用户名: 密码: 验证码:
多用户协作分集关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的发展,人们对无线数据服务的需求越来越大。无线信道的衰落特性是阻碍信道容量增加和服务质量改善的主要原因之一,而多天线分集技术是应对衰落的有效方法。多天线的分集要求通信设备具有多个天线,但是很多系统的节点受到体积和功耗等的限制无法安装多个不相关的天线,协作分集通信技术就是在这种背景下应运而生的。
     协作分集通信的概念是建立在中继信道模型的基础上的,它是一种新的空间分集技术。它利用了无线电波的广播特性,每一个节点都可以接收到其它节点发送的信号并经过一定的处理后转发到目的节点,这样不同的用户就可以共享彼此的天线而形成空间分集。协作分集可以提高无线通信系统的容量,减少通信的中断概率,扩大无线网络的覆盖范围和连通性,节省传输数据的能量等,从而提高无线通信系统的有效性和可靠性。协作分集技术不仅可以应用在蜂窝移动通信网中,而且在传感器网络、认知无线电等无线通信系统中都可以得到很好的应用。协作分集技术的出现也促进了多输入多输出(MIMO)技术的实用化,因而成为未来无线通信技术的重要研究领域。
     本文着眼于协作分集系统中存在的问题,围绕着什么时候进行协作,与谁协作和怎么协作三个研究方向,重点对协作的时机,协作伙伴的选择,协作方法的改进等协作分集的关键技术进行了研究。
     第一,协作通信的原理分析与协议设计。首先介绍了协作分集的信道模型和基本原理,给出了协作分集理论计算的增益。然后介绍了解码转发(DF)和放大转发(AF)两种基本的协作方法,并给出了几种协作方法的性能比较。接着介绍了协作通信的流程,考虑了协作通信的特殊性,并将其结合现有的通信系统,设计了带有协作通信的帧结构和通信流程。该协作流程加入了协作伙伴选择、协作建立等所需的时间和流程。并在此基础上分析了协作通信建立的时机,也就是什么时候需要进行协作通信的问题。
     第二,针对两种不同的场景分别提出了对应的协作伙伴选择方法。在用户节点密集区域,结合最差链路优先匹配的原则,提出了互惠的和非互惠的“用户间信道优先”的匹配方法,该方法不需要求解方程来计算用户与其它节点相互协作可能得到的能量增益,而只需要知道用户到目的节点的信道增益和用户之间的信道增益就可以直接将节点进行分组。该匹配方法可以在能量增益变化不大的情况下显著降低计算量,减少系统的开销。而对于铁路和高速公路场景下的高速移动的用户节点,则在分析了高速移动节点的特殊性的基础上,根据用户节点的运动方向和速度将其分成不同的组,高速移动的用户节点只从与自己方向相同的高速运动的用户中选择协作伙伴,这样就可以降低协作伙伴之间的相对速度,提高协作持续的时间,减少协作伙伴的切换次数,从而降低系统的开销,增加协作的有效性。
     第三,研究了协作分集策略的改进和协作代价分析。由于放大转发和解码转发各有优缺点,因此提出了一种结合解码转发和放大转发的协作分集策略。该策略在用户节点间信道较好、协作伙伴可以正确解码的时候就采用DF协作,否则就采取AF协作的方法,这样就可以综合DF和AF的优点,提高频谱的利用率,取得更好的物理层和MAC层的性能。然后分析了在DF协作中应用自适应调制的协作方法的性能,可以提高协作系统的频谱效率。最后提出了一个协作代价表示函数,该函数中综合了能量、时间和频率三种资源,可以全面的计算协作带来的增益或者建立协作的开销。通过该函数的计算就可以判断采取协作可能带来的增益,从而为是否需要建立协作以及是否应该更换协作伙伴提供了依据。
     第四,分析了宽带信道下的协作分集方法。首先针对具有较低峰均比的单载波频域均衡系统,提出了一种均衡转发的协作方法来达到瞬时功率控制的目的,并且把均衡转发与解码转发两种协作方法相结合,进一步改善系统的性能,然后分析了协作伙伴的不同对系统性能的影响,为该系统下的协作伙伴选择提供支持。最后针对正交频分多址(OFDMA)系统,提出了改进的子载波分配方法,通过增加一些限制条件,可以以牺牲部分公平性换来了系统容量的大幅提高,得到一个公平算法与贪婪算法之间的折中。
As the development of wireless communications technology, people's requirement of wireless data services is also growing. The loss of wireless channel is one of the main obstructions for increasing channel capacity and improving service quality. And multi-antenna diversity technology is an effective measure to deal with the channel loss. However, the multi-antenna diversity requires that the communications equipment has multiple antennas, which is difficult to achieve in nodes of many systems because of the limits of size and power. Cooperative diversity technology appeared in this context.
     Cooperative diversity communication is based on relay channel model, and it is a new spatical diversity technology. It makes use of the broadcast nature of radio waves, each node can receive information which other nodes transmitted and retransmitted it to the destination node after a certain treatment. So different users can share their antennas and form spatial diversity. Cooperative diversity can improve the capacity of wireless communication systems, reduce the outage probability, expand the wireless network coverage and connectivity, and save the energy for data transmission. So it can improve the effectiveness and reliability of wireless communication systems. Cooperative diversity can not only be used in cellular mobile communication network, and it also can be well applied in sensor networks, cognitive radio and other wireless communication systems. And cooperative diversity have also contributed to the practical use of multiple-input multiple-output (MIMO) technology, and thus become an important technology for future research on wireless communications.
     This article focuses on problems in cooperative diversity system, and three research questions are consideres: when to cooperate, who cooperates with whom and how to cooperate. The opportunity of cooperation, partner selection and the improvement of cooperative strategies have been studied.
     Firstly, the principle analysis and protocol design of cooperative diversity are introduced. The basic channel model and protocol of cooperative diversity are introduced first and the theoretical cooperative gain is provided. Then decoded-and-forward (DF) and amplify-and-forward (AF) are considered and performances are compared. The flow of cooperative communication is introduced and the particularity of cooperative system is considered. Based on the frame structure in existing communications systems, communications processes and frame structure which can be applied in cooperative diversity systems are designed. The slot and structure of cooperative partner selection, cooperation created are appended in the the new communications processes. And“when to cooperate”is discussed based it.
     Secondly, the cooperative partner selection methods are proposed for two different scenarios. In high user-density area, combined with“worst-link-first”matching method, the reciprocit and non-reciprocity“channel between users first”matching methods are proposed. With the methods, we do not require solving the equation to computae the possible energy gain for cooperating with other users. We only need to know the channel gain from users to the destination and channel gain between users, we can group the nodes to cooperate. The matching method can reduce the calculation and system overhead with ensuring the energy gain. For high-speed mobile user nodes on the railway or highway, with the analysis of the particularity of high speed nodes, we can divided the nodes into groups based on the users’moving direction and speed, and high-speed mobile user nodes only select partner from the nodes moving by the same direction with themselves. So it can reduce the relative velocity of partners, and which can increase the duration of cooperation, reduce the partner switching frequency, thereby it can reduce system overhead and increase the effectiveness of the cooperation.
     Thirdly, we study improving the cooperative diversity strategy and analyze the cost of cooperation. As AF and DF both have advantages and disadvantages, so a cooperative method combined DF and AF is proposed. When the channel between the user nods is better and the partner can decode correctly, DF is used, or else AF is used. So this method synthesizes advantages of AF and DF, and it can improve the spectrum efficiency, get better physical layer and MAC layer performance. Then we analyzed the application of adaptive modulation in DF, which can further enhance the spectral efficiency of cooperative diversity system. Finally, a cooperative cost function is designed, which synthesizes energy, time and frenquency, and it can calculate the cooperative gain and cost in starting cooperation. We can determine if cooperation or partner switch is necessary and how much gain we can earn.
     Fourthly, cooperative diversity in broadband channel is analyzed. First of all, an“equalization and forward”method is proposed for low PAPR single-carrier frequency domain equalization system. It can provide diversity gain which is similar to instantaneous power control in narrowband system. And it also can be combined with DF to further improve system performance. Then the influence to performance of different partners is analyzed, which can support the partner selection. Finally, for orthogonal frequency division multiple access (OFDMA) system, we proposed a modified channel allocated method. By means of setting several thresholds, we can improve the system capacity greatly with less fairness loss. And a tradeoff between fair method and greedy method can be obtained.
引文
1 S. M. Alamouti. A Simple Transmit Diversity Technique for Wireless Communications. IEEE Journal on Selected Areas in Communications. 1998, 16(8): 1451-1458
    2庄铭杰,郭东辉,林比宏.一种双天线发射分集方案的性能分析.电波科学学报. 2006, 21(3): 454-458
    3韩昌彩.多天线与协作中继网络中的传输技术研究.北京邮电大学博士学位论文. 2009: 1-4
    4张鸿涛.无线网络多用户协作传输关键技术研究.北京邮电大学博士学位论文. 2008: 1-17
    5单杭冠.无线协作传输系统的资源分配与协议设计.复旦大学博士学位论文. 2009: 1-6
    6李屹.未来无线网络中协作通信算法研究.北京邮电大学博士学位论文. 2008: 1-4
    7 X. Li, Y. Wu, E. Serpedin. Timing Synchronization in Decode-and-Forward Cooperative Communication Systems. IEEE Transactions on Signal Processing. 2009, 57(4): 1444-1455
    8 T. M. Cover, A. A. E. Gamal. Capacity Theorems for the Relay Channel. IEEE Transactions on Information Theory. 1979, IT-25(5): 572-584
    9 A. Sendonaris, E. Erkip, B. Aazhang. Increasing Uplink Capacity via User Cooperation Diversity. IEEE International Symposium on Information Theory. Cambridge, 1998: 156
    10 A. Sendonaris, E. Erkip, B. Aazhang. User Cooperation Diversity-Part I: System Description. IEEE Transactions on Communications. 2003, 51(11): 1927-1938
    11 A. Sendonaris, E. Erkip, B. Aazhang. User Cooperation Diversity-Part II: Implementation Aspects and Performance Analysis. IEEE Transactions on Communications. 2003, 51(11): 1939-1948
    12 J. N. Laneman, G. W. Wornell. Exploiting Distributed Spatial Diversity in Wireless Networks. Allerton Confence on Communications, Control and Computing. Monticello, 2000: 1-12
    13 J. N. Laneman, G. W. Wornell. Energy-Efficient Antenna Sharing and Relaying for Wireless Networks. IEEE Wireless Communications and Networking Conference. Chicago, 2000: 7-12
    14 J. N. Laneman, G. W. Wornell, D. N. C. Tse. An Efficient Protocol for RealizingCooperative Diversity in Wireless Networks. IEEE International Symposium on Information Theory. Washington, DC, 2001: 294
    15 J. N. Laneman, D. N. C. Tse, G. W. Wornell. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Transactions on Information Theory. 2004, 50(12): 3062-3080
    16 J. N. Laneman, G. W. Wornell. Distributed Space-Time-Coded Protocols for Exploiting Cooperative Diversity in Wireless Networks. IEEE Transactions on Information Theory. 2003, 49(10): 2415-2425
    17 A. Nosratinia, T. E. Hunter, A. Hedayat. Cooperative Communication in Wireless Network. IEEE Communications Magazine. 2004, 42(10): 74-80
    18 T. E. Hunter, A. Nosratinia. Cooperation Diversity through Coding. IEEE International Symposium on Information Theory. Lausanne, 2002: 220
    19 T. E. Hunter, A. Nosratinia. Coded Cooperation under Slow Fading, Fast Fading, and Power Control. The Thirty-Sixth Asilomar Conference on Signals Systems and Computers. Pacific Groove, 2002: 118-122
    20 T. E. Hunter, A. Nosratinia. Diversity through Coded Cooperation. IEEE Transactions on Wireless Communications. 2006, 5(2): 283-289
    21 R. Liu, P. Spasojevic, E. Soljanin. Incremental Redundancy Cooperative Coding for Wireless Networks: Cooperative Diversity, Coding, and Transmission Energy Gains. IEEE Transactions on Information Theory. 2008, 54(3): 1207-1224
    22 Y. Zou, B. Zheng, W. Zhu. An Opportunistic Cooperation Scheme and its Ber Analysis. IEEE Transactions on Wireless Communications. 2009, 8(9): 4492-4497
    23韩春雷,葛建华,林一,等.编码协作中的一种门限选择中继方案.西安电子科技大学学报(自然科学版). 2009, 36(2): 198-202
    24雷维嘉,谢显中,李广军.一种基于LDPC编码的协作通信方式.电子学报. 2007, 35(4): 711-714
    25宫丰奎,韩春雷,王勇,等.慢衰落信道下高阶调制编码协作方案及性能分析.西安电子科技大学学报(自然科学版). 2008, 35(4): 565-569
    26 M. R. Souryal, B. R. Vojcic. Cooperative Turbo Coding with Time-Varying Rayleigh Fading Channels. IEEE International Conference on Communications. Paris, 2004: 356-360
    27 R. U. Naba, H. B?lcske, F. W. Kneubühler. Fading Relay Channels: Performance Limits and Space–Time Signal Design. IEEE Journal on Selected Areas in Communications. 2004, 22(6): 1099-1109
    28 A. Bletsas, A. Lippman. Implementing Cooperative Diversity Antenna Arrays with Commodity Hardware. IEEE Communications Magazine. 2006, 44(12): 33-40
    29 A. S. Ibrahim, A. K. Sadek, W. Su, et al. Cooperative Communications with Relay-Selection: When to Cooperate and Whom to Cooperate with. IEEE Transactions on Wireless Communications. 2008, 7(7): 2814-2827
    30 Z. Han, T. Himsoon, W. P. Siriwongpairat, et al. Resource Allocation for Multiuser Cooperative Ofdm Networks: Who Helps Whom and How to Cooperate. IEEE Transactions on Vehicular Technology. 2009, 58(5): 2378-2391
    31 A. Bletsas, A. Khisti, D. P. Reed, et al. A Simple Cooperative Diversity Method Based on Network Path Selection. IEEE Journal on Selected Areas in Communications. 2006, 24(3): 659-672
    32 A. Bletsas, H. Shin, M. Z. Win, et al. Cooperative Diversity with Opportunistic Relaying. IEEE Wireless Communications and Networking Conference. Las Vegas, 2006: 1034-1039
    33宋文妙,胡健栋.合作分集无线网络合作伙伴选择.中国电机工程学报. 2006, 26(5): 149-152
    34 A. Bletsas, H. Shin, M. Z. Win. Cooperative Communications with Outage-Optimal Opportunistic Relaying. IEEE Transactions on Wireless Communications. 2007, 6(9): 3450-3460
    35 K. Hwang, Y. Ko. An Efficient Relay Selection Algorithm for Cooperative Networks. IEEE 66th Vehicular Technology Conference. Baltimore, 2007: 81-85
    36陈超,郑宝玉,赵贤敬.一种利用跨层优化策略选择中继的协作路由算法.电子与信息学报. 2007, 29(12): 2031-2035
    37 A. Bletsas, H. Shin, M. Z. Win. Outage Optimality of Opportunistic Amplify-and-Forward Relaying. IEEE Communications Letters. 2007, 11(3): 261-263
    38 A. Bletsas, A. Khisti, M. Z. Win. Opportunistic Cooperative Diversity with Feedback and Cheap Radios. IEEE Transactions on Wireless Communications. 2008, 7(5): 1823-1827
    39 D. Liu, J. Hao, G. Yue. A Practical Cooperative Diversity Scheme Based on Opportunistic Relaying with Acknowledgement and Random Backoff. The 4th International Conference on Wireless and Mobile Communications. Athens, 2008: 65-70
    40 Y. Zou, B. Zheng, W. Zhu, et al. An Optimal Relay Selection Scheme for Cooperative Diversity. 9th International Conference on Signal Processing. Beijing, 2008: 1800-1803
    41 S. Chen, W. Wang, X. Zhang. Performance Analysis of Multiuser Diversity in Cooperative Multi-Relay Networks under Rayleigh-Fading Channels. IEEE Transactions on Wireless Communications. 2009, 8(7): 3415-3419
    42 R. Madan, N. B. Mehta, A. F. Molisch, et al. Energy-Efficient Cooperative Relaying over Fading Channels with Simple Relay Selection. IEEE Transactionson Wireless Communications. 2008, 7(8): 3013-3025
    43 R. Tannious, A. Nosratinia. Spectrally-Efficient Relay Selection with Limited Feedback. IEEE Journal on Selected Areas in Communications. 2008, 26(8): 1419-1428
    44惠鏸,朱世华,李国兵.一种基于放大转发的中继选择策略.西安交通大学学报. 2008, 42(4): 450-453
    45 M. Torabi, W. Ajib, D. Haccoun. Performance Analysis of Amplify-and-Forward Cooperative Networks with Relay Selection over Rayleigh Fading Channels. IEEE 69th Vehicular Technology Conference. Barcelona, Spain , 2009: 1-5
    46 B. Wang, Z. Han, K. J. R. Liu. Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Stackelberg Game. IEEE Transactions on Mobile Computing. 2009, 8(7): 875-990
    47邹玉龙,郑宝玉.基于分布式中继选择的自适应协作传输方案.电子学报. 2009, 37(1): 13-20
    48 4. Mahinthan, L. Cai, J. W. Mark, et al. Maximizing Cooperative Diversity Energy Gain for Wireless Networks. IEEE Transactions on Wireless Communications. 2007, 6(7): 2530-2539
    49 V. Mahinthan, L. Cai, J. W. Mark, et al. Partner Selection Based On Optimal Power Allocation in Cooperative-Diversity Systems. IEEE Transactions on Vehicular Technology. 2008, 57(1): 511-520
    50 S. Yang, J. Belfiore. Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme. IEEE Transactions on Information Theory. 2007, 53(9): 3114-3126
    51 R. Dabora, S. D. Servetto. On the Role of Estimate-and-Forward with Time Sharing in Cooperative Communication. IEEE Transactions on Information Theory. 2008, 54(10): 4409-4430
    52 X. Bao, J. Li. Decode-Amplify-Forward (DAF): A New Class of Forwarding Strategy for Wireless Relay Channels. IEEE 6th Workshop on Signal Processing Advances in Wireless Communications. New York, 2005: 816-820
    53 R. Machado, B. F. Uchoa-Filho, T. M. Duman. A Cooperative Diversity Scheme with Partial Channel Knowledge at the Cooperating Nodes. IEEE International Conference on Communications. Beijing, 2008: 4580-4585
    54 H. Chen, M. H. Ahmed. Throughput Enhancement in Cooperative Diversity Wireless Networks Using Adaptive Modulation. Canadian Conference on Electrical and Computer Engineering. Niagara Falls, 2008: 527-530
    55 E. Yazdian, M. R. Pakravan. Adaptive Modulation Technique for Amplify & Forward Cooperative Diversity and Fairness Analysis. International Conference on Telecommunications. Venice, Italy, 2008: 1-6
    56 K. Hwang, Y. Ko, M. Alouini. Performance Analysis of Incremental Opportunistic Relaying over Identically and Non-Identically Distributed Cooperative Paths. IEEE Transactions on Wireless Communications. 2009, 8(4): 1953-1961
    57 Tyler Nechiporenko, K. T. Phan, C. Tellambura, et al. On the Capacity of Rayleigh Fading Cooperative Systems Under Adaptive Transmission. IEEE Transactions on Wireless Communications. 2009, 8(4): 1626-1631
    58 P. Murphy, A. Sabharwal, B. Aazhang. Building a Cooperative Communications System. 2007:1-19 http://arxiv.org/abs/0707.2998
    59林霏,罗涛,乐光新.反馈式选择解码的协作分集性能分析.北京邮电大学学报. 2007, 30(6): 14-18
    60 S. K. Kang, Y. H. Kim, H. Lee, et al. Adaptive User Cooperation with Harq for the Uplink of a Turbo-Coded System. IEEE 65th Vehicular Technology Conference. Dublin, 2007: 2481-2485
    61 L. Weng, R. D. Murch. Achievable Diversity-Multiplexing-Delay Tradeoff for Arq Cooperative Broadcast Channels. IEEE Transactions on Wireless Communications. 2008, 7(5): 1828-1832
    62余官定,张朝阳,仇佩亮.基于合作分集的新型自动重传协议.通信学报. 2006, 27(12): 20-25
    63 Z. Yijun, L. Ying, D. Zhiying, et al. Joint Relay Selection and ARQ in Cooperative Diversity Wireless Networks. International Conference on Wireless Communications, Networking and Mobile Computing. Dalian, China, 2008: 1-3
    64 J. J. Alcaraz, J. Garcia-Haro. Performance of Single-Relay Cooperative ARQ Retransmission Strategies. IEEE Communmications Letters. 2009, 13(2): 121-123
    65徐峰,岳殿武.分布式协作通信网络中一种新的跨层设计方案.电子学报. 2009, 37(7): 1434-1439
    66 I. Krikidis. Distributed Truncated ARQ Protocol for Cooperative Diversity Networks. IET Communications. 2007, 1(6): 1212-1217
    67 L. Le, E. Hossain. Cross-Layer Optimization Frameworks for Multihop Wireless Networks Using Cooperative Diversity. IEEE Transactions on Wireless Communications. 2008, 7(7): 2592-2602
    68 W. Su, A. K. Sadek, K. J. R. Liu. Ser Performance Analysis and Optimum Power Allocation for Decode-and-Forward Cooperation Protocol in Wireless Networks. IEEE Wireless Communications and Networking Conference. 2005: 984-989
    69 J. Luo, R. S. Blum, L. J. Cimini, et al. Decode-and-Forward Cooperative Diversity with Power Allocation in Wireless Networks. IEEE Transactions on Wireless Communications. 2007, 6(3): 793-799
    70张路,啜钢,林立凡,等.多协作中继多接收天线解码中继传输的功率分配.北京邮电大学学报. 2008, 31(6): 104-108
    71王文益,杨树元,梁军利,等.基于译码-转发的多中继合作分集系统的功率分配.电子与信息学报. 2008, 30(3): 617-620
    72 D. S. Michalopoulos, G. K. Karagiannidis. PHY-Layer Fairness in Amplify and Forward Cooperative Diversity Systems. IEEE Transactions on Wireless Communications. 2008, 7(3): 1073-1083
    73 J. Yang, D. R. B. Iii. The Effect of Receiver Diversity Combining on Optimum Energy Allocation and Energy Efficiency of Cooperative Wireless Transmission Systems. IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, 2007: I493-I496
    74 Z. Ding, W. H. Chin, Kin K. Leung. Distributed Beamforming and Power Allocation for Cooperative Networks. IEEE Transactions on Wireless Communications. 2008, 7(5): 1817-1822
    75 Y. Lee, M. Tsai. Performance of Decode-and-Forward Cooperative Communications over Nakagami-M Fading Channels. IEEE Transactions on Vehicular Technology. 2009, 58(3): 1218-1228
    76 T. Q. Duong, H. Zepernick. On the Performance Gain of Hybrid Decode-Amplify-Forward Cooperative Communications. Eurasip Journal on Wireless Communications and Networking. 2009, 2009: 1-10
    77 S. Wei, D. L. Goeckel, M. C. Valenti. Asynchronous Cooperative Diversity. IEEE Transactions on Wireless Communications. 2006, 5(6): 1547-1557
    78 Y. Li, X. Xia. A Family of Distributed Space-Time Trellis Codes with Asynchronous Cooperative Diversity. IEEE Transactions on Communications. 2007, 55(4): 790-800
    79 Y. Shang, X. Xia. Shift-Full-Rank Matrices and Applications in Space–Time Trellis Codes for Relay Networks with Asynchronous Cooperative Diversity. IEEE Transactions on Information Theory. 2006, 52(6): 3153-3167
    80 M. O. Damen, A. R. Jr Hammons. Delay-Tolerant Distributed-Tast Codes for Cooperative Diversity. IEEE Transactions on Information Theory. 2007, 53(10): 3755-3773
    81 S. Wei. Diversity– Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks. IEEE Transactions on Information Theory. 2007, 53(11): 4150-4172
    82 Y. A. Chau, K. Y. Huang. Channel Statistics and Performance of Cooperative Selection Diversity with Dual-Hop Amplify-and-Forward Relay Over Rayleigh Fading Channels. IEEE Transactions on Wireless Communications. 2008, 7(5): 1779-1785
    83 M. O. Hasna, M. Alouini. Harmonic Mean and End-to-End Performance of Transmission Systems with Relays. IEEE Transactions on Communications. 2004, 52(1): 130-135
    84 Q. Zhao, H. L, P. Wang. Performance of Cooperative Relay with Binary Modulation in Nakagami-M Fading Channels. IEEE Transactions on Vehicular Technology. 2008, 57(5): 3310-3315
    85 H. Ilhan, I. Altunbas, M. Uysal. Cooperative Diversity for Relay-Assisted Inter-Vehicular Communication. IEEE Vehicular Technology Conference, 2008. Singapore, 2008: 605-609
    86孙岳,李颖,王新梅.基于网络编码的协作HARQ协议.电子与信息学报. 2009, 31(10): 2326-2331
    87 P. Popovski, E. De Carvalho. Improving the Rates in Wireless Relay Systems through Superposition Coding. IEEE Transactions on Wireless Communications. 2009, 7(2): 4381-4386
    88 M. Z. Siam, M. Krunz, O. Younis. Energy-Efficient Clustering/Routing for Cooperative Mimo Operation in Sensor Networks. Infocom 2009. 2009: 621-629
    89 L. Zhao, L. Guo, J. Zhang, et al. Game-Theoretic Medium Access Control Protocol for Wireless Sensor Networks. IET Communications. 2009, 3(8): 1274-1283
    90颜振亚,郑宝玉,林志伟.无线传感器网络中机会协作传输及其性能研究.电子与信息学报. 2009, 31(1): 215-218
    91 S. Dehnie, N. Memon. Cooperative Diversity with Selfish Users. 42nd Annual Conference on Information Sciences and Systems. Princeton, 2008: 1184-1188
    92 H. Muhaidat, M. Uysal. Cooperative Diversity with Multiple-Antenna Nodes in Fading Relay Channels. IEEE Transactions on Wireless Communications. 2008, 7(8): 3036-3046
    93 D. Chen, J. N. Laneman. Modulation and Demodulation for Cooperative Diversity in Wireless Systems. IEEE Transactions on Wireless Communications. 2006, 5(7): 1785-1794
    94 T. Wang, A. Cano, G. B. Giannakis, et al. High-Performance Cooperative Demodulation with Decode-and-Forward Relays. IEEE Transactions on Communications. 2007, 55(7): 1427-1438
    95 G. Farhadi, N. C. Beaulieu. On the Performance of Amplify-and-Forward Cooperative Systems with Fixed Gain Relays. IEEE Transactions on Wireless Communications. 2008, 7(5): 1851-1856
    96刘威鑫,张忠培,李少谦,等.协同分集下AF与DF比较.电子科技大学学报. 2007, 36(5): 911-914
    97 S. Savazzi, U. Spagnolini. Cooperative Fading Regions for Decode and ForwardRelaying. IEEE Transactions on Information Theory. 2008, 54(11): 4908-4924
    98 L. Zheng, D. N. C. Tse. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels. IEEE Transactions on Information Theory. 2003, 49(5): 1073-1096
    99张静美,王莹,张平.多天线协作传输系统的容量分析与功率分配.北京邮电大学学报. 2005, 28(5): 11-15
    100 D. B. D. Costa, S. A¨?ssa. Capacity Analysis of Cooperative Systems with Relay Selection in Nakagami-M Fading. IEEE Communications Letters. 2009, 13(9): 637-639
    101 X. Zhang, W. Wang, X. Ji. Multiuser Diversity in Multiuser Two-Hop Cooperative Relay Wireless Networks System Model and Performance Analysis. IEEE Transactions on Vehicular Technology. 2009, 58(2): 1031-1036
    102 J. Park, E. Song, W. Sung. Capacity Analysis for Distributed Antenna Systems Using Cooperative Transmission Schemes in Fading Channels. IEEE Transactions on Wireless Communications. 2009, 8(2): 586-592
    103 H. Rong, Z. Zhang, P. Larsson. Cooperative Relaying Based On Alamouti Diversity Under Aggregate Relay Power Constraints. IEEE 63rd Vehicular Technology Conference. Melbourne, 2006: 2563-2567
    104 A. Host-Madsen. Capacity Bounds for Cooperative Diversity. IEEE Transactions on Information Theory. 2006, 52(4): 1522-1544
    105 Z. Ding, T. Ratnarajah, C. F. N. Cowan. Spectrally Efficient Cooperative Diversity Protocol for Uplink Wireless Transmission. IET Signal Processing. 2009, 3(5): 368-380
    106 F. Xu, F. C. M. Lau, Q. F. Zhou, et al. Outage Performance of Cooperative Communication Systems Using Opportunistic Relaying and Selection Combining Receiver. IEEE Signal Processing Letters. 2009, 16(4): 237-240
    107张鹏.无线协作通信的策略及协议研究.华中科技大学博士学位论文. 2009: 1-15
    108 L. H. Ozarow, S. Shamai, A. D. Wyner. Information Theoretic Considerations for Cellular Mobile Radio. IEEE Transactions on Vehicular Technology. 1994, 43(2): 359-378
    109宋振峰,王晓湘,张鸿涛,等.基于信道反馈的协作MAC协议.北京邮电大学学报. 2009, 32(4): 46-49
    110 C. C. Tan, N. C. Beaulieu. On First-Order Markov Modeling for the Rayleigh Fading Channel. IEEE Transactions on Communications. 2000, 48(12): 2032-2040
    111 M. F. Pop, N. C. Beaulieu. Limitations of Sum-of-Sinusoids Fading Channel Simulators. IEEE Transactions on Communications. 2001, 49(4): 699-708
    112 K. Yip, T. Ng. A Simulation Model for Nakagami-m Fading Channels, m< 1. IEEE Transactions on Communications. 2000, 48(2): 214-221
    113 H. N. Gabow. An Efficient Implementation of Edmonds' Algorithm for Maximum Matching On Graphs. Journal of the ACM. 1976, 23(2): 221-234
    114 D. Avis. A Survey of Heuristics for the Weighted Matching Problem. Networks. 1983, 13(4): 475-493
    115 V. Mahinthan, J. W. Mark, X. Shen. A Cooperative Diversity Scheme Based on Quadrature Signaling. IEEE Transactions on Wireless Communications. 2007, 6(1): 41-45
    116 V. Mahinthan, J. W. Mark, X. Shen. Performance Analysis and Power Allocation for M-Qam Cooperative Diversity Systems. IEEE Transactions on Wireless Communications. 2010, 9(3): 1237-1247
    117 A. Nosratinia, T. E. Hunter. Grouping and Partner Selection in Cooperative Wireless Networks. IEEE Journal on Selected Areas in Communications. 2007, 25(2)
    118 V. Mahinthan, H. Rutagemwa, J. W. Mark, et al. Cross-Layer Performance Study of Cooperative Diversity System with ARQ. IEEE Transactions on Vehicular Technology. 2009, 58(2): 705-719
    119 S. Ikki, M. H. Ahmed. Performance of Decode-and-Forward Cooperative Diversity Networks Over Nakagami-M Fading Channels. 50th Annual IEEE Global Telecommunications Conference. Washington, DC, 2007: 4328-4333
    120 A. J. Goldsmith, S. Chua. Variable-Rate Variable-Power Mqam for Fading Channels. IEEE Transactions on Communications. 1997, 45(10): 1218-1230
    121 A. J. Goldsmith, S. Chua. Adaptive Coded Modulation for Fading Channels. IEEE Transactions on Communications. 1998, 46(5): 595-602
    122 A. J. Goldsmith, P. P. Varaiya. Capacity of Fading Channels with Channel Side Information. IEEE Transactions on Information Theory. 1997, 43(6): 1986-1992
    123 A. Goldsmith. Wireless Communications. Cambridge University Press, 2005
    124 S. Cui, A. J. Goldsmith, A. Bahai. Energy-Efficiency of MIMO and Cooperative MIMO Techniques in Sensor Networks. IEEE Journal on Selected Areas in Communications. 2004, 22(6): 1089-1098
    125 D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, et al. Frequency Domain Equalization for Single-Carrier Broadband Wireless Systems. IEEE Communications Magazine. 2002, 40(4): 58-67
    126 U. Kwon, C. Choi, G. Im. Full-Rate Cooperative Communications with Spatial Diversity for Half-Duplex Uplink Relay Channels. IEEE Transactions on Wireless Communications. 2009, 8(11): 5449-5454
    127 H. Xiong, J. Xu, P. Wang. Frequency-Domain Equalization and DiversityCombining for Demodulate-and-Forward Cooperative Systems. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, NV, United states, 2008: 3425-3428
    128 H. Mheidat, M. Uysal, N. Al-Dhahir. Single-Carrier Frequency Domain Equalization for Broadband Cooperative Communications. 2006 IEEE Wireless Communications and Networking Conference. Las Vegas, NV, United states, 2006: 1578-1584
    129 U. Kwon, G. Im. Cyclic Delay Diversity with Frequency Domain Turbo Equalization for Uplink Fast Fading Channel. IEEE Communications Letters. 2009, 13(3): 184-186
    130 H. Mheidat, M. Uysal. Impact of Receive Diversity On the Performance of Amplify-and-Forward Relaying Under Aps and Ips Power Constraints. IEEE Communications Letters. 2006, 10(6): 468-470
    131 B. K. Chalise, L. Vandendorpe. Performance Analysis of Linear Receivers in a MIMO Relaying System. IEEE Communications Letters. 2009, 13(5): 330-332
    132 W. Wang, R. Wu. Capacity Maximization for OFDM Two-Hop Relay System with Separate Power Constraints. IEEE Transactions on Vehicular Technology. 2009, 58(9): 4943-4954
    133 Y. Li, W. Wang, J. Kong, et al. Subcarrier Pairing for Amplify-and-Forward and Decode-and-Forward OFDM Relay Links. IEEE Communications Letters. 2009, 13(4): 209-211
    134 K. Lee, V. C. M. Leung. Fair Allocation of Subcarrier and Power in an OFDMA Wireless Mesh Network. IEEE Journal on Selected Areas in Communications. 2006, 24(11): 2051-2060
    135 K. Kim, Y. Han, S. Kim. Joint Subcarrier and Power Allocation in Uplink OFDMA Systems. IEEE Communications Letters. 2005, 9(6): 526-528
    136 W. Shim, Y. Han, S. Kim. Fairness-Aware Resource Allocation in a Cooperative OFDMA Uplink System. IEEE Transactions on Vehicular Technology. 2010, 59(2): 932-939

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700