用户名: 密码: 验证码:
内蒙古查干花斑岩钼矿床:俯冲改造的富集型源区及碰撞后伸展环境对成矿的贡献
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
查干花钼矿床位于内蒙古乌拉特后旗,是近年来发现的大型斑岩矿床,也是兴蒙造山带内众多斑岩型钼矿床中的一个典型。查干花矿区宏观地质单元主要由以下几个部分组成:宝音图群变质岩、“X”型断裂以及二叠纪多期次就位于宝音图群的二叠纪岩体。其中宝音图群是一套低角闪岩相至高绿片岩相的变质地层,构成了成矿岩浆就位前的基底;“X”型断裂是一组成矿岩体就位前形成的一组断裂,对后期成矿岩体的就位具有明显的控制作用;二叠纪多期次就位的岩体由早期中粗粒黑云二长花岗岩和晚期似斑状黑云母二长花岗岩组成。查干花斑岩钼矿化主要赋存于似斑状黑云母二长花岗岩体内,矿化蚀变主要有钾化、绢英岩化、硅化、粘土化和绿帘石化等,并由中心向外构成了明显的蚀变分带,辉钼矿化与绢英岩化、硅化具有密切关系。矿石主要呈细脉状和网脉状产出,部分具有大脉状特征。根据脉体形态和形成时间,可以主要可以分为成矿前的石英脉、成矿期主阶段石英-辉钼矿-绢云母脉、成矿期晚阶段石英-黄铁矿-绢云母脉、石英-辉钼矿脉、石英-黑钨矿脉及成矿期后石英-黄铁矿脉。
     锆石LA-ICP-MS U-Pb测年结果显示,宝音图群黑云斜长角闪岩中挑选的锆石206Pb/238U年龄大部分位于464±5Ma-698±8Ma之间,少量古老锆石207Pb/206Pb可达1995±11Ma.二云石英片岩中挑选的锆石207Pb/206Pb年龄大部分位于1135±91Ma-1890±13Ma之间,少量年轻的锆石206Pb/238U年龄可以低至633±8Ma。结果表明宝音图群的原岩的沉积时代可以低至早古生代。侵入于宝音图群并随宝音图群一起变形变质的二长花岗岩的侵位年龄为446.4±1.OMa,变形变质年龄为399.4±1.5Ma,显示宝音图群的变形变质作用可能持续到早泥盆世。结合宝音图群主微量元素的分析显示,宝音图群的原岩应为沉积岩,其中角闪岩、斜长角闪岩可能为泥质、白云质沉积岩,二云石英片岩为石英含量不等的碎屑岩。二云石英片岩原岩的沉积环境可能为新元古代至古生代期间形成陆缘弧。
     锆石SHRIMP U-Pb测年结果显示,早期黑云母二长花岗岩就位年龄约为273Ma,成矿期似斑状黑云母二长花岗岩就位年龄约为253Ma。矿区的岩浆活动构成了一个多阶段演化的,从早期逐渐增强至大规模岩浆上侵,随后衰减为小规模岩浆侵位,并伴随着大量成矿流体出溶的成矿岩浆活动周期。查干花斑岩钼矿化的发生是这个长期岩浆活动周期的结果。主微量元素和同位素研究显示,矿区内的两期花岗岩具有共同来源。主微量元素测试结果显示这两期花岗岩具有高度演化和分异的特征,是深部岩浆房内经历了一定程度结晶分异和同化混染的产物。这两期花岗岩也具有明显弧岩浆作用的特点,反映了深部岩浆源区可能受到了早期俯冲作用的改造,并在二叠纪期间的碰撞后伸展环境下就位。这两期花岗岩与兴蒙造山带内大量产出的新生的低(87Sr/86Sr)i高εNd(t)花岗岩具有明显的差异,(87Sr/86Sr)i变化范围较大,εNd(t)较低,显示上部地壳物质对岩浆的形成具有重要贡献,构成了成矿岩浆的地壳物质端元。同位素组成特征也显示受到了富集地幔EM1I的改造。
     辉钼矿Re-Os同位素测年显示,斑岩钼矿化发生于~243Ma,晚于成矿期岩浆就位年龄近10Ma,是查干花成矿岩浆长期演化过程的反映,也与矿区地质特征相符。氢同位素组成具有明显的负值(δD可低至-133.9%0),硫同位素位于零值附近,但具有明显的正值(δ34S平均为2.97%0),显示成矿热液在岩浆中经历了明显的气液相瑞利分馏过程,也从侧面反映了成岩成矿过程的长期性。成矿期流体包裹体主要为气液两相H2O-NaCl体系,并含有少量的C02。测温结果显示,成矿期具有高均一温度(可高达387。C)和低盐度的特点。结合矿物对氧同位素温度计的研究结果,显示辉钼矿于653℃和200MPa (静岩压力深度7.4km)左右开始沉淀,并主要在384~416℃、40~65MPa(静水压力深度4-6.5km)环境下沉淀。矿床的形成与经历了明显去气作用的低盐度流体的长期演化有关,成矿流体气液相组分的分离是成矿系统内温度降低的重要原因,也是导致是辉钼矿沉淀的重要因素。矿床成矿期流体来源于岩浆,成矿物质的来源具有深部来源特征,可能来源于大陆下部岩石圈地幔及下地壳。
     查干花矿床的地质特征和形成过程与伸展环境下高F型斑岩钼矿床具有明显的类似性,显示查干花斑岩钼矿床应属于高F型斑岩钼矿床。查干花也是兴蒙造山带内大型斑岩钼矿床(>10万吨)中最早形成者,其形成指示着兴蒙造山带内东西向-北东向大规模斑岩钼矿化的肇始。从查干花矿床的研究显示,晚古生代开始的碰撞后伸展构造环境及其控制下的高分异型岩浆活动对兴蒙造山带内大规模斑岩钼矿化的发生具有重要的贡献,但古生代期间的俯冲作用对矿床的形成同样具有重要意义。主要体现在以下几点:(1)塑造富集型岩浆源区.古生代期间的早期俯冲作用使得大陆岩石圈含有更高的地幔不相容元素(包括钼等成矿元素),进而构成成矿元素相对富集的大陆岩石圈;(2)水化造山带。早期的俯冲过程中的脱水熔融为兴蒙造山带输入了大量的水源,从而水化了造山带,为缺乏板块俯冲作用的碰撞后伸展环境中大规模斑岩钼矿化提供充足的成矿流体来源;(3)增厚大陆岩石圈。早期俯冲和碰撞过程使得兴蒙造山带形成加厚的大陆岩石圈,促进碰撞后伸展环境下岩石圈减薄,以及这个过程中的壳幔相互作用。
Located in Urat Rear Banner, Chaganhua is a typical and newly discovered large scale porphyry Mo deposit in Xing'an Mongolian orogenic belt. There are three main geological units occur in Chaganhua ore district:the Baoyintu Group metamorphic complex, the "X" shaped fractures and the Permian multistage intrusived granites. The Baoyintu Group metamorphic complex is medium-grade metamorphic rock and constitutes the main pre-ore basement. The Permian multistage intrusived granites is mainly composed of Early Permian biotite monzonitic granite and Late Permian porphyritic biotite monzonitic granite, the intrusion of later is controlled by the pre-ore "X" shaped fractures, and lead to the hydrothermal alteration and porphyry Mo mineralization of Chaganhua. The typical alteration includes potassic feldspathization, sericitization, silicification, argillization, epidotization and chloritization. The Mo mineralization is mainly hosted in porphyritic biotite monzonitic granite, and directly associated with the sericitization and silicification alteration. Most of the Mo mineralization occurs as vein and veinlet, based on the assemblage of alteration minerals of these vein and veinlet, they can divided into pre-mineralization quartz venlets, metallogenic quarzt-molybdnite-sericite venlets, quarzt-pyrite-sericite venlets, quarzt-molybdnite-venlets and quartz-wolframite vein and post-mineralization quartz-pyrite venlets.
     LA-ICP-MS U-Pb dating study shows that most of zircons of plagioclase amphibolite from Baoyintu Group yield206Pb/238U ages ranging from464±5Ma to698±8Ma, and some of them yield207Pb/207Pb ages as old as1995±11Ma. Most of the zircons of two-mica quartz schist yield207Pb/207Pb ages ranging from1135±91Ma to1890±13Ma, and some of them yield206Pb/238U ages as young as633±8Ma. These ages show that the sedimentary time of the protolith of Baoyintu Group may as low as Middle Ordovician. The zircons from monzonitic granite which was deformated and metamorphic with Baoyintu Group yield two weighted mean concordant ages of446.4±1Ma and399.4±1.5Ma, these suggest that the monzonitic granite intruded the Baoyintu Group at Late Ordovician, and the time of metamorphism of Baoyintu Group may as low as Early Devonian. Incorporating the petrogeochemistry studies, we suggest that the protolithes of Baoyintu Group are sedimentary rocks, among which, the protolith of plagioclase amphibolite may be pelite mudstone, dolomite, and the protolith of two-mica quartz schist may be clastic rocks. These sedimentary may deposit in continental marginal arc formed in Late Proterozoic to Early Paleozoic.
     SHRIMP U-Pb dating study shows that the pre-mineralization biotite monzonitic granite was emplaced at about273Ma, and the mineralization related porphyritic biotite monzonitic granite was emplaced at about273Ma.The emplacement of these granites constitute a long lived and multistaged magmatic evolution cycle, which was evolved from progressive magmatic activity to large-scale intrusion of granite, and waning to small-scale intrusion of ore forming magma, and to the exsolution of ore forming hydrothermal fluid. The mineralization activity is the outcome of this long lived magmatic evolution cycle. The petrogeochemistry studies suggest that these two granite intrusions share the same geochemical feature of highly evolved magma. We suggest that they are the consequence of AFC in the deep magma chamber under Chaganhua porphyry deposit, and their magma source was modified by the Paleozoic sudbuction of oceanic crust, and emplaced in Late Paleozoic extensional tectonic setting. The isotope chemistry studies show enriched feature for these granites, which are different from the low (87Sr/86Sr)i and high ε Nd(t) granites occurring Xing'an-Mongolia orogenic belt.We suggest that these granites are souced from two endmembers:upper crust and EMⅡ.
     The molybdenite Re-Os dating show that the porphyry Mo mineralization occurred at about243Ma, which was about10Ma later than the emplacement of ore forming magma. This reflects a long duration of hydrothermal activity in Chaganhua deposit, which is agreed with the geological features of chaganhua deposit. These long duration are also supported by the stable isotopes studies, the ore forming fluid have very low δD (-133.9‰) and district positive δ34S (2.97‰), which show intense Rayleigh fractionation process of the ore forming fluid, and these also reflect a long evolution history of the ore forming fluid. Fluid inclusions in quartz of the main stage and late stage of molybdenum mineralization are mainly two phase vapor-liquid inclusions of H2O-NaCl composition with small amount of CO2phase. It's characterized by moderately low salinities and high homogenization temperatures. Combined with the studies of oxygen isotope thermometer, we suggest that molybdenum began to deposit at653℃,200MPa (approximately7.4km of lithostatic pressure) and mainly deposit at416℃to384℃,65MPa to40MPa (approximately6.5km to4km of hydrostatic pressure). The inclusions data combined with H-O isotope data record an evolution path of the hydrothermal fluid of degassed magma water source from high temperature, high pressure and moderately low salinity to low temperature, pressure and salinity which form Chaganhua porphyry molybdenum deposit, and these studies also suggest that the long fractionation history of ore foming fluid may be one of the important reasons for deposition of molybdnite. The H-O-S-Pb isotope geochemical studies also thow that the ore forming fluid are sourced from magmatic activity, and the ore forming substances are sourced from deep magma, and probably from subcontinental lithospheric mantle and lower crust.
     The geology and metallogenic studies show that Chaganhua porphyry Mo deposit are comparable to the high F type porphyry Mo deposits occurs in extensional tectonic setting, and suggest Chaganhua is a high F type deposit. Chaganhua is also the oldest large scale porphyry Mo deposit occurring in Xing'an-Mongolia orogenic belt, its formation means the begining of extensive porphyry Mo mineralization along the S-E to NE trending Xing'an-Mongolia orogenic belt. The activity of highly evolved and differentiated magma in post-collision extensional setting may be of great significance, but the Paleozoic subduction-modified fertile magma source may also play a crucial role in the formation of these huge porphyry Mo mineralization belt as follows:(1) Building up the fertile magma source by subduction fluids enriched in incompatible elements in Paleozoic;(2) hydrating the orogenic belt by dehydration melting of subduction fluids in Paleozoic and this highly concentrated wate will be released in the post-collision extensional setting stage, and will contribute the huge volumes of ore forming fluid needed in the formation of this huge porphyry Mo mineralization belt in Xing'an-Mongolia orogenic belt;(3) Thickening the continental lithosphere in by subduction tectonism, the instability of this thickened lithosphere would thin again because of the termination of compressive stress in post-collision extensional setting, which will cause the extensive Crust-mantle interaction.
引文
Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG.2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research,102:67-95
    Aldrich MJ, Chapin CE, Laughlin AW.1986. Stress History and Tectonic Development of the Rio Grande Rift, New Mexico. Journal of Geophysical research,91(B6):6199-6211.
    Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology,192(1-2):59-79.
    Audetat A, Dolejs D, Lowenstern JB.2011. Molybdenite saturation in silicic magmas: occurrence and petrological implications. Journal of Petrology,52(5):891-904.
    Audetat A.2010. Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at Cave Peak, Texas. Journal of Petrology,51 (8):1739-1760.
    Avanzinelli R, Elliott T, Tommasini S, Conticelli S.2008. Constraints on the Genesis of Potassium-rich Italian Volcanic Rocks from U/Th Disequilibrium. Journalof Petrology,49(2):195-223
    Barbarin B.1999. A review of the relationships between granitoid types, their origins and geodynamic environments. Lithos,46:605-626.
    Barra F, Ruiz J, Mathur R.2003. Spencer TitleyA Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita,38:585-596.
    Berglund HT, Sheehan AF, Murray MH, et al.2012. Distributed deformation across the Rio Grande Rift, Great Plains, and Colorado Plateau. Geology,40(1):23-26.
    Bhatia MR.1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology,91,611-627.
    Bingen B, Stein HJ.2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth and Planetary Science Letters,208:181-195.
    P, Kamo SL, Allen CM, Aleinikoff JN,Davis DW, Korsch RJ, Foudoulis C. 2003. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology,200:155-170
    Bodnar RJ.1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids. Economic Geology, 78(3):535-542.
    Bodnar RJ.1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,57: 683-684.
    Brandon, AD, Draper, DS.1996. Constraints on the origin of the oxidation state of mantle overlying subduction zones:An example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta,60:1739-1749.
    Brooks CK.2004. Re-Os and 40Ar/39Ar ages of porphyry molybdenum deposits in the East Greenland volcanic-rifted margin. Economic Geology,99:1215-1222.
    Cameron EM.1989. Scouring of gold from the lower crust. Geology,17:26-29.
    Candela PA, Bouton SL.1990. The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. Economic Geology,85:633-640.
    Candela PA, Holland HD.1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta,48: 373-380.
    Candela PA, Holland HD.1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems:the origin of porphyry-type ore deposits. Economic Geology,81:1-19.
    Candela PA, Piccoli PM.2005. Magmatic Processes in the Development of Porphyry-Type Ore Systems. In Economic Geology (eds. J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, J. P. Richards). One Hundredth Anniversary Volume 1905-2005:25-38.
    Carroll, MR, Rutherford, MJ,1985, Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research,90(Sup.):C601-C612.
    Carten RB, Geraghty EP, Walker BM.1988. Cyclic Development of Igneous Features and Their Relationship to High-Temperature Hydrothermal Features in the Henderson Porphyry Molybdenum Deposit, Colorado. Economic Geology,83: 266-296.
    Carten, RB, White WH, Stein HJ.1993. High-grade granite related molybdenum systems:Classification and origin. In Mineral Deposit Modeling. Geological Association of Canada (eds. R. V. Kirkham, W. D. Sinclair, R. I. Thorpe, J. M. Duke) Special Paper 40:521-554.
    Chapin CE.2012. Origin of the Colorado Mineral Belt. Geosphere,8(1):28-43.
    Chen ZG, Zhang LC, Wan B, Wu HY, Cleven N.2011. Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE china, and their geological significance. Ore Geology Reviews,43:92-105.
    Cline JS, Bodnar RJ.1991. Can Economic Porphyry Copper Mineralization be Generated by a Typical Calc-Alkaline Melt?. Journal of GeophysicaL Research, 96(B5):8113-8126.
    Corfu F, Dahlgren S.2008. Perovskite U-Pb ages and the Pb isotopic composition of alkalinevolcanism initiating the Permo-Carboniferous Oslo Rift. Earth and Planetary Science Letters,265:256-269.
    Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A, Cotton J, Coutelle A, Hermitte D.2002. Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria):magmatic expression of a slab breakoff. Lithos,62:87-110.
    Dai JZ, Mao JW, Zhao CS, Xie GQ, Yang FQ, Wang YT.2009. New U-Pb and Re-Os age data and the geodynamic setting of the Xiaojiayingzi Mo (Fe) deposit, western Liaoning province, Northeastern China. Ore Geology Reviews,35: 235-244.
    Davidson JP, Dungan MA, Ferguson KM, Colucci MT.1988. Crust-magma interactions and the evolution of arc magmas:the San Pedro-Pellado Volcanic complex, southern Chilean Andes. Geology,15:443-446.
    De Paolo DJ,1981. Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization:Earth and Planetary Science Letters, 53:189-202.
    Dixon JE, Dixon TH, Bell DR, Malservisi R.2004. Lateral variation in upper mantle viscosity:role of water. Earth and Planetary Science Letters,222:451-467
    Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Stein RMH, Morgan J, Malinovskiy D. 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenite HLP and JDC. Geostandard and Geoanalytical Research,28(1): 41-52.
    El-Bialy MZ.2010. On the Pan-African transition of the Arabian-Nubian Shield from compression to extension:The post-collision Dokhan volcanic suite of Kid-Malhak region, Sinai, Egypt. Gondwana Research,17:26-43
    Feely M, Selby D, Hunt J, Conliffe J.2010. Long-lived granite-related molybdenite mineralization at Connemara, western Irish Caledonides. Geological Magazine 147 (6):886-894.
    Forster HJ, Tischendorf G, Trumbull RB.1997. An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, 40:261-293
    Groves DI, Bierlein FP.2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society,164:19-30.
    Han CM, Xiao WJ, Zhao GC, Sun M, Qu WJ, Du AD.2009. A Re-Os study of molybdenites from the Lanjiagou Mo deposit of North China Craton and its geological significance. Gondwana Research,16(2):264-271.
    Han CM, Xiao WJ, Zhao GC, Sun M, Qu WJ, Du AD.2009. A Re-Os study of molybdenites from the Lanjiagou Mo deposit of North China Craton and its geological significance. Gondwana Research,16:264-271.
    Harris AC, Dunlap W, Reiners PW, Allen CM, Cooke DR, White NC, Campbell IH, Golding SD.2008. Multimillion year thermal history of a porphyry copper deposit:application of U-Pb,40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina. Miner Deposita,43:295-314.
    Harry, DL, Leeman, WP,1995. Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. Journal of Geophysical Research,100 (B6):10255-10269.
    Hedenquist JW, Lowenstern JB.1994. The role of magmas in the formation of hydrothermal ore deposits. Nature,370:519-527.
    Herd CD.2008. Basalts as Probes of Planetary Interior Redox State. Reviews in Mineralogy and Geochemistry,68:527-553.
    Hildreth W, Moorbath S.1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol.98,455-489.
    Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM, Sun QZ.2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Miner Deposita,48:173-192.
    Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH, Wang YX.2001. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos,59:171-198.
    Jahn BM, Wu FY, Chen B.2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23(2),82-92.
    Jahn BM, Wu FY, Chen B.2000. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23,82-92.
    Jian P, Liu DY, Kroner A, Brian F. Windley, Shi YR, Zhang FQ, Shi GG, Miao LC, Zhang W, Zhang Q, Zhang LQ, Ren JS.2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:Implications for continental growth. Lithos 101: 233-259.
    Jian P, Liu DY, Kroner A, Brian F. Windley, Shi YR, Zhang W, Zhang FQ, Miao LC, Zhang LQ, Tomurhuu D.2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118:169-190.
    Jiang SH, Liang QL, Bagas L.2013. Re-Os ages for molybdenum mineralization in the Fengning region of northern Hebei Province, China:New constraints on the timing of mineralization and geodynamic setting. Journal of Asian Earth Sciences, xxx:xxx-xxx.
    Jugo PJ, Wilke M, Botcharnikov RE.2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses:Implications for S speciation and S content as function of oxygen fugacity. Geochimica et Cosmochimica Acta,74:5926-5938.
    Keith JD, Shanks WC, Archibald DA, et al.1986. Volcanic and Intrusive History of the Pine Grove Porphyry Molybdenum System, Southwestern Utah. Economic Geology 81:553-577.
    Keith JD, Shanks WC.1988. Chemical evolution and volatile fugacities of the Pine Grove porphyry molybdenum and ash-flow tuff system, southwestern Utah, in Recent advances in the geology of granite-related mineral deposits (eds. R. P. Taylor, D. F. Strong). Canadian Institute of Mining and Metallurgy Special Volume,39:402-423.
    Khashgerel BE, Rye RO, Hedenquist JW, Kavalieris I.2006. Geology and Reconnaissance Stable Isotope Study of the Oyu Tolgoi Porphyry Cu-Au System, South Gobi, Mongolia. Economic Geology,101(3):503-522
    Klemm LM, Pettke T, Heinrich CA.2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineral Deposita,43:533-552.
    Kuroda P. K., and Sandell E. B.1954. Geochemistry of molybdenum. Geochimica et Cosmochimica Acta,6(1):35-63.
    Kuscu GG, Geneli F.2010. Review of post-collisional volcanism in the Central Anatolian Volcanic Province (Turkey), with special reference to the Tepekoy Volcanic Complex. International Journal of Earth Sciences,99:593-621.
    Landtwing MR, Furrer C, Redmond PB, Pettke T, Guillong M, Heinrich CA.2010. The Bingham canyon porphyry Cu-Mo-Au deposit.Ⅲ:zoned copper-gold ore deposition by magmatic vapor expansion. Economic Geology,105(1):91-118.
    Lee CA.2005. Trace Element Evidence for Hydrous Metasomatism at the Base of the North American Lithosphere and Possible Association with Laramide Low-Angle Subduction. The Journal of Geology,113:673-685.
    Li JY.2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences,26:207-224.
    Li WB, Zhong RC, Xu C, Song B, Qu WJ.2012. U-Pb and Re-Os geochronology of the Bainaimiao Cu-Mo-Au deposit, on the northern margin of the North China Craton, Central Asia Orogenic Belt:Implications for ore genesis and geodynamic setting. Ore Geology Reviews,48:139-150.
    Liegeois JP, Navez J, Hertogen J, Black R.1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos,45:1-28.
    Liu J, Wu G, Li Y, Zhu MT, Zhong W.2012. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences 49:300-312.
    Lowenstern JB.1994. Dissolved volatile concentrations in an ore-forming magma. Geology 22,893-896.
    Lowenstern JB., Mahood GA., Hervig RL, Sparks J.1993. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantelleria, Italy. Contributions to Mineralogy and Petrology 114,119-129.
    Ludington S, Hammarstrom J, Piatak N.2009. Low-fluorine Stockwork Molybdenite Deposits. Geological survey open-file report 2009-1211,9p.
    Ludington S, Plumlee S.2009. Climax-Type Porphyry Molybdenum Deposits. Geological survey open-file report 2009-1215,16p.
    Ludwig, K.R.,2004. Isoplot/Ex, version 3.0:a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA.
    Ma XH, Chen B, Yang MC.2013. Magma mixing origin for the Aolunhua porphyry related to Mo-Cu mineralization, eastern Central Asian Orogenic Belt. Gondwana Research, xxx:xxx-xxx.
    Manning DAC.1981. The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-Or with Excess Water at 1 kb. Contributions to Mineralogy and Petrology,76:206-215.
    Mao JW, Pirajno F, Xiang JF, et al.2011. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt:Characteristics and tectonic settings. Ore Geology Reviews,43:264-293.
    Matsuhisa Y, Goldsmith JR, Clayton RN.1979. Oxygen isotopic fractionation in the system quartz -albite -anorthite -water. Geochimica et Cosmochimica Acta,43(7): 1131-1140.
    McCuIloch MT, Jaque AL, Nelson DR, Lewis JD.1983. Nd and Sr isotopes in kimberlites and lamproites from Western Australia:an enriched mantle origin. Nature,302(31):400-403.
    Meng QR.2003. What drove late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics,369:155-174
    Moucha R, Forte AM, Rowley DB, et al.2008. Mantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valley. Geology,36(6): 439-442.
    Mutschler F, Wright E, Ludington S, Abbott J.1981. Granite molybdenite systems. Economic Geology 76(4),874-897.
    Nasdala L, Hofmeister WG, Norberg N, Mattinson JM, Corfu F, Dorr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW.2008. Zircon M257:A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geoanalytical Reserch,32:247-265.
    Nesbitt HW, Young GM.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299(21):715-717.
    Neumann ER, Dunworth EA, Sundvoll BA, et al.2002. B1 basaltic lavas in Vestfold-Jeloya area, central Oslo rift:derivation from initial melts formed by progressive partial melting of an enriched mantle source. Lithos,61:21-53.
    Noll Jr PD,Newsom HE, Leeman WP, Ryan JG.1996. The role of hydrothermal fluids in the production of subduction zone magmas:Evidence from siderophile and chalcophile trace elements and boron. Geochimica et Cosmochimica Acta, 60(4):587-611.
    Ohmoto H, Rye RO 1979. Isotopes of sulfur and carbon. In:Geo-chemistry of hydrothermal ore deposits. Barnes HL, ed.2nd edition. New York:John Wiley and Sons.509-567.
    O'Neil JR, Taylor HP.1967. The oxygen isotope and cation exchange chemistry of feldspars. American Mineralogist,52:1414-1437.
    Patino Douce, AE, Beard, JS,1995. Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 96,707-738.
    Pearce JA, Harris NB, Tindle AG.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Petrology,25 (4):956-983.
    Pearce JA.1996. Sources and settings of granitic rock. episodes,19(4):120-125.
    Perry FV, Baldridge WS, Depaolo DJ.1987. Role of Asthenosphere and Lithosphere in the Genesis of Late Cenozoic Basaltic Rocks From the Rio Grande Rift and adjacent regions of the southwestern United States. Journal of Geophysical research,92(B9):9193-9213.
    Pettke T, Oberli F, Heinrich CA.2010. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and Planetary Science Letters,296:267-277.
    Piccirillo EM, Civetta L, Petrini R, Longinelli A, Bellieni G, Comin-Chiaramonti P, Marques LS, Melfp AJ.1989. Regional variations within the Parana flood basalts (Southern BRAZIL):evidence for subcontinental mantle heterogeneity and crustal contamination. Chemical Geology,75:103-122.
    Quadt AV.2011. Zircon crystallization and the liftimes of ore-forming magmatic-hydrothermal systems. Geology 39(8),731-734.
    Richards JP.2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology,98:1515-1533.
    Richards JP.2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology,37:247-250.
    Ro HE, Faleide JI.1992. A stretching model for the Oslo Rift. Tectonophysics, 208:19-36.
    Roberts MP, Clemens JD.1993. Origin of high-potassium, talc-alkaline, Ⅰ-type granitoids. Geology 21 (9):825-828.
    Rowe MC, Lassiter JC.2009. Chlorine enrichment in central Rio Grande Rift basaltic melt inclusions:Evidence for subduction modification of the lithospheric mantle. Geology,37(5),439-442.
    Rusk BG, Reed MH.2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Economic Geology,103(2):307-334.
    Scaillet B, Macdonald R.2004. Fluorite stability in silicic magmas. Contributions to Mineralogy and Petrology,147:319-329.
    Scambelluri M, Pettke T, van Roermund, HLM,2008. Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology,36:59-62.
    Schonwandt HK, Petersen JS.1983. Continental riffing and porphyry-molybdenumoccurrences in the Oslo region, Norway. Tectonophysics,94: 609-631.
    Seedorff, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD.2005. Porphyry deposits:characteristics and origin of hypogene features. In Economic Geology (eds. J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, J. P. Richards). One Hundredth Anniversary Volume 1905-2005, 251-298.
    Seedorff E, Einaudi MT.2004. Henderson porphyry molybdenum system, Colorado: 11. Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Economic Geology,99:39-72.
    Selby D, Creaser RA.2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology,96:197-204.
    Selby D, Nesbitt B, Muehlenbachs K.2000. Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia Economic Geology,95(1):183-202.
    Sengor AMC, Natal'in BA, Burtman VS.1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature,364:209-304.
    Shaw D.1972. The Origin of the Apsley Gneiss, Ontario. Canadian Journal of Earth Sciences,9(18):18-35.
    Shinohara H, Kazahaya K, Lowenstern JB.1995. Volatile transport in a convecting magma column:implications for porphyry Mo mineralization. Geology 23(12), 1091-1094.
    Sillitoe RH, Mortensen JK.2010. Longevity of porphyry copper formation at Quellaveco, Peru. Economic Geology,105:1157-1162.
    Sillitoe RH, Perello J.2005. Andean copper province:tectonomagmatic settings. Economic Geology 100th Anniversary volume:845-890.
    Sillitoe RH.2010. Porphyry copper systems. Economic Geology,105:3-41.
    Simmons EC, Hedge CE.1978. Minor-element and Sr-isotope geochemistry of tertiary stocks, Colorado mineral belt. Contributions to Mineralogy and Petrology,67:379-396.
    Sinclair WD.2007. Porphyry deposits, in Goodfellow, WD., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods:Geological Association of Canada, Mineral Deposits Division, Special Publication,5: 223-243.
    Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ.2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,249:1-35.
    Smoliar, MI,Walker, RJ, Morgan, JW,1996. Re-Os ages of group ⅡA, ⅢB, ⅣA,ⅣB iron meteorites. Science 271,1099-1102.
    Stein HJ, Hannah JL.1985. Movement and origin of ore fluids in Climax-type systems. Geology,13:469-474.
    Stein HJ, Markey RJ, Morgan JW, Hannah JL, Schersten A,2001. The remarkable Re-Os chronometer in molybdenite:how and why it works. Terra Nova 13, 479-486.
    Stein HJ.2006. Low-rhenium molybdenite by metamorphism in northern Sweden: Recognition, genesis, and global implications:Lithos,87:300-327.
    Streckeisen AL, Le Maitre RW.1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen,136:169-206.
    Sun SS, McDonough WF.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication,42:313-345.
    Suzuoki T, Epstein S.1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta,40(10):1229-1240.
    Taylor H.1979. Oxygen and hydrogen isotope relationships in hydrothermal minerals deposits, [C]//Barnes H. Geochemistry of Hydrothermal Ore Deposits. New York, Wiley Interscience:501-567.
    Thompson RN, Dickin AP Gibson IL, Morrison MA.1982. Elemental fingerprints of isotopic contamination of Hebridean Palaeocene mantle-derived magmas by Archaean sial. Contribtution Mineral Petrology,79:159-168.
    Tingle TN, Fenn PM.1984. Transport and concentration of molybdenum in granite molybdenite systems:Effects of fluorine and sulfur. Geology,12:156-158.
    Tomkins AG, Mavrogenes JA.2003. Generation of metal-rich felsic magmas during crustal anatexis. Geology 31(9),765-768.
    Tomurtogoo O, Windley BF, Kroner A, Badarch G, Liu YD.2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. Journal of the Geological Society 162,125-134.
    USGS.2009. Minerals Yearbook:Molydbenum [advance release], http://www.usgs.gov/, P 15.
    Vigneresse JL.2007. The role of discontinuous magma inputs in felsic magma and ore generation. Ore Geology Reviews,30:181-216.
    Villeneuve M, Whalen JB, Anderson RG, Struik LC.2001. The Endako Batholith: Episodic Plutonism Culminating in Formation of the Endako Porphyry Molybdenite Deposit, North-Central British Columbia. Economic Geology,96(1): 171-196.
    Wallace SR, MacKenzie WB, Blair RG, Muncaster NK.1978. Geology of the Urad and Henderson Molybdenite Deposits, Clear Creek County, Colorado, with a Section on a Comparison of These Deposits with Those at Clinlax, Colorado. Economic Geology,73:325-368.
    Watanabe Y, Stein HJ.2000. Re-Os Ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo Deposits, Mongolia, and tectonic implications. Economic Geology,95:1537-542.
    Westra G, Keith S.1981. Classification and genesis of stockwork molybdenum deposits. Economic Geology,76(4):844-873.
    White WM.1985. Sources of oceanic basalts:Radiogenic isotope evidence. Geology, 13:115-118.
    Wijk JV, Hunen JV, Goes S.2008. Small-scale convection during continental rifting: Evidence from the Rio Grande rift. Geology,36(7):575-578.
    Williams IS, Claesson S.1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides:Ⅱ. Ion microprobe zircon U-Th-Pb. Contributions to mineralogy and petrology,97:205-217.
    Williams S.1984. Late Cenozoic volcanism in the Rio Grande Rift:trace element, Sr isotopic and Nd isotopic geochemistry of the Taos Plateau Volcanics,202 pp., Ph.D. Thesis, University of Minnesota.
    Wilson D, Aster R, West M, et al.2005. Lithospheric structure of the Rio Grande rift. Nature,433:851-855.
    Wilson M, Downes H.1992. Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics,208:173-182.
    Wilson M.1989. Igneous petrogenesis. Kluwer, Dordrecht, p 450.
    Windley BF, Alexeiev D, Xiao WJ, Kroner A, Badarch G.2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164:31-47.
    Worner G, Zindler A, Staudigel H, Schmincke HU.1986. Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkatine volcanics from West Germany. Earth and Planetary Science Letters,79:107-119.
    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY.2003a. Highly fractionated I-type granites in NE China (Ⅰ):geochronology and petrogenesis. Lithos 66,241-273.
    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY.2003b. Highly fractionated I-type granites in NE China (Ⅱ):isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67,191-204.
    Wu FY, Sun DY, Li HM, Jahn BM, Wilde S.2002. A-type granites in northeastern China, age and geochemical constraints on their petrogenesis. Chemical Geology, 187:143-173.
    Wyllie PJ.1988. Solidus curves, mantle plumes, and magma generation beneath Hawaii. Journal of Geophysical Research,93(B5):4171-4181.
    Xiao WJ, Windley BF, Hao J, Zhai MG.2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonic,22:1484-1505.
    Xu B, Chen B.1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia. Science in China (Series D),40(5):463-469.
    Zajacz Z, Halter WE, Pettke T, et al.2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions:Controls on element partitioning. Geochimica et Cosmochimica Acta, 72:2169-2197.
    Zeng QD, Liu JM Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL, Qu WJ.2013. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, northeast China, and its geological significance. Journal of Asian Earth Sciences xxx:xxx-xxx.
    Zeng QD, Liu JM, Chu SX, et al.2012. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China:characteristics and tectonic setting. International Geology Review,54(16):1843-1869.
    Zeng QD, Liu JM, Qin F, Zhang ZL.2010b. Geochronology of the Xiaodonggou Porphyry Mo Deposit in Northern Margin of North China Craton. Resource Geology,60(2):192-202.
    Zeng QD, Liu JM, Zhang ZL, Chen WJ, Zhang WQ.2011. Geology and geochronology of the Xilamulun molybdenum metallogenic belt in eastern Inner Mongolia, China. International Journal of Earth Sciences,100(8):1791-1809.
    Zeng QD, Yang JH, Liu JM, Chu SX, Duan XX, Zhang ZL, Zhang WQ, Zhang S. 2011. Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton:geochemistry, zircon U-Pb age and Sr-Nd-Pb isotopes. Geological Magazine,149(5):753-767.
    Zhang L, Audetat A, Dolejs D.2012. Solubility of molybdenite (M0S2) in aqueous fluids at 600-800℃,200 MPa:A synthetic fluid inclusion study. Geochimica et CosmochimicaActa,77:175-185.
    Zhang LC, Wu HY, Wan B, Chen ZG.2009. Ages and geodynamic settings of Xilamulun Mo-Cu metallogenic belt in the northern part of the North China Craton. Gondwana Research,16(2),243-254.
    Zindler.1986. Chemicalcal geodynamics. Annual Review of Earth and Planetary Sciences.14:493-571.
    蔡明海,张志刚,屈文俊,贺钟银,冯罡,张诗启,徐明,陈艳.2011a.内蒙古乌拉特后旗查干花钼矿床地质特征及Re-Os测年.地球学报,32(1):64-68.
    蔡明海,张志刚,屈文俊,彭振安,张诗启,徐明,陈艳,王显彬.2011b.内蒙古乌拉特后旗查干花钼矿床地质特征及Re-Os测年.矿床地质,30(3):377-384.
    陈衍景,张成,李诺,等.2012.中国东北钼矿床地质.吉林大学学报(地球科学版),42(5):1223-1268.
    陈志广,张连昌,吴华英,等.2008.内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景.岩石学报,024(4):879-889.
    代军治,毛景文,杜安道,谢桂青,白杰,杨富全,屈文俊.2007.辽西肖家营子钼(铁)矿床Re-Os年龄及其地质意义.地质学报,81(7):917-923.
    代军治,毛景文,赵财胜,等.2008.辽西兰家沟钼矿床花岗岩SHRIMP锆石 U-Pb 年龄及岩石化学特征.地质学报,82(11):1555-1564.
    代军治,谢桂青,段焕春,杨富全,赵财胜.2007.河北撒岱沟门斑岩型钼矿床成矿流体特征及其演化.岩石学报,23(10):2519-2529.
    杜安道,何红蓼,殷宁万,邹晓秋,孙亚利,孙德忠,陈少珍,屈文俊.1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,68(4):339-347.
    杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001.Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247-252.
    杜保峰,魏俊浩,王启,李艳军,刘国春,于海涛,刘永利.2010.中国东部钼矿成矿背景与成岩-成矿时差讨论.矿床地质.29(6):935-955.
    杜理科,葛梦春.2010.内蒙古锡林浩特宝音图群斜长角闪岩原岩恢复的地球化学示踪.新疆地质,28(2):200-203.
    葛文春,吴福元,周长勇,等.2007.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义.科学通报,52(20):2407-2417.
    洪大卫,王式,谢锡林,张季.2000.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长.地学前缘,7(2):441-456.
    侯万荣,聂凤军,杜安道,李超,江思宏,白大明,刘妍.2010.内蒙古西沙德盖钼矿床辉钼矿Re-Os同位素年龄及其地质意义.矿床地质,29(6):1043-1054.
    黄典豪,杜安道,吴澄宇,刘兰笙,孙亚莉,邹晓秋.矿床地质,15(4):365-373.
    简平,程裕淇,刘敦一.变质锆石成因的岩相学研究℡℡高级变质岩U-Pb年龄解释的基本依据.地学前缘,8(3):183-191.
    李碧乐,张娟,张晗,许庆林,于泽新.2010.内蒙古赤峰市鸭鸡山钼铜矿成矿流体特征及矿床成因.吉林大学学报(地球科学版),40(1):61-72.
    李锦轶.2009.中国大陆地质历史的旋回与阶段.中国地质,36(3):524-527.
    李文博,赖勇,孙希文,王保国.2007.内蒙古自乃庙铜金矿床流体包裹体研究.岩石学报:23(9):2165-2176.
    李香资,班宜红,权知心,等.2012.内蒙古兴和县曹四夭钼矿床地球化学特征及成矿模型探讨.地质调查与研究,35(1):39-46.
    李永峰,王春秋,白凤军,宋艳玲.2004.东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景.矿产与地质,18(6):571-578.
    林强,葛文春,曹林,等.2003.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学,32(3):208-222.
    刘翼飞,聂凤军,江思宏,侯万荣,梁清玲,张可,刘勇.2011a.内蒙古苏尼特左旗准苏吉花钼矿床成岩成矿年代学及其地质意义.矿床地质,31(1):119-128.
    刘翼飞,聂凤军,江思宏,席忠,张志刚,肖伟,张可,刘勇.2011b.内蒙古查干花钼矿床矿流体特征及矿床成因.吉林大学学报(地球科学版)41(6):1794-1805.
    刘勇,聂凤军,刘翼飞,侯万荣.2012.内蒙古宝格达乌拉钼(钨)矿区花岗岩锆石SHRIMP U-Pb年龄及地质意义.岩石学报,28(2)401-408.
    骆文娟,张德会,孙剑.2010.河北丰宁撒岱沟门钼矿区成矿岩体地球化学特征及其对矿床成因的约束.地质与勘探,46(3):491-505.
    吕克鹏,韩龙,张佳男.2010.岔路口钼矿床地质特征及找矿标志浅析.黑龙江科技信息,21:31.
    马星华,陈斌,赖勇,窦金龙,邹滔.2010.斑岩铜钼矿床成矿流体的出溶、演化与成矿:以大兴安岭南段敖仑花矿床为例.岩石学报,26(5):1397-1410.
    马星华,陈斌,赖勇,鲁颖淮.2009.内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义.岩石学报,25(11):2939-50.
    毛景文,谢桂青,张作衡,等.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188.
    牟保磊,阎国翰.1992.燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义.地质学报,66(2):108-121.
    聂凤军,江思宏,张义,白大明,胡朋,赵元艺,张万益,刘妍.2007.中蒙边境中东段金属矿床成矿规律和找矿方向.北京:地质出版社
    聂凤军,孙振江,李超,刘翼飞,吕克鹏,张可,刘勇.2011.黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义.矿床地质,30(5):828-836.
    聂凤军,李香资,李超,等.2013.内蒙古兴和县曹四夭特大型钼矿床辉钼矿铼锇同位素年龄及地质意义.地质论评,59(1):175-181.
    聂凤军,刘翼飞,赵宇安,等.2012.内蒙古大苏计和曹四夭大型钼矿床的发现及意义.矿床地质,31(4):930-941.
    聂凤军,张万益,杜安道,江思宏,刘妍.2007.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义.地质学报,81(7):898-905.
    聂秀兰,侯万荣.2010.内蒙古迪彦钦阿木大型钼-银矿床的发现及地质意义.地球学报,31(3):469-472.
    彭润民,霍裕生,韩雪峰,王志刚,王建平,沈存利,陈喜峰.2007a.内蒙古狼山造山带构造演化与成矿响应.岩石学报,23(3):679-688.
    彭润民,型裕生,韩雪峰,王志刚,王建平,刘家军.2007b.内蒙古狼山-渣尔泰山中元古代被动陆缘裂陷槽裂解过程中的火山活动及其示踪意义.岩石学报,23(5):1007-1017.
    卿敏,葛良胜,唐明国,屈文俊,袁士松,赵玉锁.2011.内蒙古苏尼特右旗毕力赫大型斑岩型金矿床辉钼矿Re-Os同位素年龄及其地质意义.矿床地质,30(1):11-20.
    任康绪,阎国翰,牟保磊,蔡剑辉,童英,李凤棠,赵凤三,古丽冰,杨斌,储著银.2005.阿拉善断块富碱侵入岩岩石地球化学和Nd、Sr、Pb同位素特征及其意义.地学前缘,12(2):292-302.
    任康绪,阎国翰,牟保磊,等.2004.辽西凌源河坎子碱性杂岩体地球化学特征及地质意义.岩石矿物学杂志,23(3):193-202.
    任荣,牟保磊,韩宝福,张磊,陈家富,徐钊,宋彪.2009.河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄.岩石学报,25(3),588-594.
    任荣,牟保磊,邵济安,等.2001.河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr、Nd同位素特征.岩石学报,17(3):358-365.
    石玉若,刘敦一,张旗,简平,张福勤,苗来成,张履桥.2007.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U- Pb年龄及其区域构造意义.地质通报,26(2):183-189.
    宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    孙立新,赵凤清,王惠初,任邦方,彭树华,滕飞.2013.内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义.地质学报,87(2):197-207.
    覃锋,刘建明,曾庆栋,等.2009.内蒙古克什克腾旗小东沟斑岩型锢矿床成岩成 矿机制探讨.岩石学报,25(12):3357-3368.
    陶继雄,王弢,陈郑辉,罗忠泽,许立权,郝先义,崔来旺.2009.内蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定年及其地质特征.岩矿测试,28(3):249-253.
    童英,洪大卫,王涛,等.2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报,31(3):395-412.
    王必任,周志广,於炀森,那福超,肖茹鹏.2011.内蒙古白乃庙石英脉群流体包裹体特征及其金的勘查意义.现代地质,25(2):243-252.
    王成辉,松权衡,王登红,李立兴,于城,汪志刚,屈文俊,杜安道,应立娟.2011.吉林大黑山超大型钼矿辉钼矿铼一锇同位素定年及其地质意义.28(3):269-273.
    魏庆国,高听宇,赵太平,陈伟,杨岳衡.2010.大别北麓汤家坪花岗斑岩锆石LA-ICPMS U-Pb定年和岩石地球化学特征及其对岩石成因的制约.岩石学报,26(5)-1550-1562.
    吴福元,曹林.1999b.东北亚地区的若干重要基础地质问题.世界地质.18(2):1-13.
    吴福元,孙德有,林强.1999a.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,15(2):181-189.
    吴华英,张连昌,陈志广,等.2008.内蒙古西拉木伦成矿带库里吐钼(铜)矿区二长花岗岩地球化学、构造环境及含矿性分析.岩石学报,024(4):867-878.
    席忠,张志刚,贾立炯,苟小军,孙庆茹,侯万荣.2010.内蒙古马尼图-查干花大型钼-铋-钨矿化区的发现及地质意义.地球学报,31(3):466-468.
    徐备,刘树文,王长秋,郑海飞,田峰.内蒙古西北部宝音图群Sm-N和Rb-Sr地质年代学研究.地质论评,46(1):86-90.
    许立权,贾和义,张玉清,陶继雄.2004.白云鄂博地区碱性正长岩特征及其意义.地质调查与研究,27(1):43-47.
    阎国翰,牟保磊,许保良,等.2000.燕辽-阴山三叠纪碱性侵入岩年代学和Sr-Nd-Pb同位素特征及意义.中国科学D辑,30(4):383-387.
    阎国翰,牟保磊,许保良,等.2002.中国北方显生宙富碱侵入岩年代学和N d、 Sr、Pb同位素特征及其意义.地质论评.48(s1):69-76.
    阎国翰,谭林坤,许保良,等.2001.阴山地区印支期碱性侵入岩岩石地球化学特征.岩石矿物学杂志,20(3):281-292.
    阎国翰,蔡剑辉,任康绪等.2007.华北克拉通板内拉张性岩浆作用与三个超大陆裂解及深部地球动力学.高校地质学报,13(2):161-174.
    杨泽强.2007.河南商城县汤家坪钼矿辉钼矿铼℡锇同位素年龄及地质意义.矿床地质,26(3):289-295.
    曾庆栋,刘建明,肖文交,等.2012.华北克拉通南北缘三叠纪钼矿化类型、特征及地球动力学背景.岩石学报,28(2):357-371.
    曾庆栋,刘建明,张作伦,覃锋,陈伟军,张瑞斌,于昌明,叶杰.2009.华北克拉通北缘鸡冠山斑岩钼矿床成矿年代及印支期成矿事件.岩石学报,25(2):393-398.
    曾庆栋,刘建明,褚少雄,等.2011.西拉沐伦成矿带中生代花岗岩浆活动与钼成矿作用.吉林大学学报(地球科学版),41(6):1705-1725.
    翟明国,卞爱国.2000.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解.中国科学(D辑),30(增刊):129-137.
    张连昌,吴华英,相鹏,等.2010.中生代复杂构造体系的成矿过程与成矿作用—以华北大陆北缘西拉木伦钼铜多金属成矿带为例.岩石学报,26(5):1351-1362.
    张彤,陈志勇,许立权,陈郑辉.2009.内蒙古卓资县大苏计铝矿辉钼矿铼-锇同位素定年及其地质意义.岩矿测试,28(3):279-282.
    张玉清,苏宏伟.2002.内蒙古宝音图岩群变质基性火山岩锆石U-Pb年龄及意义.前寒武纪研究进展,25(3-4):199-204.
    张玉清.2004.内蒙古白云鄂博北部宝音图岩群变质基性火山岩的年龄、构造背景及地质意义.地质通报,23(2):177-183.
    张作伦,曾庆栋,屈文俊,刘建明,孙兴国,张瑞斌,陈伟军,覃锋.2009.内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义.岩石学报,25(1):212-218.
    张作伦,刘建明,曾庆栋.2011.内蒙古碾子沟钼矿床SHRIMP锆石U-Pb年龄、硫同位素组成及其地质意义.矿床地质,30(6):1122-1128.
    赵越,陈斌,张拴宏,刘建民,胡健民,刘健,裴军令.2010.华北克拉通北缘及邻区前燕山期主要地质事件.中国地质,37(4):900-915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700