用户名: 密码: 验证码:
可变频宽无线网络资源分配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线应用的不断涌现和业务需求的与日俱增,无线频谱资源的稀缺性与当前无线通信系统频谱利用率低下的矛盾日益凸显,严重制约着无线通信技术的进一步发展。针对频谱资源紧缺现状,无线研究领域提出了多种解决方案,分别从时域、空域和频域等多个方面提升频谱资源的利用率。在众多的解决方案中,可变频宽技术易于实现,能够推广应用于现有通信系统。因此,可变频宽无线网络的研究具有重大的学术意义以及广泛的应用前景。
     可变频宽技术作为一种新的资源调控手段,能够更加灵活地改变网络运行状态和性能,但同时也增加了信道划分的维度,导致无线网络资源分配更加复杂。本文以提升IEEE802.11网络性能为目的,结合可变频宽技术对无线网络中的资源分配问题进行研究。论文首先对可变频宽技术的实现方法进行了概述,并分析和总结了IEEE802.11网络资源分配的研究问题和现状,然后对其中三个典型的网络场景中的资源分配问题分别展开探讨,最后分别设计了相应的资源分配算法,并通过大量的仿真实验验证了算法的性能。
     本文的主要工作包括以下几个方面:
     (1)在合作的单跳接入网络场景中,信道分配和用户关联是资源分配的两个主要问题。考虑信道频宽对无线链路通信距离的影响,论文首先分析了信道分配与用户关联的相互影响,指出信道分配与用户关联应当联合优化处理;接着,以最大化系统吞吐量与网络公平性两个系统性能为优化目标,建立了联合优化问题的数学模型;最后,基于粒子群优化框架提出了信道分配和用户关联算法。仿真实验结果验证了联合优化机制能够显著提升网络性能。
     (2)在非合作的单跳接入网络场景中,由于用户的自私性,用户以最大化个体接入收益为目的选择不同的无线接入点。考虑信道频宽对接入性能的影响以及用户QoS要求,论文首先设计了可变频宽无线网络中的用户效用函数;然后在用户有限理性的假定下,基于演化博弈理论建模了无线接入点选择问题;最后设计了一种基于复制者动态的分布式学习算法,引导用户得到此问题中的演化稳定策略。仿真的实验验证了本文所提出的分布式算法能够有效地收敛到演化均衡。
     (3)在多跳无线网状网络中,所有路由节点统一部署且具备中心调度的能力,信道分配和路由是此场景下资源分配的两个主要问题。论文首先建立了可变频宽无线网络中的网络连通性模型和累积干扰模型;然后考虑信道分配与路由的耦合关系,建立了联合优化问题的数学模型;最后基于列生成优化框架对联合优化问题进行解耦,并设计了一种基于对偶价格的贪心式算法求解信道分配策略。仿真实验结果表明本文所提出的算法能够有效求解信道分配与路由联合优化问题。
     本文的研究工作对可变频宽无线网络中的资源分配问题进行了较为全面的分析和研究,并分别设计了相应的资源分配算法和解决方案,能够为可变频宽技术的应用及无线网络资源分配优化设计提供参考。
Within the booming of new wireless applications and various service demands, the conflict between the scarcity and under-utilization of wireless spectrum resource in nowadays becomes increasingly critical and severely restricts the further development of wireless communication technology. To address the spectrum under-utilization problem, the research community has proposed several solutions to improve the spectrum utilization in terms of time, space, and frequency domains. Among all the solutions, variable channel-width is considered as a promising technique as it is flexible to deploy and popularize in existing communication systems. Therefore, in this work, we mainly focus on this technique and investigate some of the key issues and its practicability in future applications.
     As a new resource allocation mechanism, variable channel-width technology provides a more flexible way to adapt the network status and system performance. However, it also complicates the network resource allocation as the variable choice of channel-width opens another dimensionality to the resource allocation problem. In the IEEE802.11wireless network, our work aims to improve the network performance by employing the variable channel-width technique in our resource allocation problem. In this thesis, we first give a brief introduction to the variable channel-width technology, and then summarize some related works about resource allocation in IEEE802.11wireless network. Then, we focus on the resource allocation problems in three typical network scenarios, and design corresponding resource allocation algorithms. In the final, we validate these algorithms through extensive simulations.
     Main contributions of this thesis consist of the following aspects:
     (1) In the scenario of cooperative single-hop access networks, the channel allocation and user association are the two main problems in resource allocation. Considering the influence of variable channel-width on the communication distances of wireless links, we first analyze the interaction between channel allocation and user association and note that a joint optimization is required between these two problems. Then, we formulate a joint optimization model with the objective of maximizing system throughput and network fairness. Moreover, to solve this problem, we propose a channel allocation and user association algorithm based on the particle swarm optimization framework. Simulation results show that the joint optimization model can improve the network performance significantly.
     (2) In the scenario of non-cooperative single-hop access networks, selfishness urges different users to choose the nearby wireless access points to maximize their individual utilities. We first design a new user utility that incorporates the variable channel-width, considering its impact on the access performance and user's QoS requirement. Then, under the assumption of limited rationality, we formulate the access point selection problem in an evolutionary game framework. Moreover, we propose a learning algorithm based on the replicator dynamics to lead users to achieve an evolutionary stable strategy in a distributed way. Simulation results show that the proposed algorithm can converge to the evolutionary equilibrium efficiently.
     (3) In the scenario of multi-hop wireless mesh networks, all wireless routers are deployed by the same authority capable of centralized scheduling. Channel allocation and routing become the two main problems in such scenario. In this thesis, we first improves the network connectivity model and aggregate interference model to account for the variable channel-width in wireless network, and then propose a joint optimization framework to address the resource allocation problem considering the coupling between channel allocation and routing. We employ the column generation method to decouple the joint optimization problem, and propose a greedy algorithm to search for the channel allocation strategy based on dual price. Simulation results show that the proposed algorithm can solve the joint optimization problem efficiently.
     This work presents a comprehensive study on the resource allocation problem with variable channel-width in the wireless network, and design several resource allocation algorithms corresponding to different network scenarios. Our analysis and simulation results provide a substantial reference for the application of variable channel-width technology and the design of resource allocation algorithms for the future wireless technologies.
引文
[1]张志军.信息经济视角下的电信服务市场研究[D].北京:北京邮电大学,2011.
    [2]毛旭.认知无线网络中频谱资源管理技术研究[D].北京:北京邮电大学,2011.
    [3]Federal Communications Commission Spectrum Policy Task Forcep[R]. FCC Report of the Spectrum Efficiency Working Group,2002.
    [4]J. Mitola, G. Q. Maguire. Cognitive Radio:Making Software Radio More Personal[J]. IEEE Personal Communications, Vol.6, No.4,1999:3-18.
    [5]R. Chandra, R. Mahajan, T. Moscibroda, et al. A Case for Adapting Channel Width in Wireless Networks[C]. In Proceeding of ACM SIGCOMM 2008:135-146.
    [6]I. F. Akyildiz, W. Y. Lee, M. C. Vuran, et al. NeXt Generation/dynamic Spectrum Access/Cognitive Radio Wireless Networks:A survey [J]. Computer Networks, Vol. 50, No.13,2006:2127-2159.
    [7]S. J. Kerry, A. Petrick, R. H. Worstell, et al. IEEE Standard for Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications [S]. IEEE Computer Society, IEEE Std 802.11TM,2007.
    [8]B. P. Kaemer, J. Rosdahl, A. P. Stephens, et al. IEEE Standard for Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications Amendemtn 5:Enhancements for Higher Throughput [S]. IEEE Computer Society, IEEE Std 802.11nTM,2009.
    [9]B. Bellalta, J. Barcelo, D. Staehle, et al. On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs[J]. IEEE Communications Letters, Vol.16, No. 10,2012:1588-1591.
    [10]B. P. Kaemer, J. Rosdahl, A. P. Stephens, et al. IEEE Standard for Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) Specifications Amendment 10:MeshNetworking[S]. IEEE Computer Society, IEEE Std 802.11sTM, 2011.
    [11]I. F. Akyildiz, X. Wang, W. Wang. Wireless Mesh Networks:A Survey[J]. Computer Networks, Vol.47,2005:445-487.
    [12]杨武军,郭娟,张继荣等.现代通信网概论[M].西安:西安电子科技大学出版社,2004.
    [13]彭木根,王文博. TD-SCDMA移动通信系统[M].北京:机械工业出版社,2005.
    [14]王殊,阎毓杰,胡富平,等.无线传感器网络的理论及应用[M].北京:北京航空航天大学出版社,2008.
    [15]R. B. Marks, J. Puthenkulam, P. Zhu, et al. IEEE Standard for Air Interface for Broadband Wireless Access Systems[S]. IEEE Computer Society, IEEE Std 802.16TM,2009.
    [16]Super G:Maximizing Wireless Performance[R]. Atheros Communication Incorporated,2004.
    [17]J. G Proakis著,张力军等译.数字通信[M].北京:电子工业出版社,2003.
    [18]X. Zhang, K. G Shin. Adaptive Subcarrier Nulling:Enabling Partial Spectrum Sharing in Wireless LANs[C]. In Proceeding of IEEE ICNP,2011:311-320.
    [19]L. Yang, Z. Zhang, W. Hou, et al. Papyrus:A Software Platform for Distributed Dynamic Spectrum Sharing Using SDRs[J]. ACM SIGCOMM Computer Communication Review, Vol.41, No.1,2011:32-37.
    [20]L. Yang, Z. Zhang, L. Cao, et al. Supporting Demanding Wireless Applications with Frequency-agile Radios[C]. In Proceeding of USENIX NSDI,2010:1-15.
    [21]艾渤,王劲涛,钟章队.宽带无线通信OFDM系统同步技术[M].北京:人民邮电出版社,2011.
    [22]K. Chintalapudi, B. Radunovic, V. Balan, et al. WiFi-NC:WiFi Over Narrow Channels[C]. In Proceeding of USENDC NSDI,2012,1-14.
    [23]L. Deek, E. Garcia-Villegas, E. Belding, et al. The Impact of Channel Bonding on 802.1 In Network Management[C]. In Proceeding of ACM CoNEXT,2011:1-12.
    [24]S. Chieochan, E. Hossain, J. Diamond. Channel Assignment Schemes for Infrastructure-Based 802.11 WLANs:A Survey [J]. IEEE Communications Survey & Tutorials, Vol.12, No.1,2010:124-136.
    [25]I. Katzela, M. Naghshineh. Channel Assignment Schemes for Cellular Mobile Telecommunication Systems:A Comprehensive Survey[J]. IEEE Personal Communications, Vol,3, No.3,1996:10-31.
    [26]E. Ferro, F. Potorti. Bluetooth and Wi-Fi Wireless Protocols:A Survey and A Comparison[J]. IEEE Wireless Communications, Vol.12, No.1,2005:12-26.
    [27]M. Audeh. Metropolitan-scale Wi-Fi Mesh Networks[J]. Computer, Vol.37, No.12, 2004:119-121.
    [28]J. Riihijarvi, M. Petrova, P. Mahonen, et al. Performance Evaluation of Automatic Channel Assignment Mechanism for IEEE 802.11 Based on Graph Colouring[C]. In Proceeding of IEEE PIMRC,2006:1-5.
    [29]A. Mishra, S. Banerjee, W. Arbaugh. Weighted Coloring based Channel Assignment for WLANs[J]. ACM SIGMOBILE Mobile Computing and Communications Review, Vol.9, No.3,2005:19-31.
    [30]A. Mishra, V. Brik, S. Banerjee, et al. A Client-driven Approach for Channel Management inWireless LANs[C]. In Proceeding of IEEE INFOCOM,2006:1-12.
    [31]T. Moscibroda, R. Chandra, Y. Wu, et al. Load-Aware Spectrum Distribution in Wireless LANs[C]. In Proceeding of IEEE ICNP,2008:137-146.
    [32]W. Yuan, W. Liu, W.Q. Cheng. Capacity Maximization for Variable-width WLANs:A Game-theoretic Approach[C]. In Proceeding of IEEE ICC,2010:1-6.
    [33]M. Achanta. Method and Apparatus for Least Congested Channel Scan for Wireless Access Points[P]. US Patent, No.20060072602,2006.
    [34]Wei Yuan, Wei Liu, Wenqing Cheng, et al. Variable-Width Channel Allocation in Wireless LAN:A Game-Theoretic Perspective[C]. In Proceeding of IEEE ICC,2009: 1-6.
    [35]F. Wu, N. Singh, N. Vaidya, et al. On Adaptive-Width Channel Allocation in Non-Cooperative, Multi-Radio Wireless Networks[C]. In Proceeding of IEEE INFOCOM,2011:2804-2812.
    [36]A. Kumar, V. Kumar. Optimal Association of Stations and APs in an IEEE 802.11 WLAN[C]. In Proceeding of NCC,2005:1-5.
    [37]Y. Bejerano, S. Han, L. E. Li. Fairness and Load Balancing in Wireless LANs Using Association Control[C]. In Proceeding of ACM MobiCom,2004:1-15.
    [38]L. Li, M. Pal, Y. R. Yang. Proportional fairness in multi-rate wireless LANs[C]. In Proceeding of IEEE INFOCOM,2008:1004-1012.
    [39]M. Heusse, F. Rousseau, G Berge-Dabbatel, et al. Performance Anomaly of 802.11b[C]. In Proceeding of IEEE INFOCOM,2003:836-843.
    [40]K. Hung, B. Bensaou, R. Li. Cross Layer Association Control for Throughput Optimization in Wireless LANs with inter-AP Interference[C]. In Proceeding of ACM MSWiM,2010:210-217.
    [41]J. Zhang, J. M. Wang, Y. Wang, et al. Fair Throughput Assignment in Multi-cell WLANs with Hidden Terminals[C]. In Proceeding of IEEE ICCC,2012:682-687.
    [42]W. Zhou, D. Qiao. Fulfillment-based Fairness:A New Fairness Notion for Multi-AP Wireless Hotspots[C]. In Proceeding of IEEE ICC,2007:4791-4796.
    [43]T. Bonald, A. Ibrahim, J. Roberts. The Impact of Association on the Capacity of WLANs[C]. In Proceeding of IEEE WiOPT,2009:1-10.
    [44]M. Abusubaih, S. Wiethoelter, J. Gross, et al. A New Access Point Selection Policy for Multi-rate IEEE 802.11 WLANs[J]. International Journal of Parallel, Emergent and Distributed Systems, Vol.23, No.4,2008:1-20.
    [45]L. Yen, J. Li, C. Lin. Stability and Fairness of AP Selection Games in IEEE 802.11 Access Networks[J]. IEEE Transactions on Vehicular Technology. Vol.60, No.3, 2010:1150-1160.
    [46]F. Xu, C. Tan, Q. Li, et al. Designing a Practical Access Point Association Protocol[C]. In Proceedings of IEEE INFOCOM,2010:1-9.
    [47]P. Gupta, P. R. Kumar. The Capacity of Wireless Networks[J]. IEEE Transactions on Information Theory, Vol.46, No.2,2000:388-404.
    [48]徐晶.多接口无线网络信道分配与路由技术研究[D].武汉:华中科技大学,2011.
    [49]D. De Couto, D. Aguayo, J. Bicket, et al. A High-throughput Path Metric for Multi-hop Wireless Routing[C]. In Proceedings of ACM MOBICOM,2003: 136-146.
    [50]R. Draves, J. Padhye, B. Zill. Routing in Multi-radio, Multi-hop Wireless Mesh Networks[C]. In Proceedings of ACM MOBICOM,2004:114-128.
    [51]B. Awerbuch, D. Holmer, R. Rubens. The Medium Time Metric:High throughput Route Selection in Multi-rate Ad HocWireless Networks [J]. Mobile Networks and Applications, Vol.11, No.2,2006:253-266.
    [52]M. Alicherry, R. Bhatia, L.E. Li. Joint Channel Assignment and Routing for Throughput Optimization in Multi-radio Wireless Mesh Networks[C]. In Proceedings of ACM MobiCom,2005:58-72.
    [53]X. Meng, K. Tan, Q. Zhang. Joint Routing and Channel Assignment in Multi-Radio Wireless Mesh Networks[C]. In Proceedings of IEEE ICC,2006:3596-3601.
    [54]A. H. M. Rad, V. W. S. Wong. Joint Channel Allocation, Interface Assignment and MAC Design for Multi-channel Wireless Mesh Networks[C]. In Proceedings of IEEE INFOCOM,2007:1469-1477.
    [55]L. Li, C. Zhang, Y. Li. QoS-aware On-demand Channel Width Adaptation Protocols for Multi-radio Ad-hoc Networks[C]. In Proceedings of IEEE WCNC,2009: 1898-1903.
    [56]C. B. Carvalho, J. F. Rezende. Routing in IEEE 802.11 Wireless Mesh Networks with Channel Width Adaptation[C]. In Proceedings of IEEE Med-Hoc-Net,2010:1-8.
    [57]V. Raman, M. C. Caesar. A Practical Approach for Providing QoS in Multichannel Ad-Hoc Networks using Spectrum Width Adaptation [C]. In Proceedings of IEEE GLOBECOM,2009:1-6.
    [58]L. Li L, C. Zhang. Joint Channel Width Adaptation, Topology Control, and Routing for Multi-Radio Multi-Channel Wireless Mesh Networks[C]. In Proceeding of IEEE CCNC,2009:1-5.
    [59]L. Li, C. Zhang. Optimal Channel Width Adaptation, Logical Topology Design, and Routing in Wireless Mesh Networks[J]. EURASIP Journal on Wireless Communications and Networking,2009:1-13.
    [60]Z. Feng, Y. Yang. Joint Transport, Routing and Spectrum Sharing Optimization for Wireless Networks with Frequency-Agile Radios[C]. In Proceeding of IEEE INFOCOM,2009:1665-1673.
    [61]T. Shu, M. Liu, Z. Li, et al. Joint Variable Width Spectrum Allocation and Link Scheduling for Wireless Mesh Networks[C]. In Proceeding of IEEE ICC,2010:1-5.
    [62]舒童,刘敏,周安福等.无线Mesh网中频带宽度与时槽长度可变的公平性优化算法[J].计算机学报,Vol.34,No.1,2011:65-75.
    [63]M. F. Uddin, M. Nurujjaman, C. Assi. Joint Scheduling and Spectrum Allocation in Wireless Networks with Frequency-Agile Radios[J]. ADHOC-NOW LNCS,2010: 95-108.
    [64]M. F. Uddin, C. Assi. Joint Routing, Scheduling and Variable-Width Channel allocation for Multi-hop WMNs[C]. In Proceeding of IEEE ICC,2010:1-6.
    [65]M. F. Uddin, H. M. K. AlAzemi, C. Assi. Optimal Flexible Spectrum Access in Wireless Networks with Software Defined Radios[J]. IEEE Transactions on Wireless Communications, Vol.10, No.1,2011:314-324.
    [66]L. Xie, Q. Li, W. Mao, J. Wu, et al. Achieving Efficiency and Fairness for Association Control in Vehicular Networks[C]. In Proceeding of IEEE ICNP,2009:324-333.
    [67]A. Wittneben, I. Hammerstrom, M. Kuhn. Joint Cooperative Diversity and Scheduling in Low Mobility Wireless Networks[C]. In Proceeding of IEEE GLOBECOM,2004: 780-784.
    [68]T. Rappaport, Wireless Communications:Principle and Practice[M]. New Jersey: Prentice Hall,1996.
    [69]P. Chatzimisios, A. C. Boucouvalas, V. Vitsas. Performance Analysis of IEEE 802.11 DCF in Presence of Transmission Errors[C]. In Proceeding of IEEE ICC,2004: 3854-3858.
    [70]G. Bianchi. Performance analysis of the IEEE 802.11 Distributed Coordination Function[J]. IEEE Journal on Selected Area in Communications, Vol.18, No.3,2000: 535-547.
    [71]A. Kumar, E. Altman, D. Miorandi, et al. New Insights from a Fixed Point Analysis of Single Cell IEEE 802.11 WLANs[C]. In Proceeding of IEEE INFOCOM,2005: 1550-1561.
    [72]G. S. Kasbekar, J. Kuri, P. Nuggehalli. Online Association Policies in IEEE 802.11 WLANs[C]. In Proceeding of IEEE WiOPT,2006:1-10.
    [73]魏静萱.解决单目标和多目标优化问题的进化算法[D].西安:西安电子科技大学,2009.
    [74]蒋庆.地下水时空变化及监测网多目标优化研究[D].武汉:华中科技大学,2008.
    [75]X. Ling, K. L. Yeung. Joint Access Point Placement and Channel Assignment for 802.11 Wireless LANs[J]. IEEE Transaction on Wireless Communications, Vol.5, No.10,2006:2705-2711.
    [76]R. Chandra, P. Bahl, P. Bahl. MultiNet:Connecting to Multiple IEEE 802.11 Networks Using a Single Wireless Card[C]. In Proceeding of IEEE INFOCOM 2004, 2004:882-893.
    [77]M. S. Bazaraa, H. D. Sherali, C. M. Shetty. Nonlinear Programming [M]. Hoboken: Hoboken Press,1993.
    [78]J. Kennedy, R. Eberhart. Particle Swarm Optimization[C]. In Proceedings of IEEE ICNN,1995:1942-1948.
    [79]J. Kennedy, R. Eberhart. A Discrete Binary Version of the Particle Swarm Algorithm[C]. In Proceedings of IEEE ICSMC,1997:4104-4108.
    [80]M. Gen, R. Cheng. A Survey of Penalty Techniques in Genetic Algorithms[C]. In Proceedings of IEEE ICEC,1996:804-809.
    [81]Y. Zhu, Z. Niu, Q. Zhang, et al. A Multi-AP Architecture for High-Density WLANs: Protocol Design and Experimental Evaluation[C]. In Proceedings of IEEE SECON, 2008:28-36.
    [82]M. N. Krishnan, A. Zakhor. Throughput Improvement in 802.11 WLANs using Collision Probability Estimates in Link Adaptation[C]. In Proceedings of IEEE WCNC,2010:1-6.
    [83]K. Mittal, E. Belding, S. Suri. A Game-Theoretic Analysis of Wireless Access Point Selection by Mobile Users[J]. Computer Communications, Vol.31, No.10,2008: 2049-2062.
    [84]J. M. Smith, G R. Price. The Logic of Animal Conflict[J]. Nature, Vol.246, No.5427, 1973:15-18.
    [85]T. L. Vincent, J. S. Brown. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics[M]. Cambridge:Cambridge University Press,2005.
    [86]D. Fudenberg, D. K. Levine. The Theory of Learning in Games[M]. Cambridge:MIT Press,1998.
    [87]D. Friedman. Evolutionary Games in Economics[J]. Econometrica, Vol.59, No.3, 1991:637-666.
    [88]T. L. Vincent, T. L. S. Vincent. Evolution and Control System Design-The Evolutionary Game[J]. IEEE Control System Magazine, Vol.20, No.5,2000:20-35.
    [89]D. Niyato, E. Hossain. Modeling User Churning Behavior in Wireless Networks Using Evolutionary Game Theory[C]. In Proceedings of IEEE WCNC,2008: 2793-2797.
    [90]D. Niyato, E. Hossain. Dynamics of Network Selection in Heterogeneous Wireless Networks:An Evolutionary Game Approach[J]. IEEE Transactions on Vehicular Technology, Vol.58, No.4,2009:2008-2017.
    [91]K. Zhu, D. Niyato, P. Wang. Optimal Bandwidth Allocation with Dynamic Service Selection in Heterogeneous Wireless Networks [C]. In Proceedings of IEEE GIOBECOM,2010:1-5.
    [92]B. Wang, K. J. Liu, T. C. Clancy. Evolutionary Cooperative Spectrum Sensing Game: How to Collaborate?[J]. IEEE Transactions on Communications, Vol.58, No.3, 2010:890-900.
    [93]S. Cheng, P. Chen, K. C. Chen. Ecology of Cognitive Radio Ad Hoc Networks[J]. IEEE Communications Letters, Vol.15, No.7,2011:764-766.
    [94]C. Montet, D. Serra. Game Theory and Economics[M]. New York:Palgrave Macmillan,2004.
    [95]G. Tan, J. Guttag. Time-based Fairness Improves Performance in Multi-rate WLANs[C]. USENIX Annual Technical Conference,2004:23-36.
    [96]J. Choi, J. Yoo, C. Kim, et al. EBA:An Enhancement of the IEEE 802.11 DCF via Distributed Reservation[J]. IEEE Transaction on Mobile Computing, Vol.4, No.4, 2005:378-390.
    [97]S. J. Kerry, A. Petrick, R. H. Worstell, et al. IEEE Standard for 802.11 Wireless LAN Medium Access Control and Physical Layer Specifications:Amendment 8:Medium Access Control (MAC) Quality of Service Enhancements[S]. IEEE Computer Society, IEEE 802.11TM,2005.
    [98]G. Koundourakis, D. I. Axiotis, M. Theologou. Network-based Access Selection in Composite Radio Environments[C]. In Proceedings of IEEE WCNC,2007: 3880-3886.
    [99]C. Yu, T. Shen, K. G. Shin, et al. Multihop Transmission Opportunity in Wireless Multihop Networks[C]. In Proceedings of IEEE INFOCOM,2010:1-9.
    [100]A. Muqattash, M. Krunz. POWMAC:A Single-Channel Power-Control Protocol for Throughput Enhancement in Wireless Ad Hoc Networks[J]. IEEE Journal on Selected Areas in Communications, Vol.23, No.5,2005:1067-1084.
    [101]T. Kim, H. Lim, J. C. Hou. Understanding and Improving the Spatial Reuse in Multihop Wireless Networks[J]. IEEE Transactions on Mobile Computing, Vol.7, No.10,2008:1200-1212.
    [102]J. Yi, C. Poellabauer, X. S. Hu, et al. Minimum Bandwidth Reservations for Periodic Streams in Wireless Real-Time Systems[J]. IEEE Transactions on Mobile Computing, Vol.10, No.5,2011:479-490.
    [103]J. Miao, Z. Hu, K. Yang, et al. Joint Power and Bandwidth Allocation Algorithm with QoS Support in Heterogeneous Wireless Networks[J]. IEEE Communications Letters, Vol.16, No.4,2012:479-481.
    [104]Y. Cui, T. Ma, X. Cheng. Multi-hop Access Pricing in Public Area WLANs[C]. In Proceedings of IEEE INFOCOM,2011:2678-2686.
    [105]P. Lin, J. Jia, Q. Zhang, et al. Dynamic Spectrum Sharing With Multiple Primary and Secondary Users[J]. IEEE Transactions on Vehicular Techonlogy, Vol.60, No.4, 2011:1756-1765.
    [106]R. Kazemi, R. Vesilo, E. Dutkiewicz, et al. Inter-Network Interference Mitigation in Wireless Body Area Networks Using Power Control Games[C]. In Proceedings of ISCIT,2010:81-86.
    [107]D. Fudenberg, J. Tirole. Game Theory[M]. Cambridge:MIT Press,1991.
    [108]B. Sikdar. Characterization and Abatement of the Reassociation Overhead in Vehicle to Roadside Networks[J]. IEEE Transactions on Communications, Vol.58, No.11, 2010:3296-304.
    [109]O. Ercetin. Association Games in IEEE 802.11 Wireless Local Area Networks. IEEE Transactions on Wireless Communications, Vol.7, No,12,2008:5136-5143.
    [110]L. Samuelson. Evolutionary Stability in Asymmetric Games[J]. Journal of Economic Theory, Vol.57,1992:363-391.
    [111]K. Ritzberger, J. W. Weibull. Evolutionary Selection in Normal-Form Games[J]. Econometrica, Vol.63, No.6,1995:1371-1399.
    [112]P. Coucheney, C. Touati, B. Gaujal. Selection of Efficient Pure Strategies in Allocation Games[C]. In Proceedings of IEEE GameNets,2009:658-666.
    [113]L. P. Kaelbling, M. L. Littman. Reinforcement Learning:A Survey[J]. Journal of Artificial Intelligence Research, Vol.4,1996:237-285.
    [114]A. Rad, V. Wong. Logical Topology Design and Interface Assignment for Multi-Channel Wireless Mesh Networks[C]. In Proceeding of IEEE GLOBECOM, 2006:1-6.
    [115]S. Boyd, C. Shetty. Convex Optimization[M]. Cambridge:Cambridge University Press,2004.
    [116]L. R. Ford, D. R. Fulkerson. Solving the Transportation Problem[J]. Management Science, Vol.3, No.1,1956:24-32.
    [117]G. B. Dantzig, P. Wolfe. Decomposition Principle For Linear Programs [J]. Operation Research, Vol.8, No.1,1960:101-111.
    [118]王沛.基于分支定价的多星多站集成调度方法研究[D].长沙:国防科技大学,2011.
    [119]张建敏.认知无线网络链路初始化控制与资源优化分配研究[D].杭州:浙江大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700