用户名: 密码: 验证码:
无线协作通信中的协作方案和资源优化分配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)技术能抵抗无线信道中多径衰落的影响,在提高未来无线通信系统的容量和可靠性等方面具有巨大的潜力。然而,由于功率、体积或硬件复杂度等限制,在无线终端实现多天线较为困难。近年来,一种基于用户间协作和中继协作等方式的协作分集技术应运而生,受到了广泛的关注。其基本原理是:在多用户环境中,各单天线终端通过分布式传输和处理,共享彼此的天线和其它资源构成多天线发射机,形成虚拟的MIMO系统来获得空间分集增益。本论文针对协作分集领域中的协作方案设计和资源优化分配策略展开研究,提出了特定场景下的解决方案,并进行了详细的理论分析和仿真验证。论文的主要工作概括如下:
     1.在协作方案设计方面
     针对传统两用户协作方案要求用户在正交子信道上进行中继传输,导致系统频谱利用率较低的问题,分别提出了单天线和多天线目的端场景下结合分布式空时编码(DSTC)和分布式预编码(DP)空时预处理技术的增强型协作方案。
     在单天线目的端场景下,1)提出了一种基于放大转发的分布式空时码(AF–DSTC)协作方案。该方案利用空时分组码的正交特性,使协作用户在共享的信道资源上进行中继,从而提高了传统AF协作方案的频谱效率。仿真结果表明所提方案在高信噪比条件下可获得完全分集增益。2)提出了一种基于译码转发的分布式空时码(DF–DSTC)协作方案,该方案的思想与AF–DSTC相同。推导了系统中断概率性能的上下界以及采用二进制相移键控(BPSK)星座调制时系统误比特率性能的闭式解,从理论上证明了所提方案在高信噪比条件下能获得二阶分集增益。仿真结果验证了理论推导的正确性。
     在多天线目的端场景下,1)对单天线目的端场景下的DF-DSTC协作方案进行了研究扩展。假定存在一个协作传输发起者,新的DF-DSTC协作方案规定:当两用户均译码失败时,协作发起者可以重传自己的信息,从而保证其性能不劣于直接传输。当用户采用多进制相移键控(MPSK)星座调制且目的端配置m(m≥1)副天线时,推导并分析了系统误比特率性能的上界和下界。最后,通过仿真验证了理论分析结果的正确性。2)提出了一种基于译码转发的分布式预编码(DF–DP)协作方案。该方案利用目的端的多天线特性,将中继信号进行预编码处理后在共享的信道资源上发送,从而同时提高了传统DF协作方案的频谱效率和可靠性。将虚拟的两输入多输出信道在矢量空间分解为两个正交子信道,提出了一种系统误码率最小准则下的预编码方法。仿真结果表明,所提方案在低反馈条件下能显著提高系统误码率性能。
     2.在资源优化分配方面
     主要针对协作伙伴选择和功率分配展开研究,提出了在特定场景下“何时协作”、“与谁协作”和“如何分配功率”的解决方案。
     1)提出了固定式中继和选择式中继正交调制协作方案中的最优功率分配和伙伴选择方法。根据用户间信道和上行信道的统计特性及可调功率分配因子,分别推导了两种协作方案下系统误码率性能的闭式解,并以误码率最小作为准则,提出了功率优化分配(OPA)方法来对本地和中继信号的发送功率进行自适应调整。将伙伴选择与OPA方法联合考虑时,确定了不同协作增益下的伙伴位置,并提出一种简单的次优伙伴选择方法,即最优伙伴位置应从源侧距离源和目的端的中点最近。仿真结果表明,与未优化的方法相比,所提资源优化方法能显著降低误码率,提高协作增益,且可用来简化实际的伙伴选择过程。
     2)提出了旋转编码协作方案中的一种功率优化分配方法。该方法首先利用Chernoff界推导了端到端系统误符号率(SER)的上界,然后在总功率一定的条件下,以最小化SER上界为目标,根据平均信道增益来计算源和中继间的功率分配因子。最后将功率分配信息通过反馈信道发送给协作用户,从而实现了功率的自适应分配,提高了系统的资源利用率。仿真结果验证了所提方案的有效性。此外,还比较了不同伙伴选择方法对旋转编码方案性能的影响。
Multiple input multiple output (MIMO) technique can overcome the limitations of multi-path fading in radio channels, and therefore holds the potential to drastically improve the capacity and reliability in future wireless communication system. However, due to size, cost or hardware complexity limitations, it may be difficult for a wireless terminal to support multiple antennas. Recently, cooperative diversity technique, which is based on user cooperation and relay cooperation etc, has emerged as a promising technique and received considerable interests. The essence of this technique lies in that single-antenna terminals in a multi-user scenario are allowed to share their antennas and other resources through distributed transmission and processing so that a virtual multi-antenna transmitter is achieved, and hence reap the spatial diversity benefits of the virtual MIMO system. Focusing on the design of cooperative schemes and resource optimization allocation strategies in the cooperative diversity fields, the solutions for particular scenarios are introduced and further analyzed from theoretical and simulation aspects. The main contribution of this work can be summarized as follows:
     1. The design issues of cooperative schemes
     To solve the resource inefficiency of the traditional two-user cooperative schemes which require the users to relay on orthogonal sub-channels, several improved cooperative schemes combined with distributed space-time code (DSTC) and distributed precode (DP) techniques are proposed when the destination is configured with single and multiple antennas, respectively.
     For the single-antenna destination scenario, 1) An amplify-and-forward based DSTC (AF-DSTC) cooperative scheme is proposed, which utilizes the orthogonal characteristic of space-time block code (STBC) to make cooperative users relay on the shared channel resources so that the spectral efficiency of the classical AF cooperative scheme can be improved. Simulation results show that the proposed scheme can achieve full diversity order in the high signal-to-noise ratio (SNR) regimes. 2) A decode-and-forward based DSTC (DF-DSTC) cooperative scheme is proposed, which adopts the same idea of AF-DSTC scheme. The upper and lower bounds of outage performance and the closed-form bit error rate (BER) expression of binary phase shift keying (BPSK) signal are derived. The theoretical results demonstrate that the full diversity order does exist in the high SNR regimes, and further validated by simulation results.
     For the multi-antenna destination scenario, 1) The DF-DSTC cooperative scheme under the single-antenna destination scenario is extended. Assume there exists a user that originates the cooperation, the new DF-DSTC scheme indicates that when both users fail to decode the other, the originator should retransmit its own information so that its performance is no worse than direct transmission. When M-ary phase shift keying (MPSK) constellation modulation is employed at the user and m(m≥1) antennas are configured at the base station, the upper and lower bounds of system BER performance are derived and verified by simulations. 2) A decode-and-forward based DP (DF-DP) cooperative scheme is proposed, which utilizes the multi-antenna characteristic at the destination to make the preprocessed relay signals transmitted on the shared channel resources, so that the spectral efficiency and reliability of the traditional DF cooperative scheme can be improved simultaneously. With the virtual two-input multiple-output channel decomposed into two orthogonal sub-channels in the vector space, a precoding scheme is proposed under the minimum BER criterion. Simulation results show that the proposed scheme is effective in improving the BER performance and has a low feedback overhead.
     2. The optimization issues of resource allocation
     Focusing on the cooperative partner selection and power allocation issues, the solutions to“When to cooperate”,“Whom to cooperate with”and“How to allocate the power”are presented for particular scenarios of interests.
     1) The optimal power allocation and partner selection algorithms for quadrature modulation cooperative schemes with fixed and selective relays are investigated. The closed-form expressions of the BER performance are derived for both cooperative schemes, in terms of the inter-user channel and uplink channel statistics and a scalable power factor. Then OPA algorithms are devised to optimize the power allocation between the local and relayed signals under the minimum BER criterion. By joint consideration of the partner selection and OPA algorithm, the partner locations specified by various cooperation gains are determined, and then a simple sub-optimal partner selection algorithm is proposed, i.e, the best partner should be located nearest to the midway between the source and the destination from the source side. Simulation results show that the proposed resource optimization algorithms are superior to the unoptimized algorithms by significantly reducing the BER and improve the cooperative gain, which is also useful to simplify the practical partner choice process.
     2) An optimal power allocation (EPA) algorithm is proposed for the cooperative scheme based on rotation code. The upper bound of the end-to-end system symbol error rate (SER) is first derived using the Chernoff bound, and then under the total power constraint, the power factor is obtained to minimize the SER bound according to the average channel gains. The power allocation information is transmitted to cooperative users through feedback channels, so that the system source utilization can be improved. The effectiveness of the proposed OPA algorithm is verified by simulations. Furthermore, the effect of various partner selection algorithms on the system performance are also investigated.
引文
[1]李建东,杨家玮.个人通信,北京:人民邮电出版社, 2002.
    [2] T. Ojanpera, R. Prasad,“An overview of air interfaces multiple access for IMT-2000/UMTS,”IEEE Commun.Mag., vol. 36, no. 9, pp. 82-95, 1998.
    [3] J. Chuang, N. Sollenberger,“Beyond 3G: Wideband wireless data access based on OFDM and dynamic packet assignment,”IEEE Commun. Mag., vol. 7, pp. 78-87, 2000.
    [4] R. Berezdivin, R. Bremig, R. Topp,“Next-generation wireless communications concepts and technologies,”IEEE Conunun. Mag., vol. 3, pp. 108-116, 2002.
    [5] G. J. Foschini, and M. J. Gans,“On the limits of wireless communications in a fading environment when using multiple antennas,”Wireless Personal Communications, vol. 6, no. 3, pp. 311-335, 1998.
    [6] I. E. Telatar,“Capacity of multi-antenna Gaussian channels”, European Transaction of Telecommunications, vol. 10, pp. 555-595, Nov./Dec. 19999.
    [7] G. J. Foschini,“Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,”Bell Labs Technical Journal, vol. 1, no. 2, pp. 4l-59, 1996.
    [8] P. W. Wolniansky, G. J. Roschini, G. D. Golden, et al,“V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,”in Proc. Int. Symp. Sig. Sys. Elect. (ISSSE’98), Sep. 1998, pp. 295-300.
    [9]罗涛,乐光新.多天线无线通信原理与应用,北京:北京邮电大学出版社, 2005.
    [10] A. Sendonaris, E. Erkip, B. Aazhang,”User cooperation diversity-Part I: system description,”IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, 2003.
    [11] A. Sendonaris, E. Erkip, B. Aazhang,”User cooperation diversity-Part II: implementation aspects and performance analysis,”IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, 2003.
    [12] A. Nosratinia, T. E. Hunter, A. Hedayat,“Cooperative communication in wireless networks,”IEEE Commun. Mag., vol. 42, no. 10, pp. 68-73, 2004.
    [13] J. N. Laneman, D. N. C. Tse, G. W. Wornell,“Cooperative diversity in wireless networks: efficient protocols and outage behavior,”IEEE Trans. Inform Theory, vol. 50, no. 12, pp. 3062-3080, 2004.
    [14] T. E. Hunter, A. Nosratinia,“Diversity through coded cooperation,”IEEE Trans.Inform. Theory, vol. 5, no. 2, pp. 283-289, 2006.
    [15] M. Janani, et a1,“Coded Cooperation in Wireless Communications: Space Time Transmission and Iterative Decoding,”IEEE Trans. Sig. Proc., vol. 52, no. 2, pp. 362-71, 2004.
    [16] A. Stefanov, E. Erkip,“Cooperative coding for wireless networks,”IEEE Trans. on Communications, vol.52, no.9, pp. 1470-1476, Sep. 2004.
    [17] A. Chakrabarti, E. Erkip, A. Sabharwal, et al.“Code designs for cooperative communication,”IEEE Signal Processing Magazine, pp. 16-26, Sep. 2007.
    [18] A. Chakrabarti, A. Baynast, A. Sabharwal, B. Aazhang,“Low Density Parity Check codes for the relay channel,”IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 280-291, Feb. 2007.
    [19] H. Wen, L. Zhou, Z. P. Zhang,“Cooperative coding using parallel concatenated LDPC codes,”in Proc. IEEE Information Theory Workshop (ITW’06), pp.395-398, 2006.
    [20]雷维嘉,谢显中,李广军,“一种基于LDPC编码的协作通信方式,”电子学报, vol. 35, no. 4, pp. 712-715, Apr. 2007.
    [21]宫丰奎,韩春雷,王勇,葛建华,“慢衰落信道下高阶调制编码协作方案及性能分析,”西安电子科技大学学报(自然科学版), vol. 35, no. 4, pp. 664-667, Aug. 2008.
    [22] J. N. Laneman, W. Gregory,“Distributed Space-Time-Coded Protocols for Exploiting Cooperative Diversity in Wireless Networks,”IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2415-2525, 2003.
    [23] R. U. Nabar, H. Bolcskei, and F. Kneubuhler,“Fading relay channels: performance limits and space-time signal design,”IEEE Journal on Selected Areas in communications, vol. 22, no. 6, pp. 1099-1109, 2004.
    [24] G. Scutari, S. Barbarossa,“Distributed space-time coding for regenerative relay networks,”IEEE Trans. Wireless Networks, vol. 4, no. 5, pp. 2387-2399, 2005.
    [25] P. A. Anghel and M. Kaveh,“On the performance of distributed space-time coding systems with one and two non-regenerative relays,”IEEE Trans. Wireless Communications, vol. 5, no. 3, pp. 682-692, 2006.
    [26] P. A. Anghel, G. leus, and M. Kaveh,“Distributed Space-Time Cooperative Systems with Regenerative Relays,”IEEE Trans. Wireless Communications, vol. 5, no. 11, pp. 3130-3141, 2006.
    [27] Z. M. Zhong, S. H. Zhu, and G. M. Lv,“Distributed space-time coding based on amplify-and-forward protocol,”ChinaCom’06, Beijing, China, 2006, pp. 1-5.
    [28] C. Hucher, G. R. Othman, and J. Belfiore,“AF and DF Protocols based on Alamouti ST Code,”ISIT2007, Nice, France, Jun. 2007, pp. 1526-1530.
    [29] S. Atapattu, N. Rajatheva,“Exact SER of Alamouti Code Transmission through Amplify–Forward Cooperative Relay over Nakagami-m Fading Channels,”ISCIT’07, Sydney, NSW, Oct. 2007, pp. 1429-1433.
    [30] J. Li, J. H. Ge, Y. S. Tang, et al,“Cooperative diversity based on Alamouti space-time code,”in Proc. IEEE ICCSIT, Singapore, Aug. 2008, pp. 642-646.
    [31] J. Li, J. H. Ge, Y. Wang, et al,“A bandwidth efficient two-user cooperative diversity system with limited feedback,”Sci China Ser F-Inf Sci, vol. 52, no. 6, pp. 1055-1066, 2009.
    [32] T. M. Cover, A. A. El Gamal,“Capacity theorems for the relay channel,”IEEE Trans. Inform. Theory, vol. 25, no. 5, pp.572-584, Sep. 1979.
    [33] T. E. Hunter, et a1,“Distributed Protocols for User Cooperation in Multi-User Wireless Networks,”in Proc. IEEE GlobeCom, 2004, pp. 3788-3792.
    [34] S. H. Chen, et a1,“Cooperative Communication And Routing Over Fading Channels In Wireless Sensor Networks,”in Proc. IEEE International Conference on Wireless Networks, Communications and Mobile Computing (Wicom), 2005, pp. l477-1482.
    [35] R. Pabst, et a1,“Relay-based deployment concepts for wireless and mobile broadband radio,”IEEE Commun. Mag., vol. 42, no. 9, pp. 80-89, 2004.
    [36] W. Ni, G. Shen, S. Jin,“Cooperative Relay Approaches in IEEE 802.16j,”IEEE 802.16 Broadband Wireless Access Working Group. C802.16j-07/258r1, 2007.
    [37] J. Chui, A. Chindapol,“Clarifications on Cooperative Relaying,”IEEE 802.16 Broadband Wireless Access Working Group. C802.16j-07/242r4, 2007.
    [38] D. Schultz, L. Coletti, K. Navaie, et al.“Relaying concepts and supporting actions in the context of CGs,”IST-4-027756 WINNER II, D3.5.1, v1.0, 2006.
    [39] K. Doppler, S. Redana, K. Schultz, et al.“Assessment of relay based deployment concepts and detailed description of multi-hop capable RAN protocols as input for the concept group work,”IST-4-027756 WINNER II, D3.5.2, v1.0, 2006.
    [40] 3GPP TR 36.814 v0.4.1,“Further advancements for E-UTRA”, 2009.
    [41] Z. H. Yi and I. M. Kim,“Joint Optimization of relay-precoders and decoders with partial channel side information in cooperative networks,”IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 447-458, 2007.
    [42] Z. G. Ding, W. H. Chin and K. K. Leung,“Distributed beamforming and power allocation for cooperative networks,”IEEE Trans. on Wireless Communication, vol.7, no. 5, pp. 1817-1822, 2008.
    [43] Y. W. Ding, J. K. Zhang and K. M. Wong,“The amplify-and-forward half-duplex cooperative system: pairwise error probability and precoder design,”IEEE Trans. on Signal Processing, vol. 55, no. 2, pp. 605-617, 2007.
    [44] J. S. Park, D. S. Lun, F. Soldo,“Performance of network coding in Ad Hoc networks,”in Proc. 25th Military Communications Conf. (MILCOM 2006), Washington D C, 2006, pp.1-6.
    [45] M. Yu, J. Li, and R. S. Blum,“User cooperation through network coding,”in Proc. IEEE Communication Conference (ICC), 2007, pp.4064-4069.
    [46] S. L. Fu, K. J. Lu, Y. Qian, et al,“Cooperative network coding for wireless Ad-Hoc networks,”in Proc. IEEE Global Telecommunications Conference (GLOBECOM) 2007, pp.812-816.
    [47] X. Lei, E.F.Thomas, et al.“A network coding approach to cooperative diversity,”IEEE Trans. on Information Theory, vol.53, no.10, pp. 3714-3722, Oct. 2007.
    [48]郝建军,网络编码协同通信系统及其性能的研究,北京邮电大学博士学位论文, 2008.
    [49] A. Host-Madsen and J. Zhang,“Capacity bounds and power allocation in wireless relay channel,”IEEE Trans. on Inform. Theory, vol. 51, no. 6, pp. 2020-2040, 2005.
    [50] S. Serbetli and A. Yener,“Power allocation strategies for relay assisted communications,”WICAT Workshop on Cooperative Communications, Oct. 2005.
    [51] Q. Zhang, J. Zhang, and C. Shao et al,“Power allocation for regenerative relay channel with Rayleigh fading,”in Proc. IEEE VTC 2004-Spring, May 2004, pp. 1167-1171.
    [52] J. Zhang, Q. Zhang, and C. Shao et al,“Adaptive optimal transmit power allocation for two-hop non-regenerative wireless relaying system,”in Proc. IEEE VTC 2004-Spring, May 2004, pp. 1213-1217.
    [53] Y. Liang and V. V. Veeravalli,“Resource allocation for wireless relay channels,”in Proc. 38th Asilomar Conference on Signals, Systems, and Computers, Nov. 2004, pp. 1902-1906.
    [54] I. Maric, R. D. Yates,“Bandwidth and power allocation for cooperative strategies in Gaussian relay networks,”in Proc. 38th Asilomar Conf. Signal, System Computers, Nov. 2004, pp. 1907-1911.
    [55] J. Luo, R. S. Blum, L. J. Cimini, L. J. Greenstein, and A. M. Haimovich,“Decode-and-forward cooperative diversity with power allocation in wireless networks,”IEEE Trans. Wirel. Commun., vol. 6, no. 3, pp. 793-799, 2007.
    [56] K. G. Seddik, A. K. Sadek, and W. F. Su, et al,“Outage analysis and optimal power allocation for multi-node relay networks,”IEEE Signal Processing Letters, vol. 14, no. 6, Jun. 2007, pp. 377-380.
    [57] M. O. Hasna and M. Alouini,“Optimal power allocation for relayed transmissions over Rayleigh fading channels,”IEEE Trans. Wirel. Commun., vol. 3, no. 6, pp. 1999-2004, Nov. 2004.
    [58] Y. Zhao, R. Adve, and T. J. Lim,“Improving amplify-and-forward relay networks: Optimal power allocation versus selection,”IEEE Trans. Wirel. Commun., vol. 6, no. 8, pp.3114-3123, Aug. 2007.
    [59] R. Annavajjala, P. C. Cosman, B. Laurence,“Statistical channel knowledge based optimum power allocation for Relaying protocols in the high SNR regime,”IEEE J. Sel. Areas in Commu., vol. 25, no. 2, pp. 292-305, 2007.
    [60] W. F. Su, A. K. Sadek, and K. J. Ray Liu,“Cooperative communication protocols in wireless networks: performance analysis and optimum power allocation,”Wireless Personal Communication, vol. 44, no. 2, pp. 181-217, 2008.
    [61] J. Li, J. H. Ge, L. J. Qi, Y. Wang,“BER Performance Analysis and Optimum Power Allocation for a Cooperative Diversity System Based on Quadrature Signaling,”in Proc. IET International Conference on Wireless, Mobile & Multimedia Networks, Oct. 2008, pp. 276-279.
    [62] J. Li, J. H. Ge, L. J. Qi, Y. Wang,“Cooperative Transmit Diversity in Wireless Networks: Performance Analysis and Optimum Power Allocation,”in Proc. 11th IEEE Singapore International Conference on Communications Systems (ICCS), Nov. 2008, pp.1630-1634.
    [63]李靖,葛建华,王勇,祁丽娟,“一种正交调制协作系统的功率分配方法,”西安交通大学学报, vol. 43, no. 2, pp. 81-85, 2009.
    [64] Y. Yao, X. Cai, G. B. Giannakis,“On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime,”IEEE Trans. Wire. Commun., vol. 4, no. 6, pp. 2917-2927, 2005.
    [65] Y. H. Li, B. Vucetic, Z. D. Zhou, and M. Dohler,“Distributed adaptive power allocation for wireless relay networks,”in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2007, pp. 5235-5240.
    [66] N. Yang, H. Tian, S. S. Chen, and P. Zhang,“An adaptive frame resource allocation strategy for TDMA-Based cooperative transmission,”IEEE Commun. Letters, vol. 11, no. 5, pp. 417-419, May 2007.
    [67] E. G. Larsson, and Y. Cao,“Collaborative transmit diversity with adaptive radioresource and power allocation,”IEEE Commun. Lett., vol. 9, no. 6, pp. 511-513, Jun. 2005.
    [68] G. D. Yu, Z. Y. Zhang, Y. Chen, et al,“Power allocation for non-regenerative OFDM relaying channels,”in Proc. IEEE International Conference on Wireless Communications Networking and Mobile Computing (Wicom), Sept. 2005, pp. 185-188,.
    [69] I. Hammerstrom, and A. Wittneben,“On the optimal power allocation for non-regenerative OFDM relay links,”in Proc. IEEE International Conference on Communications (ICC), Jun. 2006, pp. 4463-4468.
    [70] A. Nosratinia and T. E. Hunter,“Grouping and partner selection in cooperative wireless networks,”IEEE Journal on Selected Areas in Communications, vol. 25, no. 2, pp. 369-378, 2007.
    [71] Z. Lin, E. Erkip, and A. Stefanov,“Cooperative regions and partner choice in coded cooperative systems,”IEEE Trans. Commun., vol. 54, no.7, pp. 1323-1334, July 2006.
    [72] A. Bletsas, A. Khisti, D. Reed, and A. Lippman,“A simple cooperative diversity method based on network path selection,”IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659-672, Mar. 2006.
    [73] A. Bletsas, A. Lippman, and D. Reed,“A simple distributed method for relay selection in cooperative diversity wireless networks, based on reciprocity and channel measurements,”in Proc. IEEE VTC 2005-Spring, May/Jun., 2005, vol. 3, pp. 1484-1488.
    [74] A. S. Ibrahim, A. K. Sadek, W. F. Su and K. J. Ray Liu,“Cooperative communications with relay-selection: when to cooperate and whom to cooperative with?”IEEE Trans. Wireless Communication, vol. 7, no. 7, pp. 2814-2827, 2008.
    [75] A. Bletsas, H. Shin, and M. Win,“Cooperative communications with outage-optimal opportunistic relaying,”IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3450-3460, 2007.
    [76] Z. Zhou, S. Zhou, J.-H. Cui, and S. Cui,“Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks,”IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3066-3078, Aug. 2008.
    [77] W. Huang, Y. Hong, and C. Kuo,“Lifetime maximization for amplify-and- forward cooperative networks,”IEEE Trans. Wireless Commun., vol. 7, no. 5 Part 2, pp. 1800-1805, 2008.
    [78] R. Madan, N. Mehta, A. Molisch, and J. Zhang,“Energy-efficient cooperative relaying over fading channels with simple relay selection,”IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3013-3025, Aug. 2008.
    [79] E. Beres and R. Adve,“Selection cooperation in multi-source cooperative networks,”IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 118-127, 2008.
    [80] T. C. Y. Ng and W. Yu,“Joint optimization of relay strategies and resource allocations in cooperative cellular networks,”IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 328-339, Feb. 2007.
    [81] L. Simic, S.M. Berber and K. W. Sowerby,“Partner Choice and Power Allocation for Energy Efficient Cooperation in Wireless Sensor Networks,”in Proc. IEEE ICC, pp. 4255-4260, May 2008.
    [82] J. Huang, Z. Han, M. Chiang, and H. Poor,“Auction-based resource allocation for cooperative communications,”IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1226-1237, Sep. 2008.
    [83] L. Le and E. Hossain,“Cross-layer optimization frameworks for multihop wireless networks using cooperative diversity,”IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2592-2602, Jul. 2008.
    [84] I. Krikidis,“Distributed truncated ARQ protocol for cooperative diversity networks,”IET Commun., vol. 1, no. 6, pp. 1212-1217, 2007.
    [85] L. Dai, and K. B. Letaief,“Cross-layer design for combining cooperative diversity with truncated ARQ in ad-hoc wireless networks,”in Proc. IEEE Global Tel. Conf., Nov. 2005, pp. 3175-3179.
    [86] M. C. Valenti, and Bin Zhao,“Hybrid-ARQ based intra-cluster geographic relaying,”in Proc. IEEE Military Communications Conference, 2004, pp. 805-811.
    [87] B. Zhao, and M. C. Valenti,“Practical relay networks: a generalization of hybrid-ARQ,”IEEE J. Sel. Areas Commun., vol. 53, pp. 7-18, 2005.
    [88] M. Dianati, A. Khisti, D. P. Reed, et al,“A Node-Cooperative ARQ Scheme for Wireless Ad Hoc Networks,”IEEE Trans. Vehicular Technology, vol. 55, no. 3, pp. 1032-1044, 2006.
    [89] S. Shankar N, C. T. Chou, and M. Ghosh,“Cooperative communication MAC (CMAC)—a new MAC protocol for next generation wireless LANs,”in Proc. International Conference on Wireless Networks, Communications and Mobile Computing (Wicom), 2005, pp. 1-6.
    [90] A. Azgin, Y. Altunbasak, and G. AlRegib,“Cooperative MAC and Routing Protocols for Wireless Ad Hoc Networks,”in Proc. IEEE GlOBECOM, 2005, pp.2854-2859.
    [91] C. T. Chou, J. Yang and D. Wang,“Cooperative MAC Protocol with Automatic Relay Selection in distributed Wireless Networks,”in Proc. 5th IEEE International Conference on Pervasive Computing and Communications Workshops, 2007, pp. 526-531.
    [92] I. Cerutti, A. Fumagalli, and P. Gupta,“Delay Model of Single-Relay Cooperative ARQ Protocols in Slotted Radio Networks with Non-Instantaneous Feedback and Poisson Frame Arrives,”in Proc. IEEE INFOCOM, 2007, pp. 2276-2280.
    [93] A. Khandani, J. Abounadi, E. Modiano, et al,“Cooperative Routing in Wireless Networks,”In Proc. Allerton Conference on Communications, Control and Computing, 2003, pp. 1270-1279.
    [94] Z. G. Yang, J. H. Liu and A. Host-Madsen,“Cooperative Routing and Power Allocation in Ad-hoc Networks,”in Proc. IEEE GlOBECOM, 2005, pp. 2730-2734.
    [95] S. Buchegger, J. Le Boudec,“Cooperative Routing in Mobile Ad hoc Networks: Current Efforts Against Malice and Selfishness,”in Proc. Mobile Internet Workshop, Oct. 2002.
    [96] F. Xie, H. Tian, P. Zhang, et al,“Cooperative Routing Strategies in Ad hoc Networks,”in Proc. IEEE VTC, 2005.
    [97] F. Li, K. Wu, and A. Lippman,“Energy-efficient cooperative muting in multi-hop wireless ad hoc networks,”in Proc. IEEE International Performance, Computing, and Communications Conference, Apr. 2006, pp. 215-222.
    [98] A. S. Ibrahim, Z. Han, and K. J. Ray Liu,“Distributed energy-efficient cooperative routing in wireless networks,”in Proc. IEEE GLOBECOM, 2007, pp. 4413-4418.
    [99] T. Himsoon, W. F. Su, and K. J. Ray Liu,“Differential transmission for amplify-and- forward cooperative communications,”IEEE Signal Processing Letters, vol. 12, no. 9, pp. 597-600, Sep. 2005.
    [100] P. Tarasak, H. Minn, V. Bhargava,“Differential modulation for two-user cooperative diversity systems,”IEEE Journal on Selected Areas in Communications, vol. 23, no. 9, pp. 1891-1900, Sep. 2005.
    [101] Q. Zhao and H. Li“Performance of differential modulation with wireless relays in Rayleigh fading channels,”IEEE Commun. Lett., vol. 9, pp. 343, Apr. 2005.
    [102] Q. Zhao, H. B. Li,“Differential modulation for cooperative wireless systems,”IEEE Trans. Signal Processing, vol. 55, no. 5, pp. 2273-2283, May 2007.
    [103] Q. Zhao, H. B. Li,“Performance analysis of an amplify-based differential modulation for wireless relay networks under Nakagami-m fading channels,”inProc. IEEE Int. Workshop on Signal Process. Advances in Wireless Communications, New York, USA , Jun. 2005, pp. 211-215.
    [104] Y. Jing, H. Jafarkhani,“Distributed differential space-time coding for wireless relay networks”, IEEE Trans. Communications, vol. 56, no.7, pp. 1092-1100, 2008.
    [105] Y. M. Zhang,“Differential modulation schemes for decode-and-forward cooperative diversity,”in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. 917-920, 2005.
    [106] D. Chen and J. N. Laneman,“Cooperative diversity for wireless fading channels without channel state information,”in Proc. Asilomar Conf. Signals, Syst. Comput. Monterey, CA, Nov. 7-10, 2004, pp. 1307-1312.
    [107] D. Chen and J. N. Laneman,“Modulation and demodulation for cooperative diversity in wireless systems,”IEEE Trans. Wireless Commun., vol. 5, pp. 1785-1794, Jul. 2006.
    [108] W. Cho and L. Yang,“Distributed differential schemes for cooperative wireless networks,”in Proc. Int. Conf. Acoust., Speech Signal Process(ICASSP), Toulouse, France, vol. 4, May 15-19, 2006, pp. 61-64.
    [109] W. Cho and L. Yang,“Optimum resource allocation for relay networks with differential modulation,”IEEE Trans. Commun., vol. 56, pp. 531-534, Apr. 2008.
    [110] T. Himsoon, W. Su and K. J. R. Liu,“Differential modulation for multi-node amplify-and-forward wireless relay networks,”in Proc. Wireless Commun. Netw. Conf. Las Vegas, NV, vol. 2, Apr. 3-6, 2006, pp. 1195-1200.
    [111] T. Wang , Y. Yao and G. B. Giannakis,“Non-coherent distributed space-time processing for multiuser cooperative transmissions,”IEEE Trans. Wireless Commun., vol. 5, pp. 3339-3343, Dec. 2006.
    [112] G. Wang, Y. Zhang, and M. Amin,“Differential distributed space-time modulation for cooperative networks,”IEEE Trans. Wireless Commun., vol. 5, no. 11, pp. 3097-3108, Nov. 2006.
    [113] Y. Shang, X. G. Xia,“Shift-full-rank matrices and applications in space-time trellis codes for relay networks with asynchronous cooperative diversity,”IEEE Trans. Information Theory, vol. 52, no. 7, pp. 3153-3167, 2006.
    [114] Y. B. Li, X. G. Xia,“Full diversity distributed space-time trellis codes for asynchronous cooperative communications,”in Proc. International Symposium on Information Theory(IST), 2005, pp. 911-915.
    [115] Y. Li, X.-G. Xia,“A family of distributed space-time trellis codes withasynchronous cooperative diversity,”IEEE Trans. Communications, vol. 55, no. 4, pp. 790-800, 2007.
    [116] S. Q. Wei, D. L. Goeckel, M. C. Valenti,“Asynchronous cooperative diversity,”IEEE Trans. Wireless Communications, vol. 52, no. 6, pp. 1547-1557, 2006.
    [117] X. H. Li, M. Chen, W. Y. Liu,“Application of STBC-encoded cooperative transmissions in wireless sensor networks,”IEEE Signal Processing Letters, vol. 12, no. 2, pp. 134-137, 2005.
    [118] C. Jerry, H. Lin and A. Stefanov,“Cooperative Coding for OFDM Systems,”Wireless Personal Communications, vol. 43, pp. 123-139, 2007.
    [119] J. Niu and I. T. Lu,“Coded Cooperation in OFDMA Systems,”in Proc. 40th Annual Conference on Information Sciences and Systems, Mar. 2006, pp. 300-305.
    [120] S. Yatawatta, and A. P. Petropulu,“A multiuser OFDM system with user cooperation,”in Proc. 38th Asilomar Conference on Signals, Systems, and Computers, Nov. 2004, pp. 319-323.
    [121] H. J. An, and H, K. Song,“Cooperative communication in SIMO systems with multi-user OFDM,”IEEE Trans. Consumer Electronics, vol. 53, no. 2, pp. 339- 343, May 2007.
    [122]石璟,无线中继系统中的资源优化分配与合作策略研究,浙江大学博士学位论文, 2007.
    [123] J. Mitola, and G. Q. Maquire,“Cognitive radio: Making software radios more personal,”IEEE Pers. Commun., vol.6, no.4, pp. 13-18, 1999.
    [124] S. Haykin,“Cognitive Radio: Brain-Empowered Wireless Communications,”IEEE journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201-220, 2005.
    [125] A. Sahai, N. Hoven and R. Tandra,“Some Fundamental Limits on Cognitive Radio,”in Proc. Allerton Conference on Communication, Control, and Computing, Oct. 2004.
    [126] S. M. Mishra, A. Sahai and R. W. Brodersen,“Cooperative Sensing among Cognitive Radios,”in Proc. IEEE International Conference on Communications (ICC), June 2006, pp.1658-l663.
    [127] A. Ghasemi and E.S. Sousa,“Collaborative spectrum sensing for opportunistic access in fading environments,”in Proc. 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Nov. 2005, pp. 131-136.
    [128] J. Unnikrishnan and V. Veeravalli,“Cooperative Specmun Sensing and Detectionfor Cognitive Radio,”in Proc. IEEE Globecom, 2007, pp. 2972-2976.
    [129] E. Visotsky, S. Kuffner and R. Peterson,“On Collaborative Detection of TV Transmissions in Support of Dynamic Spectrum Sharing,”in Proc. 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Nov. 2005, pp. 338-345.
    [130] V. Marojevic, X. Reves, A. Gelonch,“Cooperative Resource Management in Cognitive Radio,”in Proc. IEEE ICC, 2007, pp. 5939-5944.
    [131] S. M. Alamouti,“A simple transmitter diversity scheme for wireless communications,”IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 1998.
    [132] S. Sanayei, and A. Nosratinia,“Antenna selection in MIMO systems,”IEEE Commun. Magazine, vol. 42, no. 10, pp. 68-73, Oct. 2004.
    [133] D. A. Gore, R. U. Nabar, and A. Paulraj,“Selecting an optimal set of transmit antennas for a low rank matrix channel,”in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, May 2000, vol. 5, pp. 2785-2788.
    [134] M. Vu, and A. Paulraj,“MIMO wireless linear precoding,”IEEE Signal Process Magazine, vol. 24, no. 5, pp. 86-105, Sept. 2007.
    [135] W. P. Siriwongpairat, T. Himsoon, W. F. Su, et al,“Optimum threshold-selection relaying for decode-and-forward cooperation protocol,”IEEE Wireless Communications and Networking Conference, 2006, pp. 1015-1020.
    [136] R. Ahlswede, N. Cai , S.Y.R. Li, et al,“Network information flow,”IEEE Trans. on Information Theory, vol. 46, no. 4, pp.1204-1216, Apr. 2000.
    [137] N. Cai, R. W. Yeung,“Secure network coding,”IEEE International Symposium on Information Theory (ISIT), 2002, pp. 323-323.
    [138] N. Cai, R. W. Yeung,“Network coding and error correction,”ITW 2002, Bangalore, India, 2002, pp.119-122.
    [139] E. G. Larsson, B. R. Vojcic,“Cooperative transmit diversity based on superposition Modulation,”IEEE Communications Letters, vol. 9, no. 9, pp. 778-780, Sep. 2005.
    [140] K. Ishiii,“Coded cooperation protocol utilizing superposition modulation for half-duplex scenario,”in Proc. 18th Annual IEEE International Symposium in Personal, Indoor and Mobile Radio Communications (PIMRC’07), 2007, pp.1-5.
    [141]吕凌,于宏毅,“一种基于空时码的协作网络编码技术及其性能分析,”电子与信息学报, vol. 30, no. 7, pp. 1598-1601, 2008.
    [142]邹玉龙,郑宝玉,赵贤敬,“一种新的两用户协作分集方案及其性能研究,”.电子与信息学报, vol. 30, no. 7, pp. 1557-1561, 2008.
    [143] V. Tarokh, H. Jafarkhani, and A. R. Calderbank,“Space-time block codes from orthogonal designs,”IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, 1999.
    [144] P. Maurer, and V. Tarokh,“Transmit diversity when the receiver does not know the number of transmit antennas,”WPMC 2001, Alaborg, Denmark.
    [145] V. Hayes, IEEE standard for wirelss LAN medium access control (MAC) and physical layer (PHY) specifications, 1997.
    [146] B. Vucetic, and J. H. Yuan, Space-Time Coding. New York: Wiley, 2003.
    [147] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2003.
    [148] P. Loskot, C. N. Beaulieu,“Average error rate evaluation of digital modulations in slow fading by prony approximation,”In Proc. IEEE ICC, 2004, pp. 3353-3357.
    [149] Z. Chen, B. Vucetic, and J. H. Yuan, et al,“Analysis of transmit antenna selection/maximal ratio combining in Rayleigh fading channels,”In Proc. IEEE ICCT, 2003, pp. 1532-1536.
    [150] W. Yang, and W. Yang,“Performance analysis of uplink MIMO MC-CDMA systems based on linear zero-forcing V-BLAST algorithm,”Sci China Ser F-Inf Sci, vol. 51, no. 9, pp. 1305-1318, 2008.
    [151] N. Wang, and S. D. Blostein,“Minimum BER transmit power allocation and beamforming for two-input-multiple-output spatial multiplexing systems,”IEEE Trans. on Vehicular Technology, vol. 56, no. 2, pp. 704-709, 2007.
    [152] S. Boyd, and L. Vandenberghe, Convex optimization. New York: Cambridge University Press, 2004.
    [153] V. Srivastava et al,“Using game theory to analyze wireless ad hoc networks,”IEEE Communications Surveys and Tutorials, pp. 46-56, Fourth Quarter 2005.
    [154] V. Srinivasan et al,“Cooperation in wirelss ad hoc networks,”in Proc. IEEE INFOCOM’2003, vol. 2, pp. 808-817, Apr. 2003.
    [155] O. Ueri, S. C. Mau, and N. B. Mandayam,“Pricing for enabling forwaring in self-configuring ad hoc networks,”IEEE Journal on Selected Areas in Communications, vol. 23, no. 1, pp. 151-162, Jan. 2005.
    [156] N. A. Shastry, and R. S. Adve,“Stimulating cooperative diversity in wireless ad hoc networks through pricing,”in Proc. International Conference on Communications 2006(ICC’2006), Jun., 2006.
    [157] A. S. Ibrahim, A. K. Sadek, W. F. Su and K. J. Ray Liu,“Cooperative communications with partial channel state information: when to cooperate?”inProc. IEEE Globecom 2005, pp. 3068-3072.
    [158] V. Mahinthan, J. W. Mark, X. M. Shen,“A cooperative diversity scheme based on quadrature signaling,”IEEE Trans. Wireless Commun, vol. 6, no. 1, pp. 41-45, 2007.
    [159] K. S. Hwang, Y. C. Ko,“Switch and Examine node selection for efficient relaying systems,”in Proc. Int. Conf. Wireless Communications and Mobile Computing, Hawaii, USA, pp. 469-474, 2007.
    [160] K. S. Hwang, Y. C. Ko,“An efficient relay selection algorithm for cooperative networks,”in Proc. IEEE 66th Vehicular Technology Conference(VTC), Fall 2007, pp. 81-85.
    [161]彭木根,王文博,协同无线通信原理与应用.北京:机械工业出版社, 2009.
    [162]陈宝林,最优化理论与算法.第2版,北京:清华大学出版社, 2005.
    [163] Q. F. Zhou, F. C. M. Lau,“Two incremental relaying protocols for cooperative networks,”IET Commun, vol. 2, no. 10, pp. 1272-1278, 2008.
    [164] X. Xiong, J. H. Ge and J. Li, et al,“Cooperative diversity based on rotation code,”Journal of Central South University of Technology, vol. 16, no. 2, pp. 280-284, 2009.
    [165] M. K. Simon, M. S. Alouini, Digital communication over fading channels, 2nd ed. New York: John Wiley & Sons, 2005.
    [166] D. Tse, and P. Viswanath, Fundamentals of wireless communication, Cambridge: Cambridge University Press, 2005.
    [167] M. N. Khormuji, E. G. Larsson,“Improving collaborative transmit diversity by using constellation rearrangement,”in Proc. IEEE WCNC 2007, Hong Kong, 2007, pp. 803?807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700