用户名: 密码: 验证码:
河南中部张士英岩体的成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
张士英岩体位于河南省中部舞钢市庙街乡一带、东秦岭与西大别交汇部位,大地构造位置属于华北地台南缘。根据野外地质调查及前人工作,本研究将张士英岩体解体为角闪石英正长岩、花岗斑岩和石英斑岩脉,其中仅在角闪石英正长岩中大量发育暗色岩石包体。野外切割关系表明,花岗斑岩侵入角闪石英正长岩,石英斑岩侵入前两者。
     张士英岩体中角闪石英正长岩、花岗斑岩和石英斑岩的锆石SHRIMP U-Pb年龄分别为107.3±2.4 Ma、106.7±2.5 Ma和101±3 Ma,说张士英岩体形成于中白垩世末期110~100 Ma,是中国东部中白垩世大规模花岗岩侵位事件末期的产物,也是中国东部晚中生代大规模岩浆作用晚期的产物。
     角闪石英正长岩及其中的暗色包体属于钾玄岩系列,而正长花岗斑岩和石英斑岩属于高钾钙碱性系列,分别具有准铝质、弱过铝质和强过铝质的地球化学特征。岩体地质、矿物学特征与岩石地球化学特征的研究表明花岗斑岩岩浆的形成主要受源岩部分熔融过程的控制,而结晶分离作用与流体-熔体相互作用不是其成岩过程中的主要控制因素;角闪石英正长岩是花岗斑岩岩浆与以暗色岩石包体为代表的源自深部的岩浆发生混合作用形成的。花岗斑岩的物质来源为与长英质泥岩成分相当的下地壳(30~35 km)部分熔融的产物,其岩浆起源温度>875℃,石英斑岩与花岗斑岩可能是同源岩浆,并混染了新太古代地壳物质形成的。暗色包体所代表的岩浆是由下地壳榴辉岩拆沉到深度大于50 km的地幔中发生部分熔融形成的,岩浆形成以后快速上升侵位到地壳浅部(<6 km)并与花岗斑岩岩浆发生混合形成角闪石英正长岩。
     综合约135 Ma以来的区域岩石学、构造地质及地球物理研究成果表明,当时整个中国东部岩石圈均处于伸展作用阶段,这种区域性的岩石圈伸展作用可能是下地壳榴辉岩发生拆沉的诱因。下地壳榴辉岩的拆沉作用是张士英岩体形成的深部动力学原因,也是东秦岭地区135~110 Ma期间大规模成矿作用的深部过程。区内与张士英岩体同期的岩浆活动以及热扰动年龄的存在也共同受这一深部动力学过程的制约。
Zhangshiying Intrusive Complex(ZIC) is located in the south margin of North China Craton and at the junction of the eastern Qinling and Dabie orogen.Based on the field investigation and former work, this study divede ZIC into three kind of rocks, including hornblende quartz syenite(HQS), granite porphyry (GP) and quartz porphyry(QP). There are many enclaves(MEs) only in HQS which is invaded by GP and QP. QP invades into GP as well. The ziron SHRIMP U-Pb ages of HQS, GP and QP are 107.3±2.4 Ma, 106.7±2.5 Ma and 101±3 Ma, respectively. They demonstrate that ZIC is the product of the late period of Middle Cretaceous.
     HQS and MEs the MEs therein are shoshonitic and metaluminous-weakly peraluminous rocks, but GP and QP are high-K calc-alkline and strongly peraluminous rocks. According to the characteristics of their field geology, mineralogy, geochemistry, QP magma is mainly controlled not by fractionation crystallization process or interaction between melt and fluid, but by source rock partial melting. HQS is the product of magma mixing between GP magma and magma originated from depth represented by the MEs. GP is derived from lower crust (30-35 km) composed of clay-rich pelitic source rock at temperature of >875℃. QP is the cognate magma of GP and assimilates some Neoarchean crust. Magma represented by the MEs is originated by partial melting of foundered lower crustal ecologite in mantle (>50 km), Then it ascend fast to shallow crust (< 6km) mixing with GP magma there to form HQS.
     According to this research and the study results about the late Mesozoic in this region, we can conclude that the whole eastern China lithosphere is extensive betweem 135Ma and 100Ma. This large scale regional extension of lithosphere could be the incentive of the ecologitic lower crustal foundering, which is the deep process of ZIC origin and of the extensive mineralization at the time and of magmatic events and thermal disturbance of the same age as ZIC in this region, at south margin of North China Craton.
引文
[1] Arndt N T and Christensen U. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Journal of Geophys. Res., 1992, 97: 10967~10981
    [2] Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf,and lanthanide tetrad effect. Contrib Mineral Petrol, 1996, 123: 323~333
    [3] Bonin B., Azzouni-Sekkal A., Bussy, et al., Alkalicalcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos, 1998, 45: 45~70
    [4] Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds) Rare earth element geochemistry. Elsevier, 1984, 63~114
    [5] Briqueu, Bougault H and Joron J L. Quantification of Nb,Ta,Ti and V anomalies in magmas associated with subduction zones:Petrogenetic implications. Earth Planet. Sci. Lett., 1984, 68: 297~308
    [6] Campston W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar braccia 73217 using a sensitive high mass-resolutionion microprobe. Geophys. Res., 1984, 89: B525~534
    [7] Chappell BW. Aluminous saturation in I- and S-type granites and the characterization of fractionated granites. Lithos, 1999, 46: 535~551
    [8] Compston W, Williams L S, Kirschvink J L, et al. Zircon U-Pb ages of early Cambrian time-scale. J Geol Soc London, 1992, 149: 171~184
    [9] Dostal J. and Chatterjee A K Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton
    [11] Forst B R, Barnes C G, Collins W J, et al. Ageochemical classification for granitic rocks .Journal of Petrology, 2001, 42: 2033~2048
    [12] Foster D A, Schafer C, Fanning C M, et al. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho–Bitterroot batholith. Tectonophysics, 2001, 342: 313~350
    [13] Foster M D. Interpretation of the composition of trioctahedral micas. Geol. Surv. Prof. Paper, 1960, 354-B:1 1~49
    [14] Gilder S and Courtillot V. Timing of the north–south China collision from new middle to late Mesozoic paleomagnetic data from the north China block. Journal of Geophysical Research–Solid Earth, 1997, 102 (BS): 17713~17727
    [15] Green T H. Significance of Nb/Ta as an indicator of geochemical process in the crust-mantle system. Chem Geol. 1995, 120 (3/4): 347~359
    [16] Hacker B R, Ratschbacher L, Webb L,et al. U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen,China. Earth Planet. Sci. Lett., 1998,161: 215~230
    [17] Hammarstrom J M., Zen E-an. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 1986, 71: 1297~1313
    [18] Hibbard M J. Petrography to petrogenesis. 1995: 1~668
    [19] Hollister L S, Grissom G C, Peters E K, et al. Confirmation of the empirical correlation of Al in hornblende with products of solidification in calc-alkaline plutons. American Mineralogist, 1987, 72: 231~239
    [20] Irber W. The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu*,Sr/Eu,Y/Ho, and Zr/Hf of evolving peralumious granite suites. Geochimica et Cosmochica Acta, 1999, 63(3/4): 489~508
    [21] Journon J, Tribolet C, Azema J. Amphibolites from Panama: anticlock P-T Paths from a pre-upper cretaceous metamorphic basement in isthmian central American. Journal of metamorphic Geology, 1989, (7): 539~546
    [22] Keay S, Lister G, Buick I. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 2001, 342: 275~312
    [23] Klemme S, Blundy J D, Wood B J. Experimental constraintson major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta, 2002, 66: 3109~3123.
    [24] Leake B E, Woolley A R, Arps CES, et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, Commission on new minerals and Mineral names. Canadian Mineralogist, 1997, 35: 219~246
    [25] Leake B E. Normenclature of amphibole.American Mineralogist, 1978, 63: 1023~1052
    [26] Li J W, Zhou X F, Vasconcelos P, et al. Origin of the Tongshankou porphyry skarn Cu Mo deposit, eastern Yangtze craton, Eastern China: Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints. Mineralium Deposita, 2007, 43: 316~336
    [27] Ludwig K R. Using Isoplot/Ex. Version 2.0: Geochronological Took it for Microsoft Excel Berkeley: Berkeley Geochronological Center Special Publication. 1999, 47
    [28] Ludwig K R. Squid 1.02: A User Manual Berkeley: Berkeley Geochronological Center Special Publication. 2001, 19
    [29] Mao J W, Goldfarb R J, Zhang Z W,et al, Gold deposits in the Xiaoqinling–Xiong’ershan region,Qinling Mountains, central China. Mineralium Deposita, 2002, 37: 306~325
    [30] Mao J W, Xie G Q, Pirajno, et al. Late Jurassic– Cretaceous granitoids in the Eastern Qinling, Central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australia Journal of Earth Sciences, 2009 (in press).
    [31] Mao J W, Xie G Q, F Bierlein, W J Qu, A D Du, H S Ye, F. Pirajno, H M Li, B J Guo, Y F Li, Z Q Yang. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 2008, 72: 4607~4626
    [32] McDonongh WF and Sun SS. The composition of the Earth. Chemical Geology, 1995, 120: 223~253
    [33] Muller D and Groves D I. Potassic igneous rocks and associated gold-copper mineralization. Berlin:Spinger-Verlage, 1995, 1~210
    [34] Nachit H, Ibhi A, Abia E H,et al.Discrimination between primary magmatic biotites,reequilibrated biotites and neoformed biotites. C. R.Geoscience, 2005, 337: 1415~1420
    [35] Understanding Granites: Integrating New and Classical Techniques. Geological Society Special Publications, 1999, 168: 55~75.
    [36] Patino Douce, A E, 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743~766.
    [37] Rapp R P, Watson E B Dehydration melting of metabasalt at 8-32 kbar implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891~931.
    [38] Rollison H R. Using geochemical data: evaluation, presentation, interpretation, Longman Scientific & Technical Limited, 1993: 1~352
    [39] Schmidt M W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 1992, 110: 304~310.
    [40] Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol, 1994, 117: 394~409.
    [41] Sylvester P J. Post-collisional strongly peraluminous granites. Lithos,1998, 45: 29~44.
    [42] Wang Q, Wyman D A, Xu J F,et al. Partial melting of thickened or delaminated lower crust in the middle of Eastern China: Implications for Cu-Au mineralization. The Journal of Geology, 2007,115: 149~161
    [43] Wang R C, Zhao G T, Lu J J, et al. Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites,Eastern China.Mineralogical Magazine, 2000, 64(5): 867~877
    [44] White, A.J.R., Chappell, B.W. Some supracrustal (S-type) granites from the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, Earth Sciences, 1988, 79: 169~181.
    [45] Whitney D L, Teyssier C, Fayon A K, et al. Tectonic controls on metamorphism, partial melting, and intrusion: Timing and duration of regional metamorphism and magmatism in the Nigde Massif,Turkey. Tectonophysics, 2003, 376: 37~60
    [46] Williams I S. Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks. Trans. R. Soc. Edinburgh, Earth Sci., 1992, 83: 447~458.
    [47] Xiao L, Clemens J D. Origin of potassic (C– type) adakite magmas: experimental and field constraints. Lithos, 2007,95: 399~414
    [48] Xie G Q and Mao J W. Zircon SHRIMP U-Pb dating of Echeng granite in the southeastern Hubei, MLYB, Eastern China. Geochimica et Cosmochimica Acta, 2008, 72(12s): A1042
    [49] Xie Z, Zheng Y F, Zhao Z F, et al. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology, 2006, 231: 214~235
    [50] Xiong X L,Adam T J,Green T H.Rutile srability and rutile / melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis.Chemical Geology, 2005,218: 339~359
    [51] Xu H J, Ma C Q, Ye K, Early cretaceous granitoids and their implications for the collapse of the Dabie orogen,eastern China: SHRIMP zircon U-Pb dating and geochemistry, Chemical Geology, 2007, 240: 238~259
    [52] Xu W L, Wang Q H, Liu X C, et al.Chronology and sources of Mesozoic intrusive complex in Xu-Huai region, central China:Constraints from SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 2004, 78(1): 96~106.
    [53] Zhang J J, Zheng Y D, Liu S W. Application of general shear theory to the study of formation mechanism for the metamorphic core complex: A case of Xiaoqinling in central China. Acta Geologica Sinica, 2000, 74(1): 19~28
    [54] Zhang J J,Zheng Y D. Multistage Extension and Age Dating of the Xiaoqinling Metamorphic Core Complex, Central China. Acta Geologica Sinica, 1999, 73(2): 139~147
    [55]陈光远,孙岱生,周珣若,等.胶东郭家岭花岗闪长岩成因矿物学与金矿.北京:中国地质大学出版社,1993,1~131
    [56]程顺有,张国伟,李立.秦岭造山带岩石圈电性结构及其地球动力学意义.地球物理学报,2003,46(3):390~397.
    [57]丁孝石.西藏中南部各类花岗岩中黑云母标型特征及其地质意义.中国地质科学院矿床地质研究所所刊,1988,(1):33~50
    [58]范光,张子敏,张邻素.熊耳山区花岗岩特征及其与金矿化的关系.铀矿地质,1995,11(4):207~213
    [59]范裕,周涛发,袁锋,等.安徽庐江–枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义.岩石学报,2008,24(8):1715~1724
    [60]高山,骆庭川,张本仁,等.中国东部地壳的结构和组成.中国科学(D辑),1999,29(3):204~213
    [61]关保德.河南华北地台南缘前寒武纪–早寒武世地质和成矿.武汉:中国地质大学出版社,1996:1~328
    [62]郭波,朱赖民,李犇,等.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景.岩石学报,2009,25(2):265~281
    [63]韩以贵.豫西地区构造、岩浆作用与金成矿的关系–同位素年代学的新证据:[博士学位论文].北京:中国地质大学(北京),2007
    [64]河南地质调查研究院.河南1:25万平顶山市幅区域地质调查报告.2003,1~263
    [65]侯可军,李延河,邹天人,等.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,2007,23(10):2595~2604
    [66]蒋洪堪,战双庆,王宏勋.十堰至洛阳大地电磁测深观测结果.物探与化探,1990,14(4):285~291
    [67]靳克,许文良,王清海,等.蚌埠淮光“混合花岗闪长岩”的形成时代及源区:锆石SHRIMP U-Pb地质年代学证据.地球学报,2003,24(4):331~335
    [68]柯珊,罗照华,莫宣学.塔什库尔干新生代碱性杂岩造岩矿物化学成分及成因意义.岩石矿物学杂志,2006,25(2):148~156
    [69]李厚民,王登红,张冠,等.河南白石坡银矿区花岗斑岩中锆石的SHRIMP U-Pb年龄及其地质意义.地质学报,2007,81(6):808~813
    [70]李立,杨辟元,段波,等.东秦岭岩石圈的地电模型.地球物理学报,1998,41(2):189~195
    [71]李朋武,高锐,管烨,等.华北与西伯利亚地块碰撞时代的古地磁分析–兼论苏鲁–大别超高压变质作用的构造起因.地球学报,2007,28(3):234~252
    [72]李先梓,严阵,卢欣祥.秦岭–大别山花岗岩.北京:地质出版社,1993
    [73]李永峰.东秦岭中生代金属矿床组合与成矿规律研究:[博士学位论文].北京:中国地质大学(北京),2005
    [74]刘丛强,张辉.过铝质岩浆体系中不相容元素的地球化学行为及机理–元素对分异和稀土元素“四重效应”及其对流体作用过程的指示意义.高校地质学报,2003,9(4):648~660
    [75]刘俊来,Davis GA,纪沫,等.地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束.地学前缘,2008,15(3):72-81
    [76]刘俊来,关会梅,纪沫,等.华北晚中生代变质核杂岩构造及其对岩石圈减薄机制的约束.自然科学通报,2006,16(1):21~26
    [77]楼亚儿,杜杨松.安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年.地球化学,2006,35(4):333~345
    [78]卢欣祥.秦岭花岗岩大地构造图.西安:西安地图出版社,1999,1~27
    [79]毛景文,李晓峰,张荣华,等.深部流体成矿系统.北京:中国大地出版社,2005,1~365
    [80]毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,2008,14(4):510~526
    [81]毛景文,叶会寿,王瑞廷,等.东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价.地质通报,2009,28(1):72~79
    [82]毛景文,郑熔芬,叶会寿,等.豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar–39Ar年龄及其地质意义.矿床地质,2006,25(4):359~368
    [83]牛宝贵,和政军,宋彪,等.张家口组火山岩SHRIMP定年及其重大意义,地质通报,2003,22(2):140~141
    [84]牛宝贵,和政军.张家口组火山岩SHRIMP定年及其重大意义.地质通报,2003,(2):140~141
    [85]牛漫兰,朱光,谢成龙,等.郯庐断裂带张八岭隆起南段花岗岩LA-ICP-MS锆石U-Pb年龄及其构造意义.岩石学报,2008,24(8):1839~1847
    [86]潘兆橹.结晶学与矿物学(下册).北京:地质出版社,1994,1~282
    [87]邱家骧.秦巴碱性岩.北京:地质出版社,1993:1~183
    [88]尚瑞均,严阵.秦巴花岗岩.武汉:中国地质大学出版社.1988,1~224
    [89]石铨曾,尉向东,李明立,等.2004.河南省东秦岭山脉北缘的推覆构造及伸展拆离构造.北京:地质出版社,1~103
    [90]宋彪,张玉海,刘敦一.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学.质谱学报,2002,23(1):58~62
    [91]万天丰,朱鸿.中国大陆及邻区中生代–新生代大地构造与环境变迁.现代地质,2002,16:107~120
    [92]万天丰.中国东部中、新生代板内变形,构造应力场及其应用.北京:地质出版社,1993,1~103.
    [93]王团华,毛景文,王彦斌.小秦岭–熊耳山地区岩墙锆石SHRIMP年代学研究–秦岭造山带岩石圈拆沉的证据.岩石学报,2008,24(6):1273~1287
    [94]王彦斌,刘敦一,曾普胜,等.铜陵地区小铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示.岩石矿物学杂志,2004a,23(4):298~305
    [95]王彦斌,刘敦一,曾普胜,等.安徽铜陵地区幔源岩浆底侵作用的时代-朝山辉石闪长岩锆石SHRIMP定年.地球学报,2004b,25(4):423~428
    [96]王彦斌,刘敦一,蒙义峰,等.安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义.中国地质,2004c,31(2):169~173
    [97]王义天,李继亮,刘德良,等.大别山商城–麻城断裂带的40Ar–39Ar年龄及其意义.地质论评,2000,16(6):611~615
    [98]王义天,毛景文,卢欣祥,等.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义.科学通报,2002a,47(18):1427~1431
    [99]王义天,毛景文.碰撞造山作用期,后伸展体制下的成矿作用––以小秦岭金矿集中区为例.地质通报,2002b,(8):562~566.
    [100]王义天,毛景文,卢欣祥.嵩县祁雨沟金矿成矿时代的年代学证据.地质论评,2001,47(5):551~555
    [101]王义天,毛景文,叶安旺,等.小秦岭地区中深部含金石英脉的地球化学特征及其意义.2005,24(3):270~279
    [102]王岳军,范蔚茗,郭锋.北淮阳晚中生代火山岩定年及火山砾石地球化学:对大别灰色片麻岩隆升和中生代地层格架的约束.科学通报,2002,47(20):1528~1534
    [103]吴才来,董树文,国和平,等.铜陵狮子山地区中酸性侵入岩锆石SHRIMP U-Pb定年及岩浆作用的深部过程.岩石学报,2008,24(8):1801~1812
    [104]吴淦国,张达,狄永军,等.铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景.中国科学(D辑),2008,38(5):630~645
    [105]吴元保,唐俊,张少兵,等.北大别两期混合岩化作用:SHRIMP锆石U-Pb年龄证据.科学通报,2007,52(8):939~944
    [106]谢桂青,毛景文,李瑞玲,等.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义.科学通报,2006,51(19):2283~2291
    [107]谢桂青,毛景文,李瑞玲,等.东秦岭宝丰盆地大营组火山岩SHRIMP定年及其意义.岩石学报,2007,23(10): 2387~2396
    [108]谢建成,杨晓勇,杜建国,等.铜陵地区中生代侵入岩LA-ICP-MS锆石U-Pb年代学及Cu-Au成矿指示意义.岩石学报,2008,24(8):1782~1800
    [109]徐夕生,范钦成,SY O’Reilly,等.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨.科学通报,2004,49(18):1883~1891
    [110]徐晓春,陆三明,谢巧勤,等.安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义.地质学报,2008,82(4):500~511
    [111]杨德彬,许文良,裴福萍,等.徐淮地区早白垩世adakitic岩石的年代学和Pb同位素组成:对岩浆源区与华北克拉通东部构造演化的制约.岩石学报,2008,24(8):1745~1758
    [112]杨德彬,许文良,王冬艳,等.河南三门峡曲里石英闪长斑岩锆石SHRIMP U-Pb定年及其地质意义.中国地质,2004,31(4):379~383
    [113]杨德彬,许文良,王清海,等..蚌埠隆起区中生代花岗岩的岩石成因:锆石Hf同位素的证据.岩石学报,2007,23(2):381~392
    [114]杨小男,徐兆文,张军,等.安徽狮子山矿田南洪冲岩体形成时代及成因机制研究.岩石学报,2007,23(6):1543~1551
    [115]杨振宇JeanBESSE.华南、华北地块中生代构造演化与超高压变质岩的折返机制.地质论评,2001,47(6):568~576
    [116]姚军明,赵太平,李晶,等.河南祈雨沟金成矿系统辉钼矿Re-Os年龄和锆石U-Pb年龄及Hf同位素地球化学.岩石学报,2009,25(2):374~384
    [117]叶会寿,毛景文,李永峰,等.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报,2006,80(7):1078~1088
    [118]叶会寿,毛景文,徐林刚,等.豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征.地质论评,2008,54(5):699~711
    [119]叶会寿.华北陆块南缘中生代构造演化与铅锌银成矿作用:[博士学位论文].北京:中国地质科学院,2006
    [120]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001,1~729张乐骏,周涛发,范裕,等.安徽月山岩体的锆石SHRIMP U-Pb定年及其意义.岩石学报,2008,24(8):1725~1732
    [121]张旗,简平,刘敦一,等.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D辑),2003,33(4):310~315
    [122]张正伟,周玲棣,朱炳泉,等.东秦岭北部富碱侵入岩的主要矿物组成.矿物学报,2002a,22(1):67~74
    [123]张正伟,朱炳泉,常向阳,等.东秦岭北部富碱侵入岩岩石化学与分布特征.岩石学报,2002b,29(5):468~474
    [124]张正伟,朱炳泉,常向阳.东秦岭北部富碱侵入岩带岩石地球化学特征及构造意义.地学前缘,2003,10(4):507~519
    [125]张正伟,朱炳泉,常向阳.东秦岭北部富碱侵入岩钕、锶、铅同位素特征及构造意义.地球化学,2000,29(5):455~461
    [126]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学.北京:地质出版社,2006,1~348
    [127]赵新福,李建威,马昌前,等.北淮阳古碑花岗闪长岩侵位时代及地球化学特征:对大别山中生代构造体制转换的启示.岩石学报,2007,23(6):1392~1402
    [128]赵振华,熊小林,王强,等.铌与钽的某些地球化学问题.地球化学,2008,37(4):304~320
    [129]赵振华.微量元素地球化学原理.北京:科学出版社,1997:1~56.
    [130]赵子福,郑永飞,魏春生,等.大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究.岩石学报,2004,20(5):1151~1174
    [131]赵子福,郑永飞,魏春生,等.大别山沙村和椒子岩基性-超基性岩锆石U-Pb定年、元素和碳氧同位素地球化学研究.高校地质学报,2003,9(2):139~162
    [132]郑建平,余淳梅,苏玉平,等.中生代华北南缘带状岩石圈结构特征及其大陆形成演化意义.地球科学,2009,34(1):28~36
    [133]周红升,马昌前,等.大别造山带研子岗碱性岩体成因及其构造意义:锆石U-Pb年龄和地球化学制约.岩石学报,2009,25(5):1079~1091
    [134]周红升,马昌前,张超,等.华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类:年代学、地球化学及其启示.岩石学报,2008,24(1):49~64
    [135]周珂,叶会寿,毛景文,等.豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄.矿床地质,2009,28(2):170~184
    [136]周涛发,范裕,袁峰,等.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义,2008,中国科学(D辑),38(11):1342~1353
    [137]周涛发,宋明义,范裕,等.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义.岩石学报,2007,23(10):2379~2386
    [138]周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,2007,1~691
    [139]周作侠.湖北丰山洞岩体成因探讨.岩石学报,1986,2(1):59~70
    [140]朱光,谢成龙,向必伟,等.洪镇变质核杂岩的形成机制及其大地构造意义等.中国科学(D辑),2007,37(5):584~592
    [141]朱赖民,张国伟,郭波,等.东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景等.地质学报,2008,82(2):204~220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700