.黄河源区变化环境下分布式水文模拟[J].地理学报,2004,59(4):565-573.
    [47]刘晋,李致家.黄河河源区分布式水文模拟研究[J].人民黄河,2007,29(9):30-32.
    [48]赵芳芳,徐宗学.黄河源区未来气候变化的水文响应[J].资源科学,2009,31(5):722-730.
    [49]唐芳芳,徐宗学,左德鹏.黄河上游流域气候变化对径流的影响[J].资源科学,2012,34(6):1079-1088.
    [50]苏龙强,徐宗学,刘兆飞,等.黄河卢氏流域径流对未来气候变化的响应[J].北京师范大学学报(自然科学版),2012,48(5):505-509.
    [51]张小咏,李佳,杨艳昭,等.基于SWAT模型的长江源区径流模拟[J].西北林业学院学报,2012,27(5):38-44.
    [52]李佳,张小咏,杨艳昭.基于SWAT模型的长江源土地利用/土地覆被情景变化对径流影响研究[J].水土保持研究,2012,19(3):119-126.
    [53]王中根,朱新军,夏军.海河流域分布式SWAT模型的构建[J].地理科学进展,2008,27(4):1-6.
    [54]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [55]冯夏清,章光新,尹雄锐.基于SWAT模型的乌裕尔河流域气候变化的水文响应[J].地理科学进展,2010,29(7):827-832.
    [56]顾万龙,竹磊磊,许红梅,等.SWAT模型在气候变化对水资源影响研究中的应用:以河南省中部农业区为例[J].生态学杂志,2010,29(2):395-400.
    [57]翟家齐,赵勇,裴源生.南水北调中线水源区供水水文风险因子分析[J].南水北调与 水利科技,2010,8(4):13-16.
    [58]翟晓燕,夏军,张永勇.基于SWAT模型的沙澧河流域径流模拟[J].武汉大学学报:工学版,2011,44(2):142-155.
    [59]Zhang T, Tsou M H. Developing a grid-enabled spatial Web portal for Internet GIServices and geospatial cyberinfrastructure[J]. International Journal of Geographical Information Science,2009,23(5):605-630.
    [60]Di L, Zhao P, Yang W, et al. Intelligent geospatial Web servicess[C]//Geoscience and Remote Sensing Symposium,2005. IGARSS'05. Proceedings.2005 IEEE International. IEEE,2005,2:1229-1232.
    [61]Granell C, Diaz L, Tamayo A,et al. Assessment of OGC web processing service for REST principles. International Journal of Data Mining, Modelling and Management (Special Issue on Spatial Information Modelling, Management and Mining),2012.
    [62]Tamayo A, Granell C, Huerta J. Measuring complexity in OGC Web servicess XML schemas:pragmatic use and solutions[J]. International Journal of Geographical Information Science,2012,26(6):1109-1130.
    [63]Oliveira M, Baptista C, Falcao A. A Web-based Environment for Analysis and Visualization of Spatio-temporal Data provided by OGC Services[C]//GEOProcessing 2012:The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services.2012:183-189.
    [64]Bejar R, Latre M A, Lopez-Pellicer F J, et al. SDI-based business processes:A territorial analysis web information system in Spain[J]. Computers & Geosciences,2012,46:66-72.
    [65]Shen D, Deng M, Di L, et al. Study on generation and sharing of on-demand global seamless data—Taking MODIS NDVI as an example[J]. Computers & Geosciences,2013, 54:66-74.
    [66]Feng M, Liu S, Euliss Jr N H, et al. Prototyping an online wetland ecosystem services model using open model sharing standards[J]. Environmental Modelling & Software,2011, 26(4):458-468.
    [67]Simoes B, Conti G, Piffer S, et al. Enterprise-level architecture for interactive web-based 3D visualization of geo-referenced repositories[C]//Proceedings of the 14th International Conference on 3D Web Technology. ACM,2009:147-154.
    [68]GeoBrain,2011. NASA EOS Higher-Education Alliance (NEHEA)-GeoBrain. George Mason University,.
    [69]Li X, Di L, Han W, et al. Sharing geoscience algorithms in a Web services-oriented environment (GRASS GIS example) [J]. Computers & Geosciences,2010,36:1060-1068.
    [70]Di L, Zhao P, Han W, et al. Web services-based GeoBrain online analysis system (GeOnAS) [C]. NASA Science Technology Conference, Adelphi,2007, June. USA.
    [71]Han, W., Di, L., Zhao, P., Wei, Y., Li, X.,2008. Design and Implementation of GeoBrain Online Analysis System (GeOnAS). In:Proceedings the 8th Interna-tional Symposium on Web and Wireless Geographical Information Systems Shanghai, China, pp.27-36.
    [72]Luo W, Li X, Molloy I, et al. Web services for extracting stream networks from DEM data[J]. GeoJournal on GIS and Built Environment,2008.
    [73]Qiu F, Ni F, Chastain B, et al. GWASS:GRASS web application software system based on the GeoBrain Web services[J]. Computers & Geosciences,2012,47:143-150.
    [74]Deng M, Di L. Utilization of Latest Geospatial Web services Technologies for Remote Sensing Education Through GeoBrain Sysem[C]//IEEE International Conference on Geoscience and Remote Sensing Symposium,2006. IGARSS 2006. IEEE,2006: 2013-2016.
    [75]Graul C, Zipf A. Biogeographic Research and the Spatial Web Towards Interoperable Analysis Tools for Global Change Based on the Web Processing Service (WPS)[C]. Digital Earth Summit on Geoinformatics:Tools for Global Change Research. Potsdam, Germany, 2008.
    [76]Fook K D, Vieira Monteiro A M, Camara G, et al. GeoWeb servicess for sharing modelling results in biodiversity networks[J]. Transactions in GIS,2009,13(4):379-399.
    [77]Walenciak G, Zipf A. Designing a Web Processing Service Application Profile for Spatial Analysis in Business Marketing [C]. Proceeding of AGILE 2010 Conference,2010.
    [78]Hamre T, Krasemann H, Groom S, et al. Interoperable web GIS services for marine pollution monitoring and forecasting[J]. Journal of Coastal Conservation,2009,13(1):1-13.
    [79]Kulawiak M, Prospathopoulos A, Perivoliotis L, et al. Interactive visualization of marine pollution monitoring and forecasting data via a Web-based GIS[J]. Computers & Geosciences,2010,36(8):1069-1080.
    [80]Fils D, Cervato C, Reed J, et al. CHRONOS architecture:Experiences with an open-source services-oriented architecture for geoinformatics[J]. Computers & Geosciences,2009,35(4): 774-782.
    [81]Ma X, Carranza E J M, Wu C, et al. Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services[J]. Computers & Geosciences,2012,40:107-119.
    [82]Gkatzoflias D, Mellios G, Samaras Z. Development of a web GIS application for emissions inventory spatial allocation based on open source software tools[J]. Computers & Geosciences,2012,52:21-33.
    [83]Feng M, Zhang S, Gao X. Glacier Runoff Models Sharing Service and Online Simulation[C]//2010 Second International Conference on Advanced Geographic Information Systems, Applications, and Services. IEEE Computer Society,2010:123-126.
    [84]Xu L Y, Chen L P, Chen T E, et al. SOA-based precision irrigation decision support system[J]. Mathematical and Computer Modelling,2011,54(3):944-949.
    [85]Pourabdollah A, Leibovici D G, Simms D M, et al. Towards a standard for soil and terrain data exchange:SoTerML[J]. Computers & Geosciences,2012,45:270-283.
    [86]Han W, Yang Z, Di L, et al. CropScape:A Web services based application for exploring and disseminating US conterminous geospatial cropland data products for decision support[J]. Computers and Electronics in Agriculture,2012,84:111-123.
    [87]Diaz L, Broring A, McInerney D, et al. Publishing sensor observations into Geospatial Information Infrastructures:A use case in fire danger assessment[J]. Environmental Modelling & Software,2013,48:65-80.
    [88]Han W, Di L, Zhao P, et al. DEM Explorer:An online interoperable DEM data sharing and analysis system [J]. Environmental Modelling & Software,2012,38:101-107.
    [89]Yue P, Gong J, Di L, et al. GeoPW:Laying blocks for the geospatial processing web[J]. Transactions in GIS,2010,14(6):755-772.
    [90]范协裕,任应超,唐建智,等.基于OGC数据服务的空间信息处理服务平台[J].计算机应用研究,2012,29(9):3352-3354,3361.
    [91]徐卓揆,朱建军.利用代码迁移进行WPS服务[J].武汉大学学报(信息科学版),2012,37(3):370-373.
    [92]杨朝晖,余洁,郑文峰.基于WS-Security的GIS WPS服务安全机制的研究[J].测绘科学,2011,36(5):14-16.
    [93]何雄,高懿洋.基于WSRF的空间信息服务状态管理[J].测绘科学技术学报,2010,27(5):375-378.
    [94]刘嵘.集群式网格地理信息服务注册中心的构建研究[D].解放军信息工程大学,2011.
    [95]乐鹏.网络地理信息系统和服务[M].第1版.武昌:武汉大学出版社,2011:133-136.
    [96]Sun Z, Yue P, Di L. GeoPWTManager:a task-oriented web geoprocessing system[J]. Computers & Geosciences,2012,47:34-45.
    [97]龙凤鸣,李成名,袁学旺.面向任务的GIS服务应用研究[J].测绘通报,2012(10):92-95.
    [98]谢斌.策略驱动的空间信息服务协同自组合关键技术研究[D].浙江大学,2010.
    [99]努尔麦麦提.艾尔肯.空间信息服务聚合在标准农田管理中的应用研究[D].浙江大学,2013.
    [100]张登荣,俞乐,邓超,等.基于OGC WPS的Web环境遥感图像处理技术研究[J].浙江大学学报(工学版),2008,42(7):1184-1188.
    [101]承达瑜,王发良,周治武,等.基于BPEL的地理信息服务组合研究与实现[J].测绘科学,2010,35(6):259-261.
    [102]袁莹,康凌骏,邬群勇.协作式地理信息服务工作流平台的研究与实现[J].福州大学学报(自然科学版),2011,39(6):845-850.
    [103]徐卓揆,申小平.基于52 North WPS的Web Processing Service开发方法研究[J].测绘科学,2011,36(1):140-142.
    [104]孙雨,李国庆,黄震春.基于OGC WPS标准的处理服务实现研究[J].计算机科学,2009,36(8):86-88.
    [105]姜超,徐青,孙庆辉,等.基于OGC WPS的GIS空间分析方法[J].测绘科学,2011,36(6):198-200.
    [106]徐卓揆.基于HTML5、Ajax和WebService的WebGIS研究[J].测绘科学,2012,37(1):145-147.
    [107]刘志军,宋现锋,汪超亮,等.基于OGC WPS的遥感图像分布式检索系统研究[J].地理与地理信息科学,2008,24(4):1-5.
    [108]吴楠,何洪林,张黎,等.基于OGC WPS的碳循环模型服务平台的设计与实现[J].地球信息科学学报,2012,14(3):320-326.
    [109]杨晓明.基于WPS快速构建面向专业应用的WEB遥感影像处理应用系统试验研究[J].遥感应用,2011(4):42-45.
    [110]邬群勇,王钦敏.基于Web servicess的空间信息应用集成解决方案研究[J].地球信息科学学报,2011,13(2):219-225.
    [111]刘勇,李成名.面向业务用户的地理信息服务语义集成方法研究[J].测绘科学,2011, 36(1):92-95.
    [112]承达瑜,陈军,韩刚,等.基于消息队列的实时GIS协同操作研究[J].中国矿业大学学报,2012,41(1):127-132.
    [113]杜云艳,冯文娟,何亚文,等.网络环境下的地理信息服务集成研究[J].武汉大学学报(信息科学版),2010,35(3):347-349.
    [114]刘勇.基于语义的地理信息服务集成研究[D].山东科技大学,2011.
    [115]李波,丁仙峰,伊文英,等.基于REST的空间信息服务互操作协议的研究[J].计算机科学,2012,39(6A):109-112.
    [116]毛峰,刘婷,刘仁义,等.基于REST面向资源的地理信息服务设计[J].计算机工程,2011,37(8):238-240.
    [117]姚鹤岭.基于REST的GIS Web服务研究[D].解放军信息工程大学,2005.
    [118]詹骞.基于Ajax/REST的GIS WEB服务研究与实现[D].中国地质大学,2008.
    [119]徐方斌.基于OGC的REST服务在地理信息交互中的设计实现与Mashup应用研究[D].浙江大学,2012.
    [120]李学东.基于WEB的地学数据集成与发布技术研究[D].中国地质大学(北京),2009.
    [121]杨娟,黄淑铃,方刚,等.城市规划管理信息系统的设计与实现[J].测绘科学,2012,37(1):83-84.
    [122]路文娟,田宏红,忘记周.地理信息服务的城市综合市情系统[J].测绘科学,2011,36(6):98-100.
    [123]黄风华,晏路明.基于SOA的税收征管网络GIS平台[J].地球信息科学学报,2012,14(2):209-216.
    [124]段建华.基于WebGIS的分布式接处警系统研究[D].中国地质大学(北京),2010.
    [125]袁磊,赵俊三,张万强,等.面向GeoData Service的矿产资源规划信息服务系统[J].地球信息科学学报,2012,14(2):223-221.
    [126]孙笑古.基于地理信息服务平台的土地督察违法用地监测系统研究[D].南京大学,2011.
    [127]宁安良.面向3G终端的移动地理信息服务研究[D].中国海洋大学,2010.
    [128]Goodall J L, Horsburgh J S. Whiteaker T L, et al. A first approach to Web servicess for the National Water Information System[J]. Environmental Modelling & Software,2008,23(4): 404-411.
    [129]http://water.usgs.gov/nwis_activities/XML/nwis_hml.htm
    [130]Kanwar R, Narayan U, Lakshmi V. Web services based hydrologic data distribution system[J]. Computers & Geosciences,2010,36(7):819-826.
    [131]Huang M, Maidment D R, Tian Y. Using SOA and RIAs for water data discovery and retrieval[J]. Environmental Modelling & Software,2011,26(11):1309-1324.
    [132]Leonard L, Duffy C J. Essential Terrestrial Variable data workflows for distributed water resources modeling[J]. Environmental Modelling & Software,2013,50:85-96.
    [133]Demir I, Krajewski W F. Towards an integrated Flood Information System:Centralized data access, analysis, and visualization[J]. Environmental Modelling & Software,2013,50: 77-84.
    [134]Granell C, Diaz L, Gould M. Service-oriented applications for environmental models: Reusable geospatial services[J]. Environmental Modelling & Software,2010,25(2): 182-198.
    [135]Li X, Di L, Han W, et al. Sharing geoscience algorithms in a Web services-oriented environment (GRASS GIS example)[J]. Computers & Geosciences,2010,36(8): 1060-1068.
    [136]Liu Y, Xu Y, Ye W. ModflowOnAzure:An On-Demand Groundwater Modeling as a Service Solution[C]//IEEE International Conference on Cloud Computing Technology and Science, Indianapolis, Nov.2010.
    [137]Kulkarni A T, Mohanty J, Eldho T I, et al. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds[J]. Computers & Geosciences,2014,64:7-14.
    [138]Burger C M, Kollet S, Schumacher J, et al. Introduction of a Web services for cloud computing with the integrated hydrologic simulation platform ParFlow[J]. Computers & Geosciences,2012,48:334-336.
    [139]Sun A. Enabling collaborative decision-making in watershed management using cloud-computing services[J]. Environmental Modelling & Software,2013,41:93-97.
    [140]Smiatek G, Kunstmann H, Werhahn J. Implementation and performance analysis of a high resolution coupled numerical weather and river runoff prediction model system for an Alpine catchment[J]. Environmental Modelling & Software,2012,38:231-243.
    [141]Brooking C, Hunter J. Providing online access to hydrological model simulations through interactive geospatial animations[J]. Environmental Modelling & Software,2013,43: 163-168.
    [142]Goodall J L, Saint K D, Ercan M B, et al. Coupling climate and hydrological models: Interoperability through Web servicess[J]. Environmental Modelling & Software,2013,46: 250-259.
    [143]Goodall J L, Robinson B F, Castronova A M. Modeling water resource systems using a service-oriented computing paradigm[J]. Environmental Modelling & Software,2011,26(5): 573-582.
    [144]Maidment D R. Bringing water data together[J]. Journal of Water Resources Planning and Management,2008,134(2):95-96.
    [145]Tarboton D G, Horsburgh J S, Maidment D R, et al. Development of a community hydrologic information system [C]//In:Proceeding of the 18th World IMACS/MODSIM Congress, Cairns, Australia, July 2009:988-994.
    [146]Ames D P, Horsburgh J S, Cao Y, et al. HydroDesktop:Web servicess-based software for hydrologic data discovery, download, visualization, and analysis[J]. Environmental Modelling & Software,2012,37:146-156.
    [147]Castronova A M, Goodall J L, Ercan M B. Integrated modeling within a hydrologic information system:an OpenMI based approach[J]. Environmental Modelling & Software, 2013,39:263-273.
    [148]McEnery J A, McKee P W, Shelton G P, et al. Hydrologic information server for benchmark precipitation dataset[J]. Computers & Geosciences,2013,50:145-153.
    [149]Horsburgh J S, Tarboton D G, Maidment D R, et al. Components of an environmental observatory information system[J]. Computers & Geosciences,2011,37(2):207-218.
    [150]Peckham S D, Goodall J L. Driving plug-and-play models with data from Web servicess:A demonstration of interoperability between CSDMS and CUAHSI-HIS[J]. Computers & Geosciences,2013,53:154-161.
    [151]Beran B, Goodall J, Valentine D, et al. Standardizing access to hydrologic data repositories through Web servicess[C]//2009 International Conference on Advanced Geographic Information Systems & Web servicess, IEEE,2009:64-67.
    [152]GlaBer C, Thurkow D, Dette C, et al. The development of an integrated technical-methodical approach to visualise hydrological processes in an exemplary post-mining area in Central Germany[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(3):275-281.
    [153]Best D M. Lewis R R. GWVis:A tool for comparative ground-water data visualization[J]. Computers & Geosciences,2010,36(11):1436-1442.
    [154]Chesnaux R, Lambert M, Walter J, et al. Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems:Application to the Saguenay-Lac-St.-Jean region, Canada[J]. Computers & Geosciences,2011,37(11): 1870-1882.
    [155]年雁云.黑河流域水文信息系统及其应用研究[D].兰州:中国科学院寒区旱区环境与工程研究所,2013.
    [156]于海龙.面向Web服务的GIS应用模型复用研究[M].第1版.上海交通大学出版社,2012.
    [157]梁永会.面向网格服务的SWAT模型集成体系研究[D].郑州大学,2010.
    [158]赵银军,丁爱中,卢远,等.基于虚拟地球的数字流域平台集成技术[J].水电能源科学,2011,29(6):71-73.
    [159]臧英平,许捍卫,钱海峰,等.基于Flex与Google Earth的数字流域地图服务平台[J].水电能源科学,2012,30(9):66-69.
    [160]李欣.基于Flash的三维WebGIS可视化研究.浙江大学,2012.
    [161]Goodchild M F. The use cases of digital earth[J]. International Journal of Digital Earth, 2008,1(1):31-42.
    [162]Ballagh L M, Raup B H, Duerr R E, et al. Representing scientific data sets in KML: Methods and challenges[J]. Computers & Geosciences,2011,37(1):57-64.
    [163]Heavner M J, Fatland D R, Hood E, et al. SEAMONSTER:A demonstration sensor web operating in virtual globes[J]. Computers & Geosciences,2011,37(1):93-99.
    [164]Yamagishi Y, Nagao H, Suzuki K, et al. Development of Conversion Tool for observation data of JAMSTEC research vessels to KML[J]. JAMSTEC Report of Research and Development,2009,2009:173-178..
    [165]Yamagishi Y, Yanaka H, Suzuki K, et al. Visualization of geoscience data on Google Earth: Development of a data converter system for seismic tomographic models[J]. Computers & Geosciences,2010,36(3):373-382.
    [166]Sun X, Shen S, Leptoukh G G, et al. Development of a Web-based visualization platform for climate research using Google Earth[J]. Computers & Geosciences,2012,47:160-168.
    [167]Tiede D, Lang S. Analytical 3D views and virtual globes—scientific results in a familiar spatial context[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(3): 300-307.
    [168]Henry A. Using Google Earth for Internet GIS[J]. Institute of Geography School of GeoSciences Edinburgh, University of Edinburgh. MSc in Geographical Information Science,2009,24.
    [169]Chien N Q, Keat Tan S. Google Earth as a tool in 2-D hydrodynamic modeling[J]. Computers & Geosciences,2011,37(1):38-46.
    [170]Chiang G T, White T O H,Dove M T, et al. Geo-visualization Fortran library[J]. Computers & Geosciences,2011,37(1):65-74.
    [171]Oberlies N H, Rineer J I, Alali F Q, et al. Mapping of sample collection data:GIS tools for the natural product researcher[J]. Phytochemistry letters,2009,2(1):1-9,
    [172]Joseph Turk F, Hawkins J, Richardson K, et al. A tropical cyclone application for virtual globes[J]. Computers & Geosciences,2011,37(1):13-24.
    [173]Smith T M, Lakshmanan V. Real-time, rapidly updating severe weather products for virtual globes[J]. Computers & Geosciences,2011,37(1):3-12.
    [174]Wright T E, Burton M, Pyle D M, et al. Visualising volcanic gas plumes with virtual globes[J]. Computers & Geosciences,2009,35(9):1837-1842.
    [175]Chen A, Leptoukh G, Kempler S, et al. Visualization of A-Train vertical profiles using Google Earth[J]. Computers & Geosciences,2009,35(2):419-427.
    [176]Smith T M, Lakshmanan V. Real-time, rapidly updating severe weather products for virtual globes[J]. Computers & Geosciences,2011,37(1):3-12.
    [177]De Paor D G, Whitmeyer S J. Geological and geophysical modeling on vitual globes using KML, COLLADA, and Javascript[J]. Computers & Geosciences,2011(37):100-110.
    [178]Martinez-Grana A M, Goy J L, Cimarra C A. A virtual tour of geological heritage: Valourising geodiversity using Google Earth and QR code[J]. Computers & Geosciences, 2013,61:83-93.
    [179]Blenkinsop T G. Visualizing structural geology:From Excel to Google Earth[J]. Computers & Geosciences,2012(45):52-56.
    [180]Postpischl L, Danecek P, Morelli A, et al. Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language[J]. Computers & Geosciences,2011(37):47-56.
    [181]Akbar M, Aliabadi S, Patel R, et al. A fully automated and integrated multi-scale forecasting scheme for emergency preparedness[J]. Environmental Modelling & Software,2013,39: 24-38.
    [182]Tomaszewski B. Situation awareness and virtual globes:Applications for disaster management J]. Computers & Geosciences,2011,37(1):86-92.
    [183]Carvalheiro L C, Bernardo S O, Orgaz M D M, et al. Forest Fires Mapping and Monitoring of current and past forest fire activity from Meteosat Second Generation Data[J]. Environmental Modelling & Software,2010,25(12):1909-1914.
    [184]Kim S A, Shin D, Choe Y, et al. Integrated energy monitoring and visualization system for Smart Green City development:Designing a spatial information integrated energy monitoring model in the context of massive data management on a web based platform[J]. Automation in Construction,2012,22:51-59.
    [185]Paraskevas T. Virtual globes and geological modeling[J]. International Journal of Geosciences,2011,2(4):648-656.
    [186]Wang Y, Huynh G, Williamson C. Integration of Google Maps/Earth with microscale meteorology models and data visualization[J]. Computers & Geosciences,2013,61:23-31.
    [187]唐桂文.基于数字地球平台的地理信息服务[D].首都师范大学,2008.
    [188]蔡畅.三维地理信息网络服务的理论与关键技术研究[D].解放军信息工程大学,2011.
    [189]罗显刚.数字地球三维空间信息服务关键技术研究[D].中国地质大学,2010.
    [190]占真,刘克中,何正伟,等.基于Google Earth的多源海事信息三维发布方法[J].上海海事大学学报,2012,33(4):11-14.
    [191]蔡志浩,燕如意,王英勋.无人机遥感多载荷任务规划方法[J].上海交通大学学报,2011,45(2):267-271.
    [192]敖杰刚,吴启文.小型无人机航线编制研究[J].测绘科学,2012,37(2):88-90.
    [193]管振德,庞贻鸿.Google Earth在线性工程地质灾害调查中的应用[J].人民长江,2012,43(19):45-47.
    [194]焦俊超,马安青,娄安刚,等.GIS和Google Earth开发在溢油预测中的整合应用[J].遥感技术与应用,2011,26(2):215-219.
    [195]赵成铭.Google Earth在输电线路工程中的应用研究[J].测绘通报,2012(5):71-72.
    [196]安洁玉,程朋根,丁斌芬.基于Google Earth二维影像获取建筑物高度的方法[J].地理与地理信息科学,2010,26(6):31-33.
    [197]陈修治,陈燕乔,苏泳娴.基于谷歌地球和GPS的物品定位跟踪系统[J].计算机工程与设计,2011,32(9):3014-3018.
    [198]王志红,张亦汉,任金铜.KML标记语言规范及其与GML的交换研究[J].测绘标准化,2010,26(1):10-13.
    [199]刘祥磊,马静.基于ArcEngine的ArcGIS矢量数据到KML文件转换方法研究[J].国土资源遥感,2007(3):98-101.
    [200]任山君,王琪,杨少敏.MapInfo数据与Google Earth数据转换[J].大地测量与地球动力学,2010,30(增17):75-77.
    [201]孟成,鄂栋臣,艾松涛.极地考察站三维信息系统的设计与实现[J].测绘通报,2012(3):23-25.
    [202]王艳,何凭宗.基于VC++的Google Earth KML地标文件自动生成及其应用[J].北京测绘,2009(2):32-34.
    [203]孙伟,马照亭,张成成,等.一种基于MapServer的KML地理信息网络服务实现方法[J].测绘通报,2009(12):53-56.
    [204]李明江,朱良峰.KML超叠加层的批量生成及其在虚拟地球中的应用[J].红外,2012,33(8):32-39.
    [205]袁俊超,苗放,李玉林.使用KML实现多细节层次技术[J].地理空间信息,2009,7(4):159-161.
    [206]Zhu L, Wang X, Zhang B. Modeling and visualizing borehole information on virtual globes using KML[J]. Computers & Geosciences,2014,62:62-70.
    [2074]马立广,曹彦荣.Google Earth COM API及KML技术在旅游管理信息系统开发中的应用[J].地球信息科学学报,2010,12(6):828-834.
    [208]杜英俊,于重重,刘杰.基于KML开发的GIS系统研究与应用[J].计算机应用与软件,2010,27(10):49-51.
    [209]张冬有,王潇.Google Earth在森林防火信息管理中的实现方法[J].中国农学通报,2011,27(13):59-62.
    [210]唐慧强,薛莉.基于Google Earth的城市实时天气可视化系统[J].计算机工程与设计,2013,34(10):3675-3679.
    [211]汤志诚,余明,基于ArcObjects与Google Earth的GIS应用系统设计与实现[J].福建师范大学学报(自然科学版),2013,29(2):28-34.
    [212]莫善军,李志凛,陈成江,等.利用Google Earth建立等高线三维地形模型[J].测绘通报,2012(2):39-42.
    [213]金永福,罗冬青,郭伟其,等.基于Google Earth的海域使用管理信息系统的应用Ⅱ.二次开发篇[J].海洋环境科学,2010,29(3):436-439.
    [214]OGC. OGC web map server implementation specification 1.1.1.2002.
    [215]OGC. OpenGIS Web Map Server Implementation Specification 1.3.0.2006.
    [216]OGC. OpenGIS Web Feature Service Implementation Specification 1.1.0.2005.
    [217]OGC. OpenGIS Web Coverage Service Implementation Specification 1.1.0.2006.
    [218]OGC. OpenGIS Web Processing Service 1.0.0.2007.
    [219]Lopez-Pellicer F J, Renteria-Agualimpia W, Bejar R, et al. Availability of the OGC geoprocessing standard:March 2011 reality check[J]. Computers & Geosciences,2012,47: 13-19.
    [220]Arnold J G, Williams J R, Srinivasan R, et al. Large area hydrologic modeling and assessment part I:model development. Journal of the American Water Resources Association,1998,34(1):73-89.
    [221]徐宗学.水文模型[M].北京:科学出版社,2009.
    [222]肖军仓,周文斌,罗定贵,等.非点源污染模型SWAT用户应用指南[M].北京:地质出版社,2010.
    [223]Arnold J G,D N Moriasi, P W Gassman, et al. SWAT:Model use, calibration, and validation [J]. Transactions of the ASABE,2012,55(4):1491-1508.
    [224]Philip W, Gassman M R, Reyes C H, et al. The Soil and Water Assessment Tool:Historical Development, Application, and Future Research Directions[M]. Working Paper,2007.
    [225]Schut P. OpenGIS Web Processing Service. Open Geospatial Consortium Inc., Wayland, MA, USA,2007.
    [226]Dubois G, Schulz M, Skoien J, et al. eHabitat, a multi-purpose Web Processing Service for ecological modeling[J]. Environmental Modelling & Software,2013,41:123-133.
    [227]Jones R, Cornford D, Bastin L. UncertWeb processing service:making models easier to access on the web[J]. Transactions in GIS,2012,16(6):921-939.
    [228]WfMC. Process Definition Interface —XML Process Definition Language. Workflow Management Coalition, Cohasset, USA,2008:217.
    [229]Jordan D, Evdemon J, Alves A, et al. Web servicess business process execution language version 2.0. Organization for the Advancement of Structured Information Standards, Burlington, OASIS standard,USA,2007.
    [230]Meng X, Bian F, Xie Y. Research and realization of geospatial information service orchestration based on BPEL[C]//Environmental Science and Information Application Technology,2009. ESIAT 2009. International Conference on. IEEE,2009,2:642-645.
    [231]Schaeffer B. OGC OWS-6 Geoprocessing Workflow Architecture Engineering Report. Open Geospatial Consortium Inc., Wayland, MA, USA,2009:77.
    [232]Kiehle C, Greve K, Heier C. Requirements for Next Generation Spatial Data Infrastructures-Standardized Web Based Geoprocessing and Web services Orchestration[J]. Transactions in GIS,2007,11(6):819-834.
    [233]Scholten M, Klamma R, Kiehle C. Evaluating performance in spatial data infrastructures for geoprocessing[J], Internet Computing, IEEE,2006,10(5):34-41.
    [234]Michaelis C D, Ames D P. Evaluation and implementation of the OGC web processing service for use in client-side GIS[J]. Geoinformatica,2009,13(1):109-120.
    [235]Papazoglou M P, Yang J. Design methodology for Web servicess and business processes[C]. Proceeding of Workshop on Technologies for E-services. Springer, Berlin Heidelberg,2002: 54-64.
    [236]Haesen R, Snoeck M, Lemahieu W, et al. On the definition of service granularity and its architectural impact[C]//Advanced Information Systems Engineering. Springer Berlin Heidelberg,2008:375-389.
    [237]Li X, Di L, Han W, et al. Sharing geoscience algorithms in a Web services-oriented environment (GRASS GIS example)[J]. Computers & Geosciences,2010,36(8): 1060-1068.
    [238]谢斌.策略驱动的空间信息服务协同自组合关键技术研究[D].浙江大学,2010.
    [239]杨黎明,董传良,董玮文.服务器端动态网页技术——JSP+Servlet[J].计算机工程,2001,27(2):126-127.
    [240]http://axis.apache.org/axis2/java/core/index.html
    [241]熊光彩,慕德俊,张新家,等.基于Axis2的web服务安全框架设计与实现[J].计算机工程与设计,2012,33(5):1729-1733.
    [242]李双江,郝克刚,葛玮.一种基于Axis2的SOAP安全传输模型的研究[J].计算技术与发展,2008,18(11):142-145.
    [243]周元哲,王荣喜.基于SOAP和Axis2的Web服务设计与实现[J].西安文理学院学报:自然科学版,2010,13(2):64-67.
    [244]吴智俊,姚剑.基于Axis2体系结构的模块开发[J].计算机与现代化,2010,(11):159-161.
    [245]Srinath P, Chathura H, Jaliya E, et al. Axis2, Middle ware for Next Generation Web servicess[J]. IEEE International Conference on Web servicess,2006.
    [246]马安峰,赵逢禹.基于Rampart模块的Axis2 Web(?)务安全研究[J].计算机应用与软件,2009,26(9):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700