用户名: 密码: 验证码:
庐枞火山岩盆地电性结构及深部找矿方法试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
庐枞火山岩盆地是位于长江中下游成矿带中部的以铁、硫(铜)矿为主的大型矿集区,主要有玢岩型、斑岩型和层控-热液叠加改造型等矿床类型。论文包括以下内容:
     (1)覆盖庐枞火山岩盆地及邻区构造单元布置了5条大地电磁测深剖面,在完成野外数据采集、数据处理和二维反演的基础上,结合地质资料对火山岩盆地基底构造、内部构造、岩性界面、火山机构、深部次火山岩体和正长岩体的电性特征进行了分析研究;(2)选择位于庐枞盆地西北缘、郯庐断裂带内的沙溪斑岩型铜矿床为试验矿床,开展了AMT、CSAMT和TEM综合电磁法深部找矿试验,对比了各方法的一致性和应用效果,评估了各方法深部找矿的能力,并建立了沙溪铜矿石英闪长斑岩体3D电阻率模型。
     5条大地电磁测深(MT)剖面(共计500个测深点)覆盖大别造山带东缘、庐枞火山岩盆地、孔城沉积红盆、郯庐断裂带、长江断陷带等构造单元。大地电磁测深数据阻抗张量分解结果表明:庐枞盆地电性结构具有二维结构特征,电性主轴方位为北东向,但是盆地深部三维结构特明显,深部构造复杂。通过对5条MT剖面数据进行统一处理(远参考技术处理、功率谱挑选和静位移校正等)和二维非线性共轭梯度(NLCG)反演获得了10km深度范围的二维电性结构模型图。研究结果表明:庐枞火山岩盆地整体呈高阻特征,厚度约6km;盆地之下-8km至-10km范围区域存在低阻异常区,可能是热液活动、流体及水-岩相互作用引起的;震旦纪-三叠纪(Z-T)的褶皱基底,呈致密块状,中高阻特征。孔城沉积红盆低阻特征明显,深部基底呈现向南东叠覆的高阻块状特征,可能是由挤压推覆作用形成。长江断陷带具上部低阻-深部中阻的两层电性结构,在其深部可能存在一个向北西的三叠纪的逆冲断层。矿床产出部位与深部高阻体或低阻断裂带密切相关,深部高阻体可能是沿次级断裂上升的岩浆热液形成的次火山岩或正长岩体。
     在收集、整理和分析沙溪斑岩铜矿床已有地质、地球物理资料的基础上,建立了沙溪斑岩铜矿地质和地球物理模型,并对AMT和CSAMT方法进行了数值模拟,从理论上对比了两种方法的探测能力。随后,在矿区开展了AMT、CSAMT和TEM方法野外采集参数试验,分析了各参数选取对数据采集结果的影响,选择矿区已有勘探线进行了三种方法的探测试验。试验结果表明:AMT、CSAMT和TEM三种方法对岩体均反映为高阻异常。多条AMT剖面的电性结构相差较大,高阻异常呈直立柱状或是岩钟状,可能与地层大倾角和高电阻率相关。三条CSAMT剖面反映的电性结构一致性较好,能够清晰的反映容矿空间和控矿构造的特征。TEM法探测结构很难区分岩体和围岩,但对于低阻体反映灵敏。因此,利用AMT方法高效、易操作的特点在矿区开展扫面探测工作,圈定有利矿化地段,进而选择探测精度精度较高的CSAMT法在圈定的重要异常区开展精细探测不失为一种可行的勘查策略。最后,利用AMT探测的数据,通过块克里金3D插值方法对电阻率值在-1000m深度范围内进行插值,以电阻率800Ω·m为石英闪长斑岩体电阻率值下限值,利用三维可视化技术圈定出了深部石英闪长斑岩体的空间分布特征,建立了岩体的3D电阻率模型,为矿区及外围深部找矿提供了参考。
Lujiang-Zongyang volcanic basin is located in the Middle-lower Yangtze metallogenic belt of eastern China。It is a large ore-concentrated areas mainly of iron, sulfur (copper), including the main metallogenic types of porphyrite iron deposits,porphyry copper deposits and strata-bound and hydrothermal superimposed deformation type,and so on.The contents of the dissertation specifically include as follow:the first part, five magnetotelluric sounding profiles were arranged covering the volcanic basin and tectonic units in neighboring area. After the collection of field data, data processing and2D inversion, the basement structure of volcanic basin, internal structure, interface of lithology, volcanic apparatus, the spatial distribution of subvolcanic rock and syenite mass were analysised and researched combining with the geological data; the secend part, we selected the Shaxi porphyry copper deposit which is located in the northwestern margin of basin,within Tanlu fault zone as test deposit, carried out the deep prospecting experiment using the comprehensive electromagnetic method of AMT, CSAMT and TEM method.The application effects and the consistency of each method had been studied and compared, the detection ability of three method to deep porphyry copper deposits has been evaluated and the3D resistivity model of the quartz diorite porphyry body has been built.
     The five magnetotelluric sounding profiles(sum to500sounding points) covered the eastern margin of the Dabie orogenic belt, the Lujiang-Zongyang volcanic basin, Kongcheng red sedimentary basin, Tan-Lu fault zone and Yangtze fault depression. As the decomposition of the magnetotelluric impedance tensor show the underground electrical structure of Lujiang-Zongyang volcanic basin is approximately a two-dimensional structure, but the deep structure of basin has the three-dimensional characteristics, the electrical axis is nearly east-north direction indicating the main structure of research area is E-N direction. After the data processing (including the remote reference processing, power spectrum selecting and static shift correction) and the2D NLGG inversion of five profiles, the2D electric structure images about10km depths are obtained. The results show that the Lujiang-Zongyang volcanic basin has the characteristic of high resistivity and the thickness of ca.6km, the abnormality of low resistivity in the depths of-8km to-10km may be caused by the hydrothermal activity, fluid and water-rock interaction, the deformation bottom layer from Triassic to Sinian occurs as dense and compact masses with middle-high resistivity value. Kongcheng red sedimentary basin has the characteristic of low resistivity, the bottom layer shows the high resistivity and superimposition,dip direction is southeast, may be the result of extrusion and overthrusting.Within the depths of10km, the Yangtze fault depression can be divided into two electrical layer, top layer is the high conductivity layer, the deep layer is low conductivity layer. A Triassic thrust fault, in NW direction may be in the deep of the Yangtze fault depression. Deposit position have perfect correspondence to the deep high resistance body or fault zone.The deep high resistance body may be the subvolcanic rock and syenite,which formed by the magmatic hydrothermal fluids.
     The geophysical and geological model for Shaxi porphyry copper deposit was established according to the geological data and exploration profiles. In order to compare the detection ability of AMT and CSAMT in theoretically, the numerical simulations were proceeded. Based on the acquisition parameter experiment and analysis influence of selection parameter for data acquisition, the detection experiment of three method were arranged in known geological exploration profiles.The test results show that the ore body has the characteristic of high resistivity in the resistivity section of AMT,CSAMT and TEM. There are obvious differences of electric structure in different AMT resistivity section, the high resistance anomaly takes the shape of kupola or columnar, may be related to the attitude of stratum and high resistivity. The electrical structure of CSAMT profiles have better consistency, can clearly reflect the host space and ore-controlling structure. The ability of TEM to distinguish between surrounding rock and the rock mass is poor, but more sensitive to low resistance body. All the analysis shows that the AMT method can be used in the regional exploration to delineated the favorable mineralized section, then the fine detection by CSAMT method can be used.
     At last, based on the AMT data, using3D block Kriging interpolation method to constructed a3D interpolation of the resistivity value in the depth of-1000m, finally a3D resistivity model had been constructed to display the distribution and the shape of deep quartz diorite porphyry, which provides a reference for ore prospecting of Shaxi porphyry copper deposit and its surroundings.
引文
Adepelumi AA, Fontes SL, Schnegg PA, Flexor JM.2005.An integrated magnetotelluric and aeromagnetic investigation of the Serra da Cangalha impact crater, Brazil. Physics of the Earth and Planetary Interiors,(150):159-181.
    Aizawa K, Kanda W, Ogawa Y, Iguchi M, Yokoo A, Yakiwara H, Sugano T.2011.Temporal changes in electrical resistivity at Sakurajima volcano from continuous magnetotelluric observations.Journal of Volcanology and Geothermal Research,199(1-2):165-175.
    Bastani M, Savvaidis A, Pedersen LB, Kalscheuer T.2011.CSRMT measurements in the frequency range of 1-250 kHz to map a normal fault in the Volvi basin, Greece. Journal of Applied Geophysics. (75):180-195.
    Batalev VY, Bataleva EA, Egorova VV, Matyukov VE, Rybin AK.2011.The lithospheric structure of the Central and Southern Tien Shan:MTS data correlated with petrology and laboratory studies of lower-crust and upper-mantle xenoliths.Russian Geology and Geophysics, (52):1592-1599.
    Bostick FX.1977.A simple almost exact method of magnetotelluric analysis:Proc. workshop on electrical methods in geothermal exploration.U.S. Geol. Surv.,174-183.
    Cagniard L.1953.Basic theory of the magnetotelluric method of geophysical prospecting.Geophysies,18:605-631.
    Constable SC, Parker RL, Constable CG.1987.Occam's inversion:a practical algorithm for generating smooth models from EM sounding data. Geophysics,52 (3):289-300.
    Cross KC, Daly SJ, Flint RB.1993.Mineralisation associated with the GRV and Hiltaba suite granitoids.Geological Survey of South Australia Bulletin,(54):132-139.
    Diaz D, Brasse H, Ticona F.2012.Conductivity distribution beneath Lascar volcano (Northern Chile) and the Puna, inferred from magnetotelluric data. Journal of Volcanology and Geothermal Research,21-29.
    Egbert G, Booker JR.1986.Robust estimation of geomagnetic transfer functions,Geophys. J. R. Astr. Soc,87:173-194.
    Farquharson CG, Oldenburg DW.2004.A comparison of automatic techniques for estimating the regularization parameter in non-linear inversion problems.Geophys.J.Int,156:411-425.
    Fletcher R,Reeves CM.1964.Function minimization by conjugate gradients.Computer J, (7):149-154.
    Goldstein MA,Strangway DW.1975.Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics,(40):669-683.
    Goldstein MA.1971.Magnetotelluric experiments employing an artificial dipole source. Ph.D. thesis. University of Toronto,Ontario,Canada
    Grant N, Rodney K.2008.A progressive geophysical exploration strategy at the Shea Creek uranium deposi,The Leading Edge,52-63.
    Groot-Hedlin CD, Constable SC.1990.Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data.Geophysics,55 (12):1613-1624.
    Habibian BD, Brasse H, Oskooi B,Ernst T, Sokolova E, Varentsov I,EMTESZ Working Group.2010.The conductivity structure across the Trans-European Suture Zone frommagnetotelluric and magnetovariational data modeling. Physics of the Earth and Planetary Interiors,(183):377-386.
    Haynes DW, Cross KC, Bills RT, Reed MH.1995.Olympic Dam ore genesis:A fluid mixing model. Economic Geology,(90):281-307.
    Heinson GS, Direen NG, Gill RM.2006.Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit,southern Australia.Geological Society of America,34(7):573-576.
    Hestenes MR,Stiefel E.1952,Methods of conjugate gradients for solving linear systems.Journal of Research of National Bureau of Standarde,49(6):409-436.
    Ingham M.2005.Deep electrical structure of the Central Volcanic Region and Taupo Volcanic Zone, New Zealand. Earth Planets Space,(57):591-603.
    John C, Ingham M, Locke CA, Bibby H.2009.Subsurface structure across the axis of the Tongariro Volcanic Centre, New Zealand, Journal of Volcanology and Geothermal Research,(179):233-240.
    Johnson JP, McCulloch MT.1995.Sources of mineralizing fluids for the Olympic dam deposit(South Australia):Sm-Nd isotopic constraints.Chemical Geology,(121):177-199.
    Jones AG, Ferguson IJ, Chave AD, Evans RL, Mcneice GW.2001.Electric lithosphere of the Slave craton. Geology,29(2001):423-426.
    Kagiyama T, Utada H,Yamamoto T.1999.Magma ascent beneath Unzen Volcano, SW Japan, deduced from the electrical resistivity structure. Journal of Volcanology and Geothermal Research, (89):35-42.
    Kaya C.2010.Deep crustal structure of northwestern part of Turkey. Tectonophysics, (489): 227-239.
    Mackie RL,Madden TR.Conjugate gradient relaxation solutions for three-dimensional magnetotelluricmodeling[J].Geophysics,1993,58:1052~1057
    Madden TR, Mackie RL.1989.Three-Dimensional Magnetotelluric Modeling and Inversion[J].Proc. IEEE,77(2):318-333.
    Maier R, Heinson G, Thiel S, Selway K, Gill R, Scroggs M.2007.A 3D lithospheric electrical resistivity model of the Gawler Craton, Southern Australia. Applied Earth Science (Trans. Inst. Min. Metall. B),116(1):13-21.
    Manoj C, Nagarajan N.2003.The application of artificial neural networks to magnetotelluric time-series analysis.Geophys.J.Int,153(2):409-423.
    Martyn U,Oscar CE, Belmonte S,Arzate J, Bedrosian P.2002.Crustal structure of the Chicxulub Impact crater imaged with magnetotelluric exploration. Geophysical Research Letters,29(16):1-4.
    Moorkamp M, Jones AG, Rao CK.2006.Processing magnetotelluric time series with adaptive filters and neural networks.18th EM Induction Workshop, El Vendrell,Spain.
    Muller A, Haak V.2004.3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java):integrating magnetotellurics, induction vectors and the effects of steep topography. Journal of Volcanology and Geothermal Research,(138):205-222.
    Muller MR, Jones AG, Evans RL, Grutter HS, Hatton C, Garcia X, Hamilton MP, Miensopust MP, Cole P, Ngwisanyi T, Hutchins D, Fourie CJ, Jelsma HA, Evans SF, Aravanis T, Pettit W, Webb SJ, Wasborg J and The SAMTEX Team.2009, Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa:Constraints from broadband magnetotellurics. Lithos,(112S):93-105.
    Nobuo Matsushima,Hiromitsu Oshima,Yasuo Ogawa,Shinichi Takakura,Hideyuki Satoh,Mitsuru Utsugi,Yasunori Nishida.2001.Magma prospecting in Usu volcano, Hokkaido, Japan, using magnetotelluric soundings. Journal of Volcanology and Geothermal Research, (109):263-277.
    Patro PK, Harinarayana T.2009.Deep geoelectric structure of the Sikkim Himalayas (NE India) usingmagnetotelluric studies. Physics of the Earth and Planetary Interiors, (173):171-176.
    Patro PK, Sarma SVS.2009. Lithospheric electrical imaging of the Deccan trap covered region of western India. Journal of geophyscal research, (114):1-16.
    Popova IV, Ogawa Y.2007.Application of a modified Hopfield neural network to noisy magnetotelluric data.Izvestiya Physics of the Solid Earth,43(3):217-224.
    Portniaguine O, Zhdanov MS.1999.Focusing geophysical inversion images.Geophysics,64 (3):874-887.
    Pospeeva EV.2008. Application of Medium-Scale Magnetotelluric Sounding to Identify Deep Criteria for Promising Areas for Kimberlite Exploration.Russian Journal of Pacific Geology,2(3):205-217.
    Risk GF, Bibby HM, Caldwell TG.1999.Resistivity structure of the central Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research,(90):163-181.
    Rodi W, Mackie RL.2001.Nonlinear conjugate gradient s algorithm for 2D magnetotelluric inversion.Geophysics,66 (1):174-187.
    Sakkas V, Meju MA, Khan MA, Haak V, Simpson F.2002.Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field,Kenya. Tectonophysics,(346):169-185.
    Shaw R, Srivastava S.2007.Particle swarm optimization:Anew tool to invert geophysical data.Geophysics,72(2):75-83.
    Shimelevich MI, Obornev MA, Gavryushov S.2007.Rapid neuronet inversion of 2D magnetotelluric data for monitori ng of geoelectrical section parameters.Annals of geophysics,50(1):105-109.
    Smith JT, Booker JR.1996.Rapid inversion of two and three dimensional magnetotelluric data.Geophys Res,96(B3):3905-3922.
    Spichak V, Popova 1.2002. Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters.Geophys,142(1):15-26.
    Spichak VV, Menvielle M, Roussignol M.1999.Three-Dimensional Inversion of the Magnetotelluric Fields Using Bayesian Statistics. In 3D Electromagnetics, Ed. by M. Oristaglio and B. Spies (SEG Publ. (GD7), Tulsa,406-417.
    Spichak VV, Zakharova OK, Rybin AK.2011.Methodology of the indirect temperature estimation basing on magnetotelluric data:Northern Tien Shan case study. Journal of Applied Geophysics, (73):164-173.
    Tarits P, Jouanne V, Menvielle M.1994.Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem.Geophysical Journal International, 119(2):353-368.
    Terra EF L, Menezes PT.L.2012.Audiomagnetotelluric 3D imaging of the Regis kimberlite pipe, Minas Gerais, Brazil. Journal of Applied Geophysics.(77):30-38.
    Tikhonov A.1950.On determining electrieal characteristics of the deep layers of the earth's crust.In:295-297.
    Zhdanov MS, Fang S.1996.3D quasi-linear electromagnetic inversion.Radio Sci,31 (4):741-754.
    Zhdanov MS,Fang S.1996.Quasi-linear approximation in 3D electromagnetic modeling.Geophysics,61(3):64-665.
    常印佛,董树文,黄德志.1996.论中一下扬子“一盖多底”格局与演化.火山地质与矿产,17(1-2):1-14.
    常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社,134-147.
    曹毅,杜杨松,蔡春麟,秦新龙,李顺庭,向文帅.2008,安徽庐枞地区中生代A型花岗岩类及其岩石包体在碰撞后岩浆演化过程中的意义.高校地质学报,14(4):565-576.
    陈沪生,张永鸿.1999.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社.1-223.
    陈沪生,周雪清.1988.下扬子地区HQ-13线地球物-地质综合解释剖面.地质论评,34(5):483-484.
    陈沪生.1988.下扬子地区HQ-13线的综合地球物理调查及其地质意义.石油与天然气地质,9(3):211-221.
    陈乐寿,刘任,王天生.1989.大地电磁测深资料处理与解释.北京:石油工业出版社,1-224.
    陈乐寿,王光愕.1990.大地电磁测深法.北京:地质出版社,1-309.
    邓晋福,刘翠,冯艳芳,戴圣潜,杜建国,吴明安,童劲松,周肃,苏尚国,吴宗絮,姚孝德,吴雪峰.2011.安徽省庐枞与滁州盆地火山岩岩石学特征与Fe-Cu成矿的关系.地质学报,85(5):626-635.
    丁鹏飞,成兆元.1984.庐枞地区1:5万综合物化探调查的初步应用.物探与化探,8(1):41-53.
    董树文,1991.长江中下游铁铜矿带成因之构造分析.中国地质科学院院报,23:43-55.
    董树文,方景爽,李勇,朱洪吉,Schoeider W.,BreitkreuzH.,Mattern F.1994下扬子中三叠世一中侏罗世沉积相与印支运动.地质论评,40(2):111-119.
    董树文,高锐,吕庆田,张季生,张荣华,薛怀民,吴才来,卢占武,马立成.2009.庐江-枞阳矿集区深部结构与成矿.地球学报,30(3):279-284.
    董树文,马立成,刘刚,薛怀民,施炜,李建华.2011.论长江中下游成矿动力学.地质学报,85(5):612-625.
    董树文,吴宣志,高锐,卢德源,李英康,何义权,汤加富,曹奋扬,侯明金,黄得志.1998.大别造山带地壳速度结构与动力学.地球物理学报,41(3):349-361.
    董树文,项怀顺,高锐,吕庆田,李建设,战双庆,卢占武,马立成.2010.长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用.岩石学报,26(9):2529-2542.
    段超,周涛发,范裕,袁峰,丁铭,尚世贵,张乐骏.2009.庐枞盆地龙桥铁矿床中菱铁矿的地质特征和成因意义.矿床地质,28(5):643-652.
    高锐,卢占武,刘金凯,匡朝阳,酆少英,李朋武,张季生,王海燕.2010.庐-枞金属矿集区深地震反射剖面解释结果-揭露地壳精细结构,追踪成矿深部过程.岩石学报,26(9):2543-2552.
    郭新峰,张元丑,程庆云,高锐,潘渝.1990.青藏高原亚东-格尔木地学断面岩石圈电性研究.中国地质科学院院报,21:191-202.
    胡祖志,胡祥云,吴文鹏,桑卓.2005.大地电磁二维反演方法对比研究.煤田地质与勘探,33(1):64-68.
    胡祖志,胡祥云.2005.大地电磁三维反演方法综述.地球物理学进展,20(1):214-220.
    宦鹏德.1980.庐枞地区“破火山口”重力场特征.地质与勘探,(2):47-50.
    宦鹏德.1984.发挥物化探方法在区调工作中的作用---庐枞地区1:5万物化探工作成果简介.中国地质,(7):4-8.
    黄清涛.1984.论罗河铁矿床地质特征及矿床成因.矿床地质,3(4):9-18.
    黄文斌,张荣华,胡书敏.2010.安徽庐枞盆地罗河铁矿水岩反应化学动力学实验.地质通报质,29(10):1479-1585.
    金胜,叶高峰,魏文博,邓明,景建恩.2007.青藏高原西缘壳幔电性结构与断裂构造:札达-泉水湖剖面大地电磁探测提供的依据.地球科学-中国地质大学学报,32(4):474-480.
    孔祥儒,王谦身,熊绍柏.1996.西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D辑),26(4):308-315.
    李洪英,张荣华,胡书敏.2009.庐枞盆地正长岩类地球化学特征及成因探讨.吉林大学学报(地球科学版),39(5):839-848.
    李中坚.1982.安徽庐枞地区构造体系与铁矿分布关系的研究.中国地质科学院地质力学研究所所刊,(3):74-91.
    罗红明,王家映,师学明,朱培明.2007.量子路径积分算法及其在大地电磁反演中的应用.地球物理学报,50(4):1268-1276.
    吕庆田,韩立国,严加永,廉玉广,史大年,颜廷杰.2010.庐枞矿集区火山气液型铁、硫矿床及控矿构造的发射地震成像.岩石学报,26(9):2598-2612.
    吕庆田,侯增谦,杨竹森,史大年.2004.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束.中国科学(D辑:地球科学),34(9):783-794.
    马立成,董树文,仲玉斌,张千明,高昌生.2011.长江中下游庐江-枞阳矿集区龙桥铁矿成矿时代研究.地质学报,85(7):1206-1214.
    孟贵祥,兰险.2006.EH-4电导率成像系统的特点及其在金属矿勘探中的应用.矿床地质,25(1):36-42.
    牛之琏.2007.时间域电磁法原理.长沙:中南大学出版社.1-296.
    潘国强,董恩耀.1983.庐枞火山岩区火山构造及其控矿作用.中国区域地质,(7):31-37.
    邱检生,任启江,徐兆文,张重泽.1991.安徽沙溪斑岩铜(金)矿床蚀变岩地质地球化学特征研究.南京大学学报,27(2):344-358.
    邱检生,任启江.1991.安徽沙溪斑岩铜(金)矿床含矿裂隙的空间分布特征及矿床成因.桂林冶金地质学院学报,11(4):369-376.
    任启江,邱检生,徐兆文,张重泽,方长泉,杨荣勇.1991.安徽沙溪斑岩铜(金)矿床矿化小岩体的形成条件.矿床地质,10(3):232-241.
    任启江,王德滋,刘孝善,杨荣勇,孙冶东,邱检生.1991.安徽庐枞地区巴家滩和矾山-石马滩岩体的时代和岩浆物质来源.科学通报,(10):771-773.
    任启江,王德滋,徐兆文,董火根,潘龙泉,杨荣勇,方长泉,胡进安.1993.安徽庐枞火山-构造洼地的形成、演化及成矿.地质学报,67(2):131-144.
    沈远超,申萍,刘铁兵,李光明,曾庆栋.2008.EH4在危机矿山隐伏金矿体定位预测中的应用研究.地球物理学进展,23(1):559-567.
    师学明,王家映,张胜业,胡祥云.2000.多尺度逐次逼近遗传算法反演大地电磁资料.地球物理学报,42(1):122-129.
    师学明,王家映.1998.一维层状介质大地电磁模拟退火反演法.地球科学,23(5):542-545.
    师学明,肖敏,范建柯,杨国世,张旭辉.2009.大地电磁阻尼粒子群优化反演法研究.地球物理学报,52(4):1114-1120.
    石应骏,刘国栋.1985.大地电磁测深法教程.北京:地质出版社,1-271.
    孙洁,晋光文,白登海,王立凤.2003.青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学(D辑),33(增刊):173-179.
    孙立广,杨晓勇,王奎仁,张兆峰,杨学明.1998.安徽沙溪斑岩铜矿床的构造岩石屏蔽控矿作用.大地构造与成矿学,22(3):234-241.
    谭捍东,魏文博,Martyn Unsworth,邓明,金胜John Booker,Alan Jones.2004西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究.地球物理学报,47(4):685-690.
    谭捍东,余钦范,John Booker,魏文博.2003.大地电磁法三维快速松弛反演.地球物理学报,46(6):850-854.
    汤井田,何继善.2005.可控源音频大地电磁法及其应用.长沙:中南大学出版社.1-358.
    滕吉文.2003.地球深部物质和能量交换的动力学过程与矿产资源的形成.大地构造与成矿学,27(1):3-21.
    王大勇,李桐林,高远,方含珍,赵广茂.2009CSAMT法和TEM法在铜陵龙虎山地区隐伏矿勘探中德应用.吉林大学学报(地球科学版),39(6):1134-1140.
    王家映,Douglas Oldenburg,Shlomo Levy.1985大地电磁测深的拟地震解释法.石油地球物理勘探,20(1):66-79.
    王中杰.1982.庐枞火山沉陷.中国地质科学院南京地质矿产研究所所刊,(3):16-36.
    魏文博,陈乐寿,谭捍东,邓明,胡建德,金胜.1997.西藏高原大地电磁深探测-亚东-巴木错沿线地区壳幔电性结构.现代地质,11(3):366-374.
    吴明安,汪青松,郑光文,蔡晓兵,杨世学,狄勤松.2011.安徽庐江泥河矿床的发现及意义.地质学报,85(5):802-809.
    吴长年,任启江,阮惠础,胡文瑄.1993.安徽庐枞盆地何家小岭黄铁矿床特征和成因研究.大地构造与成矿学,17(3):229-237.
    徐世浙,刘斌.1995.大地电磁一维连续介质反演的曲线对比法.地球物理学报,38(5):676-682.
    徐文艺,徐兆文,顾连兴,任启江,傅斌,牛翠祎.1999.安徽沙溪斑岩铜(金)矿床成岩成矿热历史探讨,45(4):361-367.
    徐新学.2011.大地电磁测深法在深部矿产资源调查中的应用.物探与化探,35(1):17-19.
    徐义贤,王家映.1998.二维MT多尺度反演中的自适应网格算法.石油物探,37(4):112-121.
    杨晓勇,王奎仁,孙立广,杨学明,黄德志,李英贤,石昆发.2002.沙溪斑岩型铜(金)矿床成矿地球化学研究及靶区圈定.大地构造与成矿学,26(3):263-270.
    叶高峰,金胜,魏文博,Martyn Unsworth.2007西藏高原中南部地壳与上地幔导电性结构.地 球科学-中国地质大学学报,32(4):491-498.
    于学元,白正华.1981.庐枞地区安粗岩系.地球化学,(01):57-65.
    袁峰,周涛发,范裕,钱存超,张乐骏,段超,唐敏慧.2008.庐枞盆地中生代火山岩的起源、演化及形成背景.岩石学报,24(8):1691-1702.
    张季生,高锐,李秋生,管烨,彭聪,李朋武,卢占武,侯贺晟.2010.庐枞火山盆地及其外围重、磁场特征.岩石学报,26(9):2613-2622.
    张荣华,张雪彤,胡书敏.2010.庐枞火山盆地深部岩石与成矿过程.岩石学报,26(9):2665-2680.
    周涛发,范裕,袁峰,陆三明,尚世贵,David Cooke,Sebastien Meffre,赵国春,2008,安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义.中国科学(D辑:地球科学,38(11):1342-1353.
    周涛发,范裕,袁峰,宋传中,张乐骏,钱存超,陆三明,David RC.2010庐枞盆地侵入岩的时空格架及其对成矿的制约.岩石学报,26(09):2694-2714.
    周涛发,范裕,袁峰,张乐骏,马良,钱兵,谢杰.2011.长江中下游成矿带火山岩盆地的成岩成矿作用.地质学报,85(5):712-729.
    周涛发,宋明义,范裕,袁峰,刘珺,吴明安,钱存超,陆三明.2007.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义.岩石学报,23(10):2379-2386.
    朱仁学,胡祥云.1995.格尔木-额济纳旗地学断面岩石圈电性结构的研究.地球物理学报,38(增刊):46-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700