用户名: 密码: 验证码:
铜陵矿集区矿田构造控矿与成矿化学动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜陵矿集区位于安徽省铜陵市,是长江中下游成矿带中段的大型铜金矿集区。研究表明,区内铜(金、硫、铁)矿床与中酸性侵入岩具有密切时空和成因联系。这些侵入岩受基底和盖层构造的控制,主要沿铜陵-沙滩脚构造-岩浆带分布,形成时代集中于148.20±2.13~134.35±3.03Ma,总体上是从花岗闪长岩→石英二长闪长岩→辉石二长闪长岩依次侵位的。侵入岩由高钾钙碱性系列和碱性系列组成,两者间不存在演化关系,前者主要为下地壳底部深变质岩发生部分熔融形成的岩浆在有少量幔源玄武质岩浆注入的情况下先于后者形成;后者是幔源碱性玄武质岩浆与有限的地壳物质发生同化混染进而通过结晶分异作用形成的。下地壳或岩石圈地幔拆沉继而环流热幔上涌是侵入岩形成的直接起因,中酸性侵入岩浆的强烈活动也标志着本区构造环境由挤压向伸展的调整,而大规模的铜(金、硫、铁)成矿作用即发生于伸展构造环境中。侵入岩的“体中体”构造发育;岩浆多次侵入活动具有共岩浆补余分异效应,且对大规模的金属成矿作用可能起到了重要作用;岩体冷速率一般与其相关成矿作用的强度成反相关。
     区内矿床可划分为热液脉型、矽卡岩型和层控矽卡岩型3个主要成因类型,不同类型的矿床受不同的构造控制。根据控矿特征,矿田构造可分为浅带“行、列、汇”构造样式、中带岩浆侵入接触构造体系和深带“隆中凹”构造,三者的深度分别为0~1km左右、1~3.0km左右和>3.0km,在空间上构成了矿田构造的垂直分带。三个层次的控矿构造带分别控制了热液脉型矿床(体)、矽卡岩型矿床和层控矽卡岩型矿床。浅、中、深控矿构造带在不同的矿田常具有不同的组合形式,可以单独出现,也可以是两两组合,当三者完全产出时则构成了完整的矿田构造垂直分带。矿田构造垂直分带的发育程度是控制“多位一体”成矿和矿床成矿组合的主要原因。矿田构造的形成、演化经历了海西期“隆中凹”构造的形成和发育、印支期褶皱和层间滑脱构造的形成、燕山期层间滑脱构造的发育和岩浆侵入接触构造体系及“行、列、汇”构造样式的成生与演化等阶段。各类矿床矿石中石英、方解石和石榴石矿物流体包裹体的观测表明,流体包裹体可以分为富气相包裹体、富液相包裹体和含子晶多相包裹体三类,其均一温度变化范围较大,为128~>570℃;盐度变化于1.07~60.72wt%NaClequiv,其中含石盐子晶包裹体的盐度为30.27~60.72wt%NaClequiv。矽卡岩型矿化初始阶段的成矿流体呈超临界态,并在成矿主阶段发生过流体沸腾或不混溶作用。减压降温是引起成矿流体发生沸腾的原因,也是导致流体中矿质淀积的主要因素。流体包裹体的均一温度和盐度变化特征表明,热液脉型矿化稍晚于矽卡岩型矿化。成矿流体以H_2O、CO_2、N_2、Na~+、K~+、Ca~(2+),Mg~(2+)、SO_4~(2-)、Cl~-为主要成分,含有少量到极少量的CH_4、He、Ar、O_2、C_2H_6、H_2S等成分,少量样品含F~-;流体中CO_2、O_2、Ca~(2+)、K~+、SO_4~(2-)、Cl~-和F~-等成分的含量可能对成矿规模具有重要的控制作用。从早阶段到晚阶段,成矿流体经历了由还原性增强再降低的动态演化过程,而还原性增强有利于金属硫化物的沉淀。成矿流体主要来自岩浆水,而且流体从岩浆分出时已含有一定量的铜等成矿元素,并在岩浆-流体的相互作用过程中,其中的成矿元素逐渐富集。
     水-岩反应动力学实验研究揭示,流速相对较低的流体有利于Cu、Mo和Zn等成矿元素从岩石中溶出,水-岩反应速率与流体流速基本成反相关,与流体在体系内的停顿时间成正相关,但反应速率是呈非线性变化的。成矿流体中的Cu可能主要是在超临界态流体中迁移,而在低于临界态条件下从流体中析出;在低于临界态的350℃温度条件下,Zn元素仍保持从岩石中呈大量溶出,可能因此导致了Cu、Zn等成矿元素在空间上常构成分带特征。
     同位素测年表明,区内金属成矿经历了海西期和燕山期两个时代,成矿作用时限分别为313.2±32.7Ma~290±10Ma(晚石炭世)和140.3±1.7Ma~134.2±3.9Ma(晚侏罗世~早白垩世)。但燕山期为主成矿期,中酸性侵入岩是铜(金、硫、铁)矿床成矿物质的主要来源,海西期原始沉积矿胚层是层控矽卡岩型矿床的重要成矿场地准备,仅提供了很少的矿质。与侵入岩有关的热液成矿早阶段的流体为岩浆热液,主阶段和晚阶段有大气降水或地下水的参与,而一定深度岩浆房的流体和矿质补充对大规模的铜、金成矿作用是非常重要的。
     应用演化成矿概念,以区域地质构造演化为背景,分析总结了铜陵矿集区的成矿地质演化历史。研究了矿集区的内部结构及其与地球化学块体的关系,根据成矿时限与矿床储量相对丰度相关关系评估了燕山期铜矿成矿强度,并在此基础上分析了找矿方向。
The Tongling mineral assemblage area, situated in Anhui province, is a large one in theMiddle-lower Yangtze River metallogenic belt. The recent researches showed that there are closetemporal, special and genetic relations between the copper(gold, sulfur and iron) deposits and theintermediate-acid intrusive rocks. The rocks intruded from 148.20±2.13 to 134.35±3.03Ma and ingranodiorite→quartz monzodiorite→pyroxene monzodiorite order, and controlled by the structuresof basement and covers mainly distribute along the Tongling-Shatanjiao tectonomagmatic belt.They consist of alkaline series and sub-alkaline series, but both the series have no evolutionalrelation. The original magma of the high-K talc-alkaline series was mainly partial melting materialof old metamorphic basement rocks, and mixed by a little basaltic magma of mantle. The primalmagma of the alkaline series was alkaline basalt which originated from the enriched mantle andunderwent assimilation, fractionation and crystallization. Delamination of lower crust orlithospheric mantle followed by thermal mantle moving up brought directly on formation of theintrusive rocks. The magma activities are the indication of tectonic setting changing fromcompression to extension, and the large-scale copper(gold, sulfur and iron) ore-forming processoccurred in the extensional tectonic setting. The intrusive rocks develop structures of "intrusivebodies in body". The multiple intrusive activities have co-magmatic complementary differentiationwhich may be beneficial to mineralization. The cooling rates of the intrusive bodies are commonlycounter-correlation to mineralization.
     The metallic deposits in Tongling could be classified into three main types: hydrothermalvein-type, skarn-type and stratabound skarn-type, and these deposits are controlled by differentstructures. According to the ore-controlling characteristics, the structures of orefield in the Tonglingmineral assemblage area were classified into "row-line-cluster" pattern, contact structure system ofmagma intrusion and "depression in swell". They occur respectively epizone(0-1km),mesozone(1-3.0km) and hypozone(>3.0km) in the space so as to form a vertical zoning of thestructures of orefield. The three zones of ore-controlling structures control respectivelyhydrothermal vein-type deposits, skarn-type deposits and stratabound skarn-type deposits. May besingle or both, or maybe all of them that form a integrate vertical zoning of the structures of orefield,the epizone, mesozone and hypozone may combine different formats. The vertical zoning of thestructures of orefield is the main cause controlling the metallogenic assemblage and multistorymineralization. The structures of orefield mainly went through three stages: formation anddevelopment of"depression in swell" in the Hercynian; formation of the folds and interlayer glidingstructures in the Indosinian; development of interlayer gliding structures, formation anddevelopment of contact structure system of magma intrusion and "row-line-cluster" pattern in theYanshanian.
     Three types of fluid inclusions, namely gas-rich, liquid-rich and daughter mineral-bearingpolyphase brine inclusions were distinguished in quartz, calcite and garnet. The temperature ofhomogenization of fluid inclusions ranged from 128℃to>570℃. The salinities of three types ofinclusions varied remarkable from 1.07 to 60.72 wt%NaCI equivalent and the halite-bearinginclusions with high salinities from 30.27 to 66.75 wt%NaCl equivalent. Ore-forming fluid of the skam mineralization might behave in a supercritical state in the early stage, and occurredimmiscible separation or boiling of fluid in the major mineralization stage. The changingcharacteristics of the temperature of homogenization and salinities of the fluid inclusions showedthat the mineralization of hydrothermal vein-type appreciably lagged the skarn mineralization. Thecomponents of fluid inclusions are mainly H_2O, CO_2, N_2, Na~+, K~+, Ca~(2+), Mg~(2+), SO_4~(2-), Cl~-, and alittle CH_4, He, Ar, O_2, C_2H_6 and H_2S. Only a few samples contain F~-. It was suggested that contentsof CO_2, O_2, Ca~(2+), K~+, SO_4~(2-), Cl~- and F~- in the ore-forming fluid might control the metallogenic size.Changing from reduction increasing to dropping, ore-forming fluid displayed a dynamicevolvement from early stage to late stage. Reduction increasing is beneficial to deposit of thesulfides. Ore-forming fluid mainly originated from magma water, and it contained someore-forming elements like copper and so on in the primitive magma-derived fluid. Ore-formingelements in the fluid were gradually increasing in the process of the interaction between magma andfluid.
     The experimental studies on kinetics of water-rock reaction showed that slowly flowing fluidbenefited ore-forming elements like Cu, Mo, Zn and so on dissolving from rocks, and thewater-rock reaction rate was commonly counter-correlation to flow rate of the fluid and correlationto holdup time of the fluid. The water-rock reaction rate varied in a non-linearity state. Copper inore-forming fluid might migrate in the supercritical state, and deposited under critical state. As agreat deal of zinc in rocks still released into the fluid at 350℃so that it always make up spatialzone for ore-forming elements like Cu, Zn and so on.
     Based on isotopic ages of the deposits, it's considered that metallogeny in Tongling mineralassemblage area had undergone the Hercynian (from 313.2±32.7 Ma to 290±10Ma) and theYanshanian (from 140.3±1.7Ma to 134.2±3.9Ma). The major metallogenic period belong to theYanshanian, and ore-forming material mainly derived the intermediate-acid intrusive rocks. It wasestimated that about 10 percent ore-forming material were provided for the stratabound skam-typedeposits by the Hercynian primal sedimentary source bed. The hydrothermal mineralization relatedto intrusive rocks was predominated by magma-derived fluid in the early stage and meteoric waterin the major and late ore-forming stage. It's vary important that the ore-forming fluid derived fromdeep magma chamber complemented the large-scale copper-gold mineralization.
     Based on the evolvement of regional tectonics, applying the concept of evolutionarymetallogeny, the ore-forming evolutionary history of Tongling mineral assemblage area wassummarized. The relation between interior structure of Tongling mineral assemblage area andgeochemical blocks had been studied, and the metallogenic intensity of copper in the Yanshanianhad been evaluated based on the research on the relative abundance of the ore reserve and the timelimit of metallogenic processes. In the final, the prospecting direction for the copper deposits hadbeen pointed out.
引文
1.别风雷,侯增谦,李胜荣,等.川西呷村超大黑矿型矿床成矿流体稀土元素组成.岩石学报,2000,16(4):575~580.
    2.岑况.共存矿物溶解度与硫化物金属成矿作用.地质学报,1999,73(3):243~249.
    3.岑况,於崇文.成矿流体的流动-反应-输运耦合与金属成矿.地学前缘,2001,8(4):323~328.
    4.常印佛,刘学圭.关于层控式矽卡岩型矿床—以安徽省内下扬子坳陷中一些矿床为例.矿床地质,1983,2(1):11~20.
    5.常印佛,刘湘培,吴昌言.长江中下游铁铜成矿带.北京:地质出版社.1991.
    6.陈沪生.下扬子地区HQ13线的综合地球物理调查及其地质意义.石油与天然气地质,1988,9(3):211~222.
    7.陈沪生.1:1000000中国东部灵壁—奉贤(HQ13)地学断面图说明书.北京:地质出版社.1993.
    8.陈江峰,周泰禧,李学明,等.安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约.地球化学,1993,3:261~268.
    9.储国正,黄许陈,张成火,等.安徽铜陵地区成矿控制因素的探讨.安徽地质,1995,5(1):47~58.
    10.储国正,吴言昌,刘光华,等.安徽铜陵鸡冠石银(金)矿床地质地球化学特征.地质地球化学,2000,28(3):31~40.
    11.陈邦国,姜章平,张卫平,等.安徽冬瓜山叠生式层状铜矿热液改造型流体研究.江苏地质,2002,26(2):65~69.
    12.陈松岭,彭省临,王增润.澜沧老厂矿田滑脱构造及其控矿特征.大地构造与成矿学,1997,21(1):70~75.
    13.崔彬,李忠.成矿空间初探.地质与勘探,2000,36(6):6~8.
    14.崔彬.铜官山层控矽卡岩型铜矿床的蚀变分带及其成因.矿床地质,1987,6(1):35~44.
    15.狄永军,赵海玲,张贻全,等.安徽铜陵地区花岗岩类岩石中的岩浆混合结构.北京地质,2003,15(1):12~17.
    16.狄永军.铜陵矿集区燕山期岩浆作用及深部过程[博士论文].导师:赵海玲.北京:中国地质大学(北京).2003.1~82.
    17.邓晋福,叶德隆,赵海玲,等.下扬子地区火山作用深部过程盆地形成.武汉:中国地质大学出版社.1992.
    18.邓晋福,吴宗絮.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带.安徽地质,2001,11(2):86~91.
    19.邓晋福,戴圣潜,赵海玲,等.铜陵Cu-Au(Ag)成矿区岩浆-流体-成矿系统和亚系统的识别.矿床地质,2002,2l(4):317~322.
    20.董树文,孙先如,张勇,等.大别山碰撞造山带基本结构.科学通报,1993,38(6):542~545.
    21.杜建国,戴圣潜,莫宣学,等.安徽沿江地区燕山期火成岩成岩成矿地质背景.地学前缘,2003,10(4):551~560.
    22.杜杨松,李学军.安徽铜陵典型矿区岩石包体研究及其岩浆-成矿过程探讨.高校地质学报,1997,3(2):171~182.
    23.富士谷,阎学义,袁成祥,等.长江中下游成矿带中石炭纪海底火山喷发-沉积黄铁矿型铜矿地质特征.南京大学学报(自然科学版),1977,(4):43~67.
    24.高山,金振民.拆沉作用(delamination)及其壳.幔演化动力学意义.地质科技情报。1997.16(1):1~9.
    25.高永丰,栾文楼,魏瑞华,等.河南祁雨沟金矿流体包裹体研究.地球化学,1995,24(增刊):150~159.
    26.郭文魁.论安徽铜官山铜矿成因.地质学报,1957,37(3):317~332.
    27.郭文魁.某些金属矿床的原生分带及其成因.地质学报,1963,43(3):247~270.
    28.郭文魁.论花岗岩类与金属成矿作用.中国区域地质,1982,(2):15~30.
    29.郭宗山.扬子下游某些夕卡岩型铜矿床.地质学报,1957,37(1):1~10.
    30.顾连兴,徐克勤.论长江中下游中石炭世海底块状硫化物矿床.地质学报,1986,60(2):176~186.
    31.顾连兴.长江中下游初期裂谷及其找矿.江苏地质,1990,2:9~14.
    32.顾连兴,富士谷.下扬子威宁期断裂拗陷、火山活动及块状硫化物成矿作用——答黄志诚《安徽铜陵新桥黄龙组沉积期海底火山喷发-沉积质疑》一文.高校地质学报,1999,5(2):228~232.
    33.顾连兴,陈培荣,倪培,等.长江中、下游燕山期热液铜-金矿床成矿流体.南京大学学报(自然科学),2002,38(3):392~407.
    34.华仁民,李晓峰,张开平,等.江西金山金矿成矿过程流体作用地球化学特征.南京大学学报(自然科学),2002,38(3):408~417.
    35.黄华盛,师其政,崔彬,等.铜官山铜矿床的组合特征及其成因.矿床地质,1985,4(2):13~22.
    36.黄许陈,储国正.1993.铜陵狮子山矿田多位一体(多层楼)模式.矿床地质,12(3):221~230,252.
    37.黄萱,吴利仁.陕西省花岗岩类Nd-Sr同位素及其构造演化意义.岩石学报,1990,6(2):1~11.
    38.黄志诚.安徽铜陵新桥黄龙组沉积期海底火山喷发-沉积质疑.高校地质学报,1999,5(1):110~112.
    39.胡受奚,周顺之,孙志明,等.论我国东部与铁、铜矿床有关中-酸性岩类的成矿专属性.地质学报,1979,53(4):323~336.
    40.李昌年.火成岩微量元素岩石学.武汉:中国地质大学出版社.1992.
    41.李东旭,谭以安.限制型“S”状构造及其模拟——以铜陵地区为例.现代地质,1989,3(3):309~318.
    42.李东旭,张达,刘文灿,等.凤凰山花岗岩体构造系统分析及侵位机制.地质力学学报,1996,2(2):55~65.
    43.李厚民,沈远超,毛景文,等.石英、黄铁矿及其包裹体的稀土元素特征——以胶东焦家式金矿为例.岩石学报,2003,19(2):267~274.
    44.李锦轶.中朝地块与扬子地块碰撞的时限与方式——长江中下游地区震旦纪—侏罗纪沉积环境的演变.地质学报,2001,75(1):25~34.
    45.李进文,裴荣富,张德全,等.内蒙古白乃庙铜矿成矿地质演化.矿床地质,2002,21(增刊):405~408.
    46.李曙光,Hart S R,郑双根,等.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B辑),1989a,3:312~319.
    47.李曙光,葛宁洁,刘德良,等.大别山北翼大别群中C型榴辉岩的Sm-Nd同位素年龄及其构造意义.科学通报,1989b,34(7):522~525.
    48.李曙光,刘德良.大别山印支运动的同位素年代学证据.大地构造与成矿学,1990,14(2):159~163.
    49.李文达.论扬子型铜矿床及其成因.中国地质科学院南京地质矿产研究所所刊,1989,10(2):1~14.
    50.李阴清,马秀娟,魏家秀.流体包裹体在矿床学和岩石学中的应用.北京:北京科学技术出版社.1988.1~59.
    51.李荫清,芮宗瑶,程莱仙.玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究.地质学报,1981,3:216~231.
    52.凌其聪,程惠兰,陈邦国.铜陵东狮子山铜矿床地质特征及成岩成矿机理研究.矿床地质,1998,17(2):158~164
    53.凌其聪,刘丛强.冬瓜山层控夕卡岩型铜矿床成矿流体特征及其成因意义.吉林大学学报(地球科学版),2002,32(3):219~224.
    54.凌其聪,刘丛强,鲍征宇.地质流体的输运.化学反应与成矿作用微观机制研究——以安徽冬瓜山层控夕卡岩型铜矿床为例.大地构造与成矿学,2002,26(1):55~61.
    55.刘斌,沈昆.流体包裹体热力学.北京:地质出版社.1999.1~290.
    56.刘文灿,高德臻,储国正.安徽铜陵地区构造变形分析及成矿预测.北京:地质出版社.1996.
    57.刘湘培,常印佛,吴昌言.论长江中下游地区成矿条件和成矿规律.地质学报,1988,62(2):167~177.
    58.刘英俊,曹励明.元素地球化学导论.北京:地质出版社.1987.
    59.刘裕庆,刘兆廉,杨成兴.铜陵地区冬瓜山铜矿的稳定同位素研究.中国地质科学院矿床地质研究所所刊,1984,第1号:47~114.
    60.刘裕庆,刘兆廉.铜陵地区层状铜(铁、硫)矿床同位素地球化学和矿床成因研究.中国地质科学院矿床地质研究所所刊,1991,第1号:70~101.
    61.路凤香,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型.地学前缘,2000,7(1):97~108.
    62.卢焕章.高盐度、高温和高成矿金属的岩浆成矿流体——以格拉斯伯格Cu-Au矿为例.岩石学报,2000,16(04):465~472.
    63.吕古贤,孔庆存.焦东玲珑-焦家式金矿地质.北京:科学出版社.1993.1~253.
    64.吕庆田,侯增谦,赵金花,等.深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态.中国科学(D辑),2003,33(5):442~449.
    65.毛建仁,苏郁香,陈三元.长江中下游中酸性侵入岩与成矿.北京:地质出版社.1990.
    66.毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑),2003,33(4):289~299.
    67.毛景文,Holly Scein,杜安道,等.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报,2004,78(1):121~131.
    68.聂凤军,裴荣富,吴良士,等.内蒙古白乃庙地区岩浆活动与金属成矿作用.北京:北京科学技术出版社.1993.142~145.
    69.秦新龙,杜杨松,田世洪,等.安徽铜陵地区含磁黄铁矿-黄铜矿角闪石巨晶的首次发现.自然科学进展,2002,12:834~838.
    70.裴荣富,吕凤翔,范继璋,等.华北地块北缘及其北侧金属矿床成矿系列与勘查.北京:地质出版社.1998.91~106.
    71.裴荣富,邱小平,尹冰川,等.成矿作用爆发异常及巨量金属堆积.矿床地质,1999,18(4):333~340.
    72.裴荣富,叶锦华,梅燕雄,等.特大型矿床研究若干问题探讨.中国地质,2001a.28(7):9~15,21.
    73.裴荣富.难识别及隐伏大矿富矿资源潜力的地质评价.北京:地质出版社.2001b.17~71.
    74.裴荣富,梅燕雄.论异常成矿作用.矿床地质,2002,21(增刊):48~51.
    75.裴荣富,梅燕雄.金属成矿省演化与成矿年代学.北京:地质出版社.2003.146~156.
    76.裴荣富,梅燕雄,李进文.特大型矿床与异常成矿作用.地学前缘,2004a,11(1~2):323~331.
    77.裴荣富,李进文,梅燕雄.金属成矿省等级体制成矿.矿床地质,2004b,23(2):131~141.
    78.任纪舜,牛宝贵,和政军,等.中国东部的构造格局和动力演化.见:任纪舜,杨巍然.主编.中国东部岩石圈结构与构造岩浆演化.北京:地震出版社.1998.1~12.
    79.芮宗瑶,施林道,方如恒,等.华北陆块北缘及邻区有色金属矿床地质.北京:地质出版社.1994.
    80.沈渭洲,凌洪飞,李武显,等.中国东南部花岗岩类Nd-Sr同位素研究.高校地质学报,1999,5(1):22~32.
    81.苏文超,胡瑞忠,漆亮,等.黔西南卡林型金矿床流体包裹体中微量元素研究.地球化学,1998,30(6):512~516.
    82.苏文超,漆亮,胡瑞忠,等.流体包裹体中稀土元素的ICP-MS分析研究.科学通报,2001,43(10):1094~1098.
    83.唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社.1998.
    84.田世洪,杜杨松,秦新龙,等.安徽铜陵地区中酸性侵入岩及其岩石包体中的矿物包裹体研究.地学前缘,2001,8(1):422~428.
    85.王强,许继峰,赵振华,等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约.中国科学(D辑),2003,33(4):323~334.
    86.王文斌,李文达,董平,等。论长江中下游地区含铜黄铁矿型矿床成因。火山地质与矿产,1994,15(2):25~34.
    87.王训诚,姜章平,蒙义峰,等.铜陵地区构造流体体系初探.矿床地质,2002,21(增刊):1045~1048.
    88.王彦斌,刘敦一,孟义峰,等.安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义.中国地质,2004,31(2):169~173.
    89.王兆荣,周泰禧,张汉昌.安徽马山金铜矿的地球化学研究.华东地质学院学报,1996,19(1):36~41.
    90.魏菊英,王关玉.同位素地球化学.北京:地质出版社.1988.
    91.吴才来,周旬若,黄许陈,等.铜陵地区中酸性侵入岩年代学研究.岩石矿物学杂志,1996,15(4):299~307.
    92.吴才来,陈松永,史仁灯,等.铜陵中生代中酸性侵入岩特征及成因.地球学报,2003,24(1):41~48.
    93.吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,1999,29(4):313~319.
    94.吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题.地学前缘,2003,10(3):51~60.
    95.吴淦国,张达,臧文栓.铜陵矿集区构造滑脱及分层成矿特征研究.中国科学(D辑),2003,33(4):300~308.
    96.吴言昌,曹奋扬,常印佛.初论安徽沿江地区成矿系统的深部构造—岩浆控制.地学前缘,1999,6(2):285~296.
    97.肖庆辉,邓晋福,马大铨.花岗岩研究思维与方法.北京:地质出版社.2002.
    98.肖荣阁,张宗恒,陈卉泉,等.地质流体自然类型与成矿流体类型.地学前缘,2001,8(4):245~251.
    99.肖新建,顾连兴,倪培,等.铜陵地区海底喷流沉积(SEDEX)块状硫化物矿床成矿流体研究.矿床地质,2002,21(增刊):491~494.
    100.肖新建,顾连兴,倪培.安徽铜陵狮子山铜金矿床流体多次沸腾及其与成矿的关系.中国科学(D辑),2002,32(3):199~206.
    101.肖渊甫,孙燕,陆彦,等.西范坪斑岩铜矿床流体包裹体地球化学特征.地质地球化学,2000,28(1):53~57.
    102.谢家荣.中国之矿产时代与矿产区域.地质论评,1936,1(3):263~380.
    103.谢智,孙卫东,柴之芳,等.辉钼矿的Os-Os法与Re-Os法定年及结果比较.核技术,2002,25(12):1013~1018.
    104.邢凤鸣,徐祥.长江中下游早元古代基底的发现及意义.科学通报,1993,38(20):1883~1886.
    105.邢凤鸣,徐祥.安徽沿江地区中生代岩浆岩的基本特点.安徽地质,1995,5(1):21~25.
    106.邢凤鸣,徐祥.铜陵地区高钾钙碱系列侵入岩.地球化学,1996,25(1):29~38.
    107.邢凤鸣,徐祥,等.安徽省铜陵地区侵入岩成因的实验研究.中国区域地质,1997,16(3):267~274.
    108.徐克勤,孙明志,叶俭.华南二个成语系列花岗岩类及其成矿特点.矿床地质,1982,1(2):1~14.
    109.杨瑞琰,鲍征宇.地质流体热质输运动力学方程的混合有限分析法.焦作工学院学报(自然科学版),2000,19(6):421~425.
    110.杨学明,林文通.铜官山火成杂岩体成岩机理研究.地质论评,1988,34(1):25~35.
    111.杨竹森,侯增谦,蒙义峰,等.安徽铜陵矿集区流体系统与成矿.矿床地质,2002,21(增刊):1080~1083.
    112.於崇文,岑况,鲍征宇,等.热液成矿作用动力学.武汉:中国地质大学出版社.1993.
    113.於崇文.成矿作用动力学——理论体系和方法论.地学前缘,1994,1(3~4):54~73.
    114.於崇文,蒋耀淞,肖正域.安徽铜陵层控矽卡岩型铜矿床的成矿作用动力学.地质学报,1995a,69(3):243~245.
    115.於崇文,蒋耀松,肖正域.热液成矿分带的溶解-沉淀波结构.地球科学,1995b,20(5):540~550.
    116.於崇文.江西德兴斑岩铜矿田成矿作用的流体动力分形弥散机制.地质论评,1995e,41(3):211~220.
    117.於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社.1998.
    118.袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社.1985.
    119.袁小明.铜官山矿田铜金成矿模式探讨.地球学报,2002,23(6):541~546.
    120.岳文浙,业治铮,魏乃颐,等.长江中下游威宁期沉积地质与块状硫化物矿床.北京:地质出版社.1993,113~125.
    121.曾普胜,裴荣富,侯增谦,等.安徽铜陵地块沉积—喷流块状硫化物矿床.矿床地质,2002,21(增刊):532~535.
    122.翟裕生.矿田构造学概论.北京:冶金工业出版社.1984.198~232.
    123.翟裕生.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.1992a.
    124.翟裕生,姚书振,林新多,等.长江中下游地区铁、铜等成矿规律.矿床地质,1992b,11(1):1~12.
    125.翟裕生,姚书振,陈华慧,等.长江中下游鄂城—铜陵一带遥感地质及成矿规律研究.武汉:中国地质大学出版社.1992c.15~33.
    126.翟裕生,林新多.矿田构造学.北京:地质出版社.1993.55~69.
    127.翟裕生,姚书振,周宗桂,等.长江中下游铁铜金矿床矿田构造.武汉:中国地质大学出版社.1999.153~167.
    128.赵斌,邢凤鸣,朱成明,等.长江中下游中性—中酸性岩浆岩的母岩浆来源及铜的成矿作用——实验研究.地球化学,1996,25(4):387~399.
    129.张达,吴淦国,李东旭.铜陵凤凰山岩体接触带构造变形特征.地学前缘,2001,8(3):223~229.
    130.张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造.成矿意义.岩石学报,2001,17(2):236~244.
    131.张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景.地学前缘,2003,10(4):385~400.
    132.张荣华,胡书敏.矿物在热液内化学动力学和物质迁移.北京:科学出版社.1992.
    133.张荣华,胡书敏,Crerar D.矿物溶解作用的化学动力学和成矿物质迁移.见:中国地质科学院“七五”对外科技合作成果汇编.北京:地质出版社.1993.120~136.
    134.张荣华,胡书敏.萤石在流动体系内溶解反应动力学和表面化学.中国科学(D辑),1996,26(1):41~51.
    135.张荣华,胡书敏,童建昌,等.开放体系矿物流体反应动力学.北京:科学出版社.1998.
    136.张荣华,胡书敏.地球深部流体演化与矿石成因.地学前缘,2001,8(4):297~310.
    137.张荣华,胡书敏,王军,等.长江中下游典型火山岩区水.岩相互作用.北京:中国大地出版社.2002.
    138.张瑞斌,刘建明,叶杰,等.河北寿王坟铜矿碳.氧同位素地球化学特征及其意义.矿产与地质,2003,17(2):122~126.
    139.赵一鸣,林文蔚.中国矽卡岩矿床.北京:地质出版社.1985.
    140.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社.2000.
    141.周泰禧,陈江峰,李学明,等.安徽省印支期岩浆活动质疑.岩石学报,1988,(3):46~53.
    142.周涛发,岳书仓.长江中下游铜、金矿床成矿流体系统的形成条件及机理.北京大学学报(自然科学版),2000,36(5):697-707.
    143.朱和平,王莉娟.四极质谱测定流体包裹体中的气相成分.中国科学(D辑),2001,31(7):586~590.
    144.朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报,2003,19(2):314~318.
    145. Andreas A, Detlef G. Christoph A H. Formation of a magrnatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. Science, 1998, 279: 2091~2094.
    146. Arthur W R and Donald M B. Hydrothermal alteration. In: Barnes H Led. Geochemistry of hydrothermal ore deposits(2nd edition). New York: A Wwiley-interscience Publication. 1979. 173~236.
    147. Benning L G and Seward T M. Hydrosuphide complexing of gold (Ⅰ)in hydrothermal solution from 150℃ to 500℃ and 500 to 1500 bars. Geochim. Comochim. Acta, 1996, 60: 1849~1877.
    148. Bogacz. W V. Metalliferous deposits: Tectonics and Mineralization controls. In: Adam P, et ai. ed. Mineral Deposits at the Beqinming of the 21st century. Swets & Zeitlinger Publishers. 2001.7~13.
    149. Bowers T S. The deposition of gold and other metals: Pressure induced fluid immiscibility and associated stable isotope signatures. Geochim. Comochim. Acta, 1991, 55: 2447~2434.
    150. Bordnar R J. Synthetic fluid inclusions: Ⅻ: The system H_2O-NaCl experimental determination of the halite liquidus and isochors for a 40wt%NaCleq~- solution. Geochimica et Cosmochimica Acta, 1994, 58: 1053~1063
    151. Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed), Rare earth element geochemistry. Elservier, 1984, 63~114.
    152. Brantley S L, Crane S R, Crerar D A, et al.. Dissolution at dislocation etch pits in quartz. Geochem. et Cosnmochim. Acta, 1986, 50: 2349~2362.
    153. Burnham W C. Magma and hydmthermal fouids. In: Barnes H L ed. Geochemistry of hydrothermal ore deposits(2nd edition). New York: A wiley-interscience Publication, 1979, 71~136.
    154. Cartwright I. The two-dimensional pattern of metamorphic fluid flow at Mary Kathleen. Australia: Fluid focus in transversw dispersion and implications for modeling fluid flow. Am. Mineral, 1994, 79: 526~535.
    155. Chen J, Zhou T, Li X. Isotopic constraints on magma sources and temporal relations of Mesozoic granitoids and felsic vocanics from eastern China. Abstracts: the 28th International Geological Congress, 1985.1~274.
    156. Chen J F, Foland K A and Zhou T X. Mesozoic granitoids of the Yangtze foldbelt, China: Isotopic constrains on the magma source. In: Wu. L. et al. ed. The Crust the Significance of Granites-gneisses in the Lithosphere. Theophrastus, Athens, I985, 217~237.
    157. Chen J F, Jahn B M. Crustal evolution of Southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 1998, 284: 101.
    158. Clayton R N, O'Neil J R and Mayeda T K. Oxygen isotope exchange between quartz and water. J. Geophys. Res., 1972, 77: 3057~3067.
    159. Cline J S and Bordnar R J. Direct evolution of brine from a crystallizing silicic melt at the Queta, New Mexico, Molybdenum deposit. Econ Geol., 1994,89:1780-1802.
    
    160. Cline J S, Bondnar R J and Rimstidt J D. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: Application to epithermal gold deposits. J. Geophys. Res., 1992, 97: 9085-9103.
    
    161. Cox S F, Wall V J, Etheridge M A, et al.. Deformational and Metamorphic processes in the formation mesothemal vein-hosted gold deposits-examples from the Lachlan fold belt in central Victoria. Ore Geol. Rev., 1991,6:391-423.
    
    162. Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subducted litho-sphere. Nature, 1990. 347:662-665.
    
    163. Dibble J W E and Tiller W A. Non-equelibrium water/rock interactions-1. Model for interface-controlled reactions. Geochim. et Comochim. Acta, 1981,45:79-92.
    
    164. Didier J and Barbarin B. Enclaves and Granite Petrology. Amsterdam: Elsevier. 1991.
    
    165. Dove P. M, CrerarD. A., Kinetics of quartz dissolution in electrolyte solutions using a hydrthermal mixed flow reactor: Geochim et Cosnmochim. Acta., Vol. 1990,54:955-969.
    
    166. Dupont A, Vander Auwera J, Pin C et al.. Trace element and isotope (Sr, Nd) geochemistry of porphyry- and karn-mineralising Late Cretaceous intrusions from Banat, western South Carpathians, Romania. Mineralium Deposita, 2002,37: 568-586.
    
    167. Faure G Principles of isotope geology. New York: Jahn Wiley & Sons. 1977. 59-248.
    
    168. Ferry J M and Dipple G M. Fluid flow. Mineral reactions and metasomatism. Geology. 1991,19: 211-214.
    
    169. Ferry J M and Dipple G M. Models for coupled fluid flow mineral reaction and isotopic alteration during contact metamorphism: The Notch Peak aureole. Utah. Am. Mineral, 1992, 77:577-591.
    
    170. Fournier R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 1999,94(8):1193~1212.
    
    171. Gao S, Zhang B R, Luo T C, et al.. Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze cratons. Geochim. Cosmochim. Acta., 1992, 56:3933-3950.
    
    172. Graney J R, Kesler S E. Nactors affecting gas analysis of inclusion fluid by quandrupole mass spectrometry. Geochim Cosmochim Acta, 1995,59(19):3977~3896.
    
    173. Hall, D.L.et al.. Freezing point depression of NaCl-KCl-H_2O solution. Econ. Geology, 1988,83:197-202.
    
    174. Haynes D W, Cross K C, Bill R T, et al.. Olympic Dam ore genesis: a fluid mixing model. Econ. Geol., 1995, 90:281-307.
    
    175. Heinrich C A, Bain J H C, Mernagh T P, et al.. Fluid and mass transfer during metabasalt alteration and copper mineralization at Mount Isa. Austalia. Econ. Geol., 1995, 90:705-730.
    
    176. Helgeson H C. A chemical and thermodynamics model of ore deposition in hydrothermal systems. In Margan B A, ed. Fiftieth Anniversary Symposia. Min. Soc. Am. Spec. 1970. Paper3: 155-186.
    
    177. Hezarkhani A and Williams-Jones A E. Controls of alteration mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Economic Geology, 1998,93: 651-670.
    
    178. Hibbard M. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B ed. Enclaves and granite petrology. Developments in Petrology, Amsterdam: Elsevier, 1991, (3):431~444.
    
    179. Hutchinson R W. Some broad processes and effects of evolutionary metallogeny. ABSTRACTS of 29th IGC, 1992, Vol.1 of 3.
    
    180. Irvine T N and Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci., 1971,8:523-548.
    
    181. Kay R W and Kay S M. Creation and destruction of lower continental crust. Geologische Rundschau, 1991, 80:259-278.
    
    182. Knauss K G and Wolery T J. Muscovite dissolution kinetics as a function of PH and time at 70'C. Geochem et Cosnmochim Acta, 1989, 53: 1493-1502.
    
    183. Kutina J, Pei R F and Heyl A V. The role of deep lithospheric structure in the genesis and distribution of giant and supergiant concentrations of metals in the crust. Global Tectonics and Metallogeny, 2003, 8(1-4): 9-49.
    
    184. Lasaga A C and RYe D M. Fluid flow and chemical reaction kinetics in metamorphic ystems: Amer. Jour. Sci., 1993,293:361-404.
    
    185. Lichtner P C. Time-space continue description of fluid/rock interaction in permeable media: Water Resources Research, 1992, 28: 3135-3155.
    
    186. Ludwig K. Isoplot/Ex, version 2.0: A geochrological toolkit for Microsoft Excel. Geochronology Center, Berkeley, Special Publication 1a. 1999.
    
    187. Lunenschloss B, Muchez P, Bayer U If. Missippi Valley-type mineralizations at the Variscan thrust front: Numerical modeling of the temperature field and flow pattern. In: Hendry J. Carey P. Parnell J et al. ed. GEOFLUIDS II '97, extended Abstracts Volume. Belfast. 1997.190-193.
    
    188. Matthai S K, Henley R W, Heinrich C A. Gold precipitation by fluid mixing in bedding-parallel fractures near Carbonaceous slates at the Cosmopolitan Howley gold deposit, Northem Australia Econ Geol., 1995, 90: 3123-2142.
    
    189. McDonough W F, Sun S-s, Ringwood A E, et al.. Potassium, rubidium and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochem. Cosmochim Acta, 1992,56:1001-1012.
    
    190. Meissner R, Tanner B. From collision tocollapse: phases of lithospheric evolution as monitored by seismicrecords. Phys. Earth. Planet. Interiors, 1993,79:75-86.
    
    191. Meinert L D, Hedenquist J W, Satoh H, et al.. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Economic Geology, 2003,98:147-156.
    
    192. Mengel K, Kern H. Evolution of the petrological and seismic Moho-impiications for the continental crust-mantle boundary. TerraNova., 1992,4:109-116.
    
    193. Michard A. Rare earth element systematics in hydrothermal fluids. Geochim. Acta, 1989, 53: 745-750.
    
    194. Middlemost E A K. Magmas and magmatic rocks. Longman, Lodon, 1985, 266.
    
    195. Norton D, Knight J. A model for simulating transport of reactive multispecies components: Model development and demonstration. Water Resources Resesrch, 1991,27:3075-3094.
    
    196. Ohmoto H and Rye R O. Isotopes of sulfur and carbon. In: Barnes H L ed. Geochemistry of hydrothermal ore deposits(2~(nd) edition). New York: A Wiley-interscience Publication. 1979. 509-567.
    
    197. Ohmoto H. Stabie isotope geochemistry of ore deposits. Rev. Mineral. 1986, 16:491-556.
    
    198. Ohmoto H and Goldhaber M B. Sulfur and carbon isotopes. In: Barnes H L ed. Geochemistry of hydrothermal ore deposits(3~(rd) edition). New York: Wiley. 1997. 517-611.
    
    199. Okay A I, Sengor A M C, Saur M. Tectonics of an ultrahigh-pressure metamorphic terrane: the Dabie shan/Tongbai shan Orogen, China. Tectonics, 12(6):1320~1334.
    200. Pan Y M and Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 1999,15:177-242.
    
    201. Pei R F. On the evolution of metallogenetic province and metallogeny. ABSTRACTS of 30th IGC, 1996, Vol.lof3.
    
    202. Phillips O M. Flow-controlled reactions in rock fabrics. J. fluid Mech., 1991,212: 263-278.
    
    203. Posey-Dowty J, Crerar D A, Hellmann R, et al.. The dissolution kinetics of calcite from 25 to 300°C in aqueous solution. G S. A., Annual meeting. 1986, Abstracts.
    
    204. Potter, R W II et al.. The volumetric properties of aqueous sodium chlorite solutions from 0°C to 500°C at pressures up to 2000 based on a regression of available data in the literature. U.S.Geol.Survey Bull., 1978, 1421-C, 36.
    
    205. Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 1989,22:247-263.
    
    206. Robert R. Loucks and John A. Mavrogenes, Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science, 1999,284:2159-2163.
    
    207. Roedder E. Fliud inclusion. Reviews in Mineralogy. Mineralogical Society of America, 1984,12:644.
    
    208. Rollinson H R. Using geochemical data: evaluation, presentation, interpretation. Longman,London. 1993.
    
    209. Rudnick RL and Fountain D M. Nature and composition of the continental crust: a lower crust perspective. Rev. Geophys., 1995,33:267~309.
    
    210. Ruzhentsev S V and Trifonov V G Tectonic layering of the lithosphere. Episodes, 1984, 7(1): 44-48.
    
    211. Shepherd T J, Rankin A H, Alderton D H M. A practical guide to fluid inclusion studies. Blackie & Son Ltd.. 1985. 1-239.
    
    212. Stacey J S, Hedlund D C. Lead-isotope compositions of diverse igneous rocks and ore deposits from southwestern NewMexico and their implications for early Proterozoic crustal evolution in the western United States. Geological Society of America Bulletin, 1983,94:43-57.
    
    213. Steefel C L, Van Cappellen P. A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald-ripening. Geochim. Cosmochim. Acta, 1990, 54:2657-2677.
    
    214. Steefel C I, Lasaga A C. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal system. Am. J. Sci, 1994, 294: 529-592.
    
    215. Sun W, Xie Z, Chen J, et al.. Os-Os dating of copper and molybdenum deposits along the Middle and Lower reaches of the Yangtze river, China. Economic Geology, 2003,98:175-180.
    
    216. Taylor H P. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet Sci. Lett. 1978, 38:177.
    
    217. Taylor H P. Oxygen, hydrogen, and strontium isotope constrains on the origin of granites. Trans. Royal Soc. Edinb. Earth Sci. 1988, 79:317-338.
    
    218. Taylor R G Geology of tin deposits. Elsevier, Amsterdam, 1979, 543.
    
    219. Taylor S R and Mcleannan S. The continental crust: composition and evolution. Blackwell Scientific Publications, 1985, 54: 209-230, 372.
    
    220. Tivey M K. The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: Insights from modeling transport and reaction, Geochim. Cosmochim. Acta, 1995, 59(10): 1933-1949.
    
    221. Ulrich T, Gunther D and Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 1999,399:676-679.
    
    222. Upton P. Modeling temporal and spatial variations in crustal peameability, porocity and pore pressure. In:Hendry J.Carey P. Pamell J et al. ed. GEOFLUIDS II '97, Extended Abstracts Volume. Belfast. 1997. 407-410.
    
    223. Vityk M Q and Bordnar R J. Statistical microthermometry of synthetic fluid inclusions in quartz during decompression reequilibration. Contributions to Mineralogy and petrology, 1998,132:149-162.
    
    224. Wedepohl K H. Chemical composition and fractionation of the continental crust. Geologische Rundschau, 1991, 80:207-223.
    
    225. Wells J T and Ghiorso M S. Coupled flow and reaction in min-ocean ridge hydrothermal systems: the behavior of silica: Geochim. et Cosmochim. Acta, 1991, 55:2467-2481.
    
    226. Wu C L, Wang Z H, Qiao D W, et al.. Types of enclaves and their features and origins in intermedite-acid intrusive rocks from Tongling district, Anhui, China. Acta Geologica Sinica, 2000,74(1):54-67.
    
    227. Wu G G, Zhang D and Zang W S. Study on Tectonic layering Movement and Layering Mineralization in the Tongling Metallogenic Cluster. Science in China(Series D), 2003,46(8):852-863.
    
    228. Xie X J. Surficial and superimposed geochemical exploration for giant ore deposits. In: Clark A H. ed. Giant Ore Deposits II. Kingston, Canada. 1995.475-485.
    
    229. Xu G, Zhou J. The Xinqiao Cu-S-Au deposit in the Tongling mineral district, China: synorogenetic remobilization of a stratiform sulfide deposit. Ore Geology Review, 2001,18:77-94.
    
    230. Xu J H, Xie Y L, Shen S L. Tectonic environment of hydrothermal gold deposits and physico-chemistry of ore-forming fliud. Acta Geosci Sin, 1998,19(2):204-209.
    
    231. Yochi M, Ryo K, Takayuki S, et al.. Gas composition of inclusion from the Mori geothermal reservoir, Southwestern Hokkaido, Japan. Resource Geology, 1997,47(5):283-291.
    
    232. Zang W S, Wu G G, Zhang D, et al.. Genesis of the Xinqiao gold-sulfide orefield, Anhui Province, China. ACTA Geological Sinica, 2004,78 (2):548-557.
    
    233. Zartman R E, Doe B R. Plumbotectonics—the model.Tectonophysics, 1981,75:135-162.
    
    234. Zhang R H, Hu S M and Zhang X T. Kinetics of hydrothermal reactions of minerals in near-citical and supercritical water. Acta Geologica Sinica, 2000,74(2): 400-405.
    
    235. Zhou X M, Li W X. Origin of late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 2000,326:269.
    
    236. Zindler A and Hart S. Chemical geodynamics, Ann Rev. Earth Planet Sci., 1986,14:493-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700