用户名: 密码: 验证码:
表面纳米多孔结构制备及其强化沸腾传热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸腾传热技术被广泛应用于热能动力、核电、地热能、太阳能、石油化工、食品及低温工程等传统工业领域以及空间技术和微电子散热等高新技术领域。强化沸腾关键技术的突破可有效提高能源利用率和解决狭小空间内高热流密度的散热难题。纳米多孔铜表面具有高比表面积、优异的热导率、良好的浸润性以及极高的潜在汽泡核心密度,是极具前景的强化沸腾传热表面。本文提出一种基于热浸镀锌/脱合金的表面纳米多孔铜的简易制备方法,对该表面多孔结构与强化沸腾传热应用相关的关键物化特性进行了系统分析,并通过饱和池内沸腾实验研究了表面纳米多孔铜结构的强化沸腾传热性能和作用机理。主要研究内容如下:
     1.热浸镀锌及镀层组分控制
     采用热浸镀锌作为铜基体表面合金化的方法,以满足Cu/Zn脱合金体系对前驱体的组分要求为目标,利用热力学平衡相图和反应扩散理论作为指导对热浸镀锌工艺参数进行了优化。借助金相、SEM等表征手段对热浸镀形成的Cu-Zn化合物相层的组织形貌和生长规律进行了分析,发现在热浸镀锌铜块样品表面形成的镀层存在明显的相界面,表面热浸镀锌过程中各相层的生长受扩散控制。对镀层进行XRD分析发现γ相(Cu5Zn8)和β′相(CuZn)是镀层的主要组成,且γ相是镀层的主体。
     2.表面纳米多孔铜结构的脱合金制备
     以铜基热浸镀锌形成的表面Cu-Zn合金层作为研究对象,对该多相合金体系的脱合金过程进行了系统研究,讨论了外加电势、腐蚀时间、电解质溶液及浓度等脱合金条件对脱合金成形孔径结构和微裂纹的影响。Cu-Zn合金镀层在碱性脱合金溶液环境可获得孔径较均一的纳米多孔铜结构,而高于10wt.%的盐酸环境会破坏多孔铜结构。电化学腐蚀较化学腐蚀具有更高的脱合金速率,然而也会加剧裂纹的产生。对镀层进行了线性扫描伏安分析,通过扫描电势窗内氧化峰的分布情况可推断镀层的主要组分γ-CuZn和β'-CuZn都可参与选择性溶解的脱合金过程。
     3. NPC水热环境稳定性及孔径尺度效应
     以熔炼法制备的Cu0.4Mn0.6作为脱合金前驱体,分别通过电化学和自由腐蚀脱合金方法制备了孔径均一的纳米多孔铜材料(NPC)。通过沸水实验研究了纳米多孔铜材料在水热工作环境中的稳定性及孔径演化规律。采用SEM和EDS表征手段,对纳米多孔铜的孔径粗化规律和化学稳定性进行分析。研究表明,NPC在水热环境下的粗化过程由表面扩散机理控制,孔径结构的稳定性具有明显的尺度效应。另外,采用接触角测量仪和红外成像技术研究了孔径变化对多孔材料表面浸润性和毛细现象的影响。
     4.纳米多孔表面强化沸腾传热性能研究
     通过可视化饱和池内沸腾实验研究了热浸镀锌/脱合金工艺(HDGD)制备的纳米多孔铜表面(NPCS)与无强化结构表面(US)的沸腾传热性能差异,并通过表面物化性能表征结果和汽泡动力学现象分析了纳米多孔金属表面的强化沸腾传热机理。由于加热壁面浸润性的改善、汽化核心密度的提高和表面捕获载气量的增加等因素,纳米多孔铜表面展示了显著的沸腾强化作用。另外,纳米多孔表面与光滑表面在饱和池内核沸腾实验中的汽泡动力学特征有显著的差异,纳米多孔表面的汽泡脱离直径更小,脱离频率更高。文中将实验结果与相关文献报道的实验数据进行了对比分析,讨论了壁面热物理性质对核态沸腾传热性能的影响。
Boiling heat transfer technology is widely used in traditional industrial areas, likethermal power, nuclear engineering, solar energy, chemical, food engineering and cryogenicengineering, as well as space technology and microelectronics cooling. The development ofboiling enhancement technology can improve heat transfer efficiency and provide a solutionfor the heat dispersing problem in small space with high heat flux. The nanoporous coppersurface with high specific surface area, excellent thermal conductivity, good wettability aswell as a high density of potential bubble nucleate sites, is a promising heating wall forenhancing boiling heat transfer. In this thesis, a simple method which combined hot-dipgalvanized and dealloying was proposed for the fabrication of nanoporous copper surface.The key physical and chemical characteristics related to boiling heat transfer applications ofthe porous surface were analyzed. Finally, the enhancement of boiling heat transferperformance of the nanoporous copper surface was studied. The main contents of this thesisinclude:
     1. Hot-dip galvanizing and component control of the coating
     Hot-dip galvanizing was selected for the surface alloying on copper substrate. With theobjective of getting a Cu/Zn layer which meets the component requirement for dealloying, theoperation parameters of the hot-dipping process were optimized based on the thermodynamicequilibrium phase diagram and reaction-diffusion theory. The microstructure of the coatinglayer and the growth pattern of Cu-Zn intermetallic compounds were analyzed by means ofmetallography and SEM. Two obvious phase interfaces were found in the coating layer. Thegrowth rates of the phase layers are different, and are all controlled by diffusion. The XRDanalysis indicates γ-CuZn and β′-CuZn are the main components of the coating layer.
     2. Fabrication of nanoporous copper surface by dealloying
     The dealloying process of the multiphase Cu-Zn alloy layer formatted by hot-dipgalvanizing was systematically studied. The effects of electrolytes, the concentration ofelectrolyte solution, corrosion time and the anodic potential employed in dealloying on theformation of nanoporous structure and cracks were discussed. Homogeneous nanoporous copper structure can be obtained by free corrosion in an alkaline environment. It was foundthat nanoporous copper would be destroyed in a hydrochloric acid environment beyond10wt.%in concentration. A higher dealloying rate can be obtained by using electrochemical corrosioncompared to that of chemical corrosion, however, more cracks on the dealloyed surface.According to the linear sweep voltammetry analysis, the γ-CuZn and β'-CuZn phases whichmainly compose the coating layer can be selectively dissolved during the dealloying process.
     3. Stability of NPC in hydrothermal environment and scale effect of porosity
     Cu0.4Mn0.6was prepared by a process involved melting and solution treatment. NPCmaterials with uniform porosity were obtained by electrochemical and free dealloying,respectively. The stability and evolution of the nanoporous-copper structure in saturatedboiling water were experimentally investigated by means of SEM. Meanwhile, the changes inchemical composition of the nanoporous materials before and after boiled were analyzed byEDS. The NPC structure shows excellent chemical stability, however, keeps coarsening in thehydrothermal environment. The coarsening process shows high dependence on porosity scale,and is controlled by the surface diffusion mechanism. In addition, the contact anglemeasurement and infrared imaging technology were employed to reveal the changes insurface wettability and capillarity resulted from the scale effect of the porous structures.
     4. Boiling heat transfer performance on the nanoporous copper surface
     Saturated pool boiling experiments were conducted on a visualization platform. Thenucleate boiling heat transfer performance of nanoporous copper surface prepared by HDGDprocess was investigated compared to that of unstructured surface. The mechanism of theenhancement of boiling heat transfer was discussed based on the physical and chemicalproperties of the nanoporous surface and the observations of bubble dynamics phenomena.The improvement of wettability, higher nucleation sites density, and more entrapped gasvolume of the nanoporous surface contribute to the significant enhancement of boiling heattransfer. Furthermore, the bubble kinetic characteristics on the nanoporous copper surface andthe smooth surface show significant differences in the saturated pool-boiling tests. Bubbleswith smaller departure diameter and higher departure frequency were observed on nanoporous surface. The experimental data was compared with the reported results, and the effect ofthermal properties of the heating wall on the boiling heat transfer performance was discussed.
引文
[1] Frank P. Incropera, DeWitt D.P. Fundamentals of Heat and Mass Transfer [M].6th ed.:John Wiley\&Sons,2006.
    [2] Schrage R.W. A theoretical study of interphase mass transfer [D]. New York;Columbia University,1953.
    [3] Rosenhow W.M. A method of correlating heat transfer data for surface boiling ofliquids [J]. Trans ASME Journal of Heat Transfer,1951,74:969-976.
    [4] Gose E.E., Peterson E.E., Acrivos A. On the rate of heat transfer in liquids with gasinjection through the boundary layer [J]. Journal of Applied Physics,1957,28(12):1509.
    [5] Hirata M., Nishiwaki N. Skin friction and heat transfer for liquid flow over a porouswall with gas injection [J]. International Journal of Heat and Mass Transfer,1963,6:941-949.
    [6] Sims G.E., Akturk U., Evans-Lutterodt K.O. Simulation of pool boiling heat transferby gas injection at the interface [J]. International Journal of Heat and Mass Transfer,1963,6:531.
    [7] Mixon F.O.J., Chon W.Y., Beatty K.O.J. The effect of electrolytic gas evolution onheat transfer [J]. Chem Eng Progr,1960,56(30):75-81.
    [8] Mixon F.O., Chon W.Y., Beatty K.O. The effect of electrolytic gas evolution on heattransfer [J]. Chem Eng Prog,1959,55:49-53.
    [9] Chubb L.W. Improvements relating to methods and apparatus for heating liquids[P].UK:100769,1916.
    [10] Asakawa Y. Promotion and retardation of heat transfer by electric fields [J]. Nature,1976,261(5557):220-221.
    [11] Nitzsche F., Zimcik D.G., Ryall T.G., et al. Effect of an electric field on boiling heattransfer [J]. AIAA Journal,1968,6(8):1456-1460.
    [12] Ogata J., Yabe A. Basic study on the enhancement of nucleate boiling heat transferby applying electric fields [J]. International Journal of Heat and Mass Transfer,1993,36(3):775-782.
    [13] Zhang H.B., Yan Y.Y., Zu Y.Q. Numerical modelling of EHD effects on heattransfer and bubble shapes of nucleate boiling [J]. Applied Mathematical Modelling,2010,34(3):626-638.
    [14] Karayiannis T.G., Xu Y. Electric Field Effect in Boiling Heat Transfer. Part B:Electrode Geometry [J]. Enhanced heat transfer,1998,5(4):231-247.
    [15] Kweon Y.C., Kim M.H. Experimental study on nucleate boiling enhancement andbubble dynamic behavior in saturated pool boiling using a nonuniform dc electric field [J].International Journal of Multiphase Flow,2000,26(8):1351-1368.
    [16] Wong S.W., Chon W.Y. Effects of ultrasonic vibrations on heat transfer to liquidsby natural convection and by boiling [J]. AIChE Journal,1969,15(2):281-288.
    [17] Kim H.Y., Kim Y.G., Kang B.H. Enhancement of natural convection and poolboiling heat transfer via ultrasonic vibration [J]. International Journal of Heat and MassTransfer,2004,47(12-13):2831-2840.
    [18] Zhou D.W., Liu D.Y., Hu X.G., et al. Effect of acoustic cavitation on boiling heattransfer [J]. Experimental Thermal and Fluid Science,2002,26(8):931-938.
    [19] Legay M., Gondrexon N., Person S.e.L., et al. Enhancement of Heat Transfer byUltrasound: Review and Recent Advances [J]. International Journal of Chemical Engineering,2011,2011:1-17.
    [20] Maxwell J.C. A treatise on electricity and magnetsim [M].2nd ed. Oxford:Clarendon Press,1881.
    [21] Choi S.U.S., Eastman J.A. Enhancing thermal conductivity of fluids withnanoparticles [J]. ASME FED,1995,231:99-103.
    [22] Das S.K., Choi S.U.S., Patel H.E. Heat Transfer in Nanofluids-A Review [M]. HeatTransfer Engineering. Taylor&Francis Ltd.2006:3-19.
    [23] Wang X.-Q., Mujumdar A.S. Heat transfer characteristics of nanofluids: a review[J]. International Journal of Thermal Sciences,2007,46(1):1-19.
    [24] Choi S.U.S., Zhang Z.G., Yu W., et al. Anomalous thermal conductivityenhancement in nanotube suspensions [J]. Applied Physics Letters,2001,79(14):2252-2254.
    [25] Eastman J.A., Choi S.U.S., Li S., et al. Anomalously increased effective thermalconductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].Applied Physics Letters,2001,78(6):718-720.
    [26] Das S.K., Putra N., Roetzel W. Pool boiling characteristics of nano-fluids [J].International Journal of Heat and Mass Transfer,2003,46(5):851-862.
    [27] Vassallo P., Kumar R., D'Amico S. Pool boiling heat transfer experiments insilica-water nano-fluids [J]. International Journal of Heat and Mass Transfer,2004,47(2):407-411.
    [28] You S.M., Kim J.H., Kim K.H. Effect of nanoparticles on critical heat flux of waterin pool boiling heat transfer [J]. Applied Physics Letters,2003,83(16):3374-3376.
    [29] Kim S.J., Bang I.C., Buongiorno J., et al. Surface wettability change during poolboiling of nanofluids and its effect on critical heat flux [J]. International Journal of Heat andMass Transfer,2007,50:4105-4116.
    [30] Coursey J.S., Kim J. Nanofluid boiling: The effect of surface wettability [J].International Journal of Heat and Fluid Flow,2008,29(6):1577-1585.
    [31] Kim H., Kim M. Experimental study of the characteristics and mechanism of poolboiling CHF enhancement using nanofluids [J]. Heat and Mass Transfer,2009,45(7):991-998.
    [32] M. Jakob, Fritz W.F. Versuche Uber den Verdampfungsvorgang [J]. Forschung imIngenieurwesen,1931,2(12):435-447.
    [33] Kurihara H.M., Myers J.E. The effects of superheat and surface roughness onboiling coefficients [J]. Aiche Journal,1960,6(1):83-91.
    [34] Griffith P., Wallis J.D. The Role of Surface Condition in Nucleate Boiling [J].Chemical Engineering Progress Symposium Series,1960,49(56):49-63.
    [35] Benjamin J.E., Westwater J.W. Bubble Growth in nucleate Boiling of a BinaryMixture [M]. International Developments in Heat Transfer. New York; ASME.1961:212-218.
    [36] Hsu Y.Y. On the size range of active nucleation cavities on a heating surface [J].Journal of Heat Transfer1962,84:207-216.
    [37] Webb R.L. The Evolution of Enhanced Surface Geometries for Nucleate Boiling [J].Heat Transfer Engineering,1981,2(3-4):46-69.
    [38] Anderson T.M., Mudawar I. Microelectronic cooling by enhanced pool boiling of adielecric fluorocarbon liquid [J]. Trans ASME, J Heat Transfer,1989,111:752-759.
    [39] Honda H., Takamatsu H., Wei J.J. Enhanced Boiling Heat Transfer from SiliconChips with Micro-Pin Fins Immersed in FC-72[J]. Journal of Enhanced Heat Transfer,2003,10(2):211-224.
    [40] Hwang U.P., Moran K.F. Boiling heat transfer of silicon integrated circuits chipmounted on a substrate [J]. ASME HTD,1981,20:53-59.
    [41] Kubo H., Takamatsuand H., Honda H. Effects of size and number density ofmicro-reentrant cavities on boiling heat transfer from a silicon chip immersed in degassed andgas-dissolved FC-72[J]. J Enhanc Heat Transfer,1999,6:151-160.
    [42] Nakayama W., Nakajima T., Ohashi S., et al. Modeling of temperature transient ofmicro-porous studs in boiling dielectric fluid after stepwise power application [J]. ASMEHTD,1989,111:17-23.
    [43] O'Connor J.P., You S.M. A Painting Technique to Enhance Pool Boiling HeatTransfer in Saturated FC-72[J]. Journal of Heat Transfer,1995,117(2):387-393.
    [44] Oktay S., Schmekenbecher A. Method for forming heat sinks on semiconductordevice chips[P]. US:3706127,1972.
    [45] Siedel S., Cioulachtjian S., Bonjour J. Experimental analysis of bubble growth,departure and interactions during pool boiling on artificial nucleation sites [J]. ExperimentalThermal and Fluid Science,2008,32(8):1504-1511.
    [46] Honda H., Wei J.J. Enhanced boiling heat transfer from electronic components byuse of surface microstructures [J]. Experimental Thermal and Fluid Science,2004,28:159-169.
    [47] Pioro I.L., Rohsenow W., Doerffer S.S. Nucleate pool-boiling heat transfer. I:review of parametric effects of boiling surface [J]. International Journal of Heat and MassTransfer,2004,47(23):5033-5044.
    [48]颜婷婷,张登松,施利毅.纳米结构材料的制备及应用进展[J].上海大学学报(自然科学版),2011,17(4):447-457.
    [49] Zhang J., Li C. Nanoporous metals: fabrication strategies and advancedelectrochemical applications in catalysis, sensing and energy systems [J]. Chem Soc Rev,2012,41:7016-7031.
    [50] White R.A., Weber J.N., White E.W. Replamineform: a new process for preparingporous ceramic, metal, and polymer prosthetic materials [J]. Science (New York, NY),1972,176(4037):922-924.
    [51] Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-stepreplication of honeycomb structures of anodic alumina [J]. Science,1995,268:1466-1468.
    [52] Velev O.D., Tessier P.M., Lenhoff A.M., et al. Materials: A class of porous metallicnanostructures [J]. Nature,1999,401(6753):548.
    [53] Stein A., Li F., Denny N.R. Morphological Control in Colloidal Crystal Templatingof Inverse Opals, Hierarchical Structures, and Shaped Particles[J]. Chemistry of Materials,2007,20(3):649-666.
    [54] Cassagne T.B., Flanagan W.F., Lichter B.D. On the failure mechanism ofchemically embrittled Cu3Au single crystals [J]. Metallurgical Transactions A,1986,17(4):703-710.
    [55] Swann P.R. Mechanism of corrosion tunneling with special reference to Cu3Au [J].Corrosion,1969,25(4):147-150.
    [56] Forty A.J. Corrosion micromorphology of noble metal alloys and depletion [J].Nature,1979,282:597-598.
    [57] Forty A.J., Durkin P. A micromorphological study of the dissolution of silver-goldalloys in nitric acid [M]. Philosophical Magazine A. Taylor&Francis.1980:295-318.
    [58] Sieradzki K., Newman R.C. Micro-and nano-porous metallic structures[P]. US:4977038,1990.
    [59] Newman R.C., Sieradzki K. Metallic corrosion [J]. Science,1994,263:1708-1709.
    [60] Jonah Erlebacher, Michael J. Aziz, Alain Karma, et al. Evolution of Nanoporosity inDealloying [J]. Nature (London),2001,410:450-453.
    [61]谭秀兰,唐永建,刘颖等.去合金化制备纳米多孔金属材料的研究进展[J].材料导报:综述篇,2009,23(3):68-76.
    [62]丁轶.纳米多孔金属:一种新型能源纳米材料[J].山东大学学报(理学版),2011,46(10):121-133.
    [63] Xu C., Xu X., Su J., et al. Research on unsupported nanoporous gold catalyst forCO oxidation [J]. Journal of Catalysis,2007,252(2):243-248.
    [64] Xu C., Wang R., Chen M., et al. Dealloying to nanoporous Au/Pt alloys and theirstructure sensitive electrocatalytic properties [J]. Phys Chem Chem Phys2010,12(1):239-246.
    [65] Zhang Z., Wang Y., Qi Z., et al. Nanoporous Gold Ribbons with Bimodal ChannelSize Distributions by Chemical Dealloying of Al-Au Alloys [J]. Journal of PhysicalChemistry C,2009,113(4):1308-1314.
    [66] Lu H.-B., Li Y., Wang F.-H. Synthesis of porous copper from nanocrystallinetwo-phase Cu-Zr film by dealloying [J]. Scripta Materialia,2007,56(2):165-168.
    [67] Liu W.B., Zhang S.C., Li N., et al. A general dealloying strategy to nanoporousintermetallics, nanoporous metals with bimodal, and unimodal pore size distributions [J].Corrosion Science,2012,58:133-138.
    [68] Song T., Gao Y., Zhang Z., et al. Influence of magnetic field on dealloying ofAl-25Ag alloy and formation of nanoporous Ag [J]. Crystengcomm,2012,14(10):3694-3701.
    [69] Lin Y.W., Tai C.C., Sun I.W. Electrochemical preparation of porous coppersurfaces in zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid [J]. Journal ofthe Electrochemical Society,2007,154(6): D316-D21.
    [70] Yu C., Jia F., Ai Z., et al. Direct Oxidation of Methanol on Self-SupportedNanoporous Gold Film Electrodes with High Catalytic Activity and Stability [J]. Chemistryof Materials,2007,19(25):6065-6067.
    [71] Jia F., Yu C., Deng K., et al. Nanoporous Metal (Cu, Ag, Au) Films with HighSurface Area: General Fabrication and Preliminary Electrochemical Performance [J]. TheJournal of Physical Chemistry C,2007,111(24):8424-8431.
    [72]阚义德,刘文今,钟敏霖等.脱合金法制备纳米多孔金属的研究进展[J].金属热处理,2008,33(3):43-46.
    [73] Honda H., Takamastu H., Wei J.J. Enhanced Boiling of FC-72on Silicon ChipsWith Micro-Pin-Fins and Submicron-Scale Roughness [J]. Journal of Heat Transfer,2002,124(2):383-390.
    [74] Kunugi T., Muko K., Shibahara M. Ultrahigh heat transfer enhancement usingnano-porous layer [J]. Superlattices and Microstructures,2004,35(3-6):531-542.
    [75] Vemuri S., Kim K.J. Pool boiling of saturated FC-72on nano-porous surface [J].International Communications in Heat and Mass Transfer,2005,32(1-2):27-31.
    [76] Ahn, H.S., N. Sinha, M. Zhang, et al. Pool boiling experiments on multiwalledcarbon nanotube (MWCNT) forests [J]. J Heat Transfer,2006,128:1335-1342.
    [77] S. Ujereh, T. Fisher, Mudawar I. Effects of carbon nanotube arrays on nucleate poolboiling [J]. Int J Heat Mass Transfer,2007,50:4023-4038.
    [78] Takata Y., Hidaka S., Cao J.M., et al. Effect of surface wettability on boiling andevaporation [J]. Energy,2005,30:209-220.
    [79] Kim S.J., Bang I.C., Buongiorno J., et al. Surface wettability change during poolboiling of nanofluids and its effect on critical heat flux [J]. International Journal of Heat andMass Transfer,2007,50(19-20):4105-4116.
    [80] Phan H.T., Caney N., Marty P., et al. Surface wettability control by nanocoating:The effects on pool boiling heat transfer and nucleation mechanism [J]. International Journalof Heat and Mass Transfer,2009,52(23-24):5459-5471.
    [81] Hsu C.C., Chen P.H. Surface wettability effects on critical heat flux of boiling heattransfer using nanoparticle coatings [J]. International Journal of Heat and Mass Transfer,2012,55(13-14):3713-3719.
    [82] Forrest E., Williamson E., Buongiorno J., et al. Augmentation of nucleate boilingheat transfer and critical heat flux using nanoparticle thin-film coatings [J]. InternationalJournal of Heat and Mass Transfer,2010,53(1-3):58-67.
    [83] Nam Y., Wu J., Warrier G., et al. Experimental and Numerical Study of SingleBubble Dynamics on a Hydrophobic Surface [J]. Journal of Heat Transfer,2009,131(12):121004-121007.
    [84] Kim H.D., Kim M.H. Effect of nanoparticle deposition on capillary wicking thatinfluences the critical heat flux in nanofluids [J]. Applied Physics Letters,2007,91(1):014104.
    [85] Ahn H.S., Jo H.J., Kang S.H., et al. Effect of liquid spreading due tonano/microstructures on the critical heat flux during pool boiling [J]. Applied Physics Letters,2011,98:071908.
    [86] Zhang B.J., Kim K.J. Effect of liquid uptake on critical heat flux utilizing a threedimensional, interconnected alumina nano porous surfaces [J]. Applied Physics Letters,2012,101(5):054104.
    [87] Lee C.Y., Bhuiya M.M.H., Kim K.J. Pool boiling heat transfer with nano-poroussurface [J]. International Journal of Heat and Mass Transfer,2010,53(19-20):4274-4279.
    [88] Lee C.Y., Zhang B.J., Kim K.J. Morphological change of plain and nano-poroussurfaces during boiling and its effect on nucleate pool boiling heat transfer [J]. ExperimentalThermal and Fluid Science,2012,40:150-158.
    [89] Sieradzki K., Corderman R.R., Shukla K., et al. Computer-Simulations of Corrosion-Selective Dissolution of Binary-Alloys [J]. Philosophical Magazine a-Physics of CondensedMatter Structure Defects and Mechanical Properties,1989,59(4):713-746.
    [90] Chung S.C., Lin A.S., Chang J.R., et al. EXAFS study of atmospheric corrosionproducts on zinc at the initial stage [J]. Corrosion Science,2000,42(9):1599-1610.
    [91] Pistofidis N., Vourlias G., Konidaris S., et al. Microstructure of zinc hot-dipgalvanized coatings used for corrosion protection [J]. Materials Letters,2006,60(6):786-789.
    [92] Carpio J., Casado J.A., Alvarez J.A., et al. Environmental factors in failure duringstructural steel hot-dip galvanizing [J]. Engineering Failure Analysis,2009,16(2):585-595.
    [93] Dursun A. Nanoposity formation in Ag-Au alloys [D]. Blacksburg, Virginia;Virginia Polytechnic Institute and State University,2003.
    [94] Guan-Xing L., Powell G.W. Theory of reaction diffusion in binary systems [J]. ActaMetallurgica,1985,33(1):23-31.
    [95] Laik A., Bhanumurthy K., Kale G.B. Intermetallics in the Zr-Al diffusion zone [J].Intermetallics,2004,12(1):69-74.
    [96] Lee W.-B., Bang K.-S., Jung S.-B. Effects of intermetallic compound on theelectrical and mechanical properties of friction welded Cu/Al bimetallic joints duringannealing [J]. Journal of Alloys and Compounds,2005,390(1-2):212-219.
    [97]许彪,张萌,罗英等. Zn/Cu反应扩散系数的影响因素[J].南昌大学学报(理科版),2008,32(2):178-182.
    [98] Jordan C.E., Marder A.R. Fe-Zn phase formation in interstitial-free steels hot-dipgalvanized at450℃: Part I0.00wt%Al-Zn baths [J]. Journal of Materials Science,1997,32(21):5593-5602.
    [99] Cook T.H. Composition, testing, and control of hot dip galvanizing flux [J]. MetalFinishing,2003,101(7):22-35。
    [100]章小鸽.锌的腐蚀与电化学[M].北京:冶金工业出版社,2008.
    [101] Konidaris S., Pistofidis N., Vourlias G., et al. Environmental and technicalconsiderations of preflux bath composition on structure of hot dip zinc galvanised coatings [J].Surface Engineering,2006,22(6):455-461.
    [102] Pistofidis N., Vourlias G., Konidaris S., et al. The effect of preflux bath additiveson the morphology and structure of the hot-dip galvanized coatings [J]. Crystal Research andTechnology,2006,41(8):759-765.
    [103] Schulz W. Steel tanks for chemical pretreatment in hot dip galvanizing plants [M].Altena; W. Pilling Kesselfabrik GmbH.2000:26.
    [104] Baker H. Alloy Phase Diagrams [M]. OH; ASM International Materials Park.2006.
    [105] Donald R. Askeland, Pradeep P. Fulay, Wright W.J. The Science and Engineeringof Materials [M]. Beijing: Tsinghua University Press,2005.
    [106]耿相英. Al-Cu、Al-Mg和Cu-Zn体系相界面的实验研究[D].青岛;中国石油大学(华东),2006.
    [107] O.B. Sφrensen, Maahn E. The reaction between copper and liquid Zinc [J]. MetalScience,1976,10(1):385-390.
    [108]罗英.熔渗法制备铜合金[D].南昌;南昌大学,2007.
    [109] Sieradzki K., Kim J.S., Cole A.T., et al. The Relationship between Dealloying andTransgranular Stress-Corrosion Cracking of Cu-Zn and Cu-Al Alloys [J]. Journal of theElectrochemical Society,1987,134(7):1635-1639.
    [110] M. I. Chaevskii, I. M. Toropovskaya, V. V. Popovich, et al. Role of stress inaccelerating the penetration of liquid into solid metals [J]. Materials Science,1972,5(6):580-585.
    [111] Pabi S.K., Murty B.S. Mechanism of mechanical alloying in Ni-Al and Cu-Znsystems [J]. Materials Science&Engineering A (Structural Materials: Properties,Microstructure and Processing),1996, A214(1-2):146-152.
    [112] Alcock C.B., Kubaschewski O. Metallurgical Thermochemistry [M]. Oxford;Pergamon.1979.
    [113] Weast R.C. Handbook of Chemistry and Physics [M]. Ohio; CRC Press.1979.
    [114] Erlebacher J. An Atomistic Description of Dealloying [J]. Journal of theElectrochemical Society,2004,151(10): C614-C26.
    [115] Qi Z., Zhao C.C., Wang X.G., et al. Formation and Characterization of MonolithicNanoporous Copper by Chemical Dealloying of Al-Cu Alloys [J]. Journal of PhysicalChemistry C,2009,113(16):6694-6698.
    [116] Zhao C.C., Qi Z., Wang X.G., et al. Fabrication and characterization of monolithicnanoporous copper through chemical dealloying of Mg-Cu alloys [J]. Corrosion Science,2009,51(9):2120-2125.
    [117] Lucey V.F. Mechanism of Pitting Corrosion of Copper in Supply Waters [J].British Crossion Journal,1967,2(5):175-185.
    [118]王吉会,姜晓霞,李诗卓.黄铜脱锌腐蚀机理的研究进展[J].材料研究学报,1999,13(1):1-8.
    [119] Pickerin.Hw, Wagner C. Electrolytic Dissolution of Binary Alloys Containing aNoble Metal [J]. Journal of the Electrochemical Society,1967,114(7):698-706.
    [120] Forty A.J., Rowlands G. A Possible Model for Corrosion Pitting and Tunnelling inNoble-Metal Alloys [J]. Philosophical Magazine a-Physics of Condensed Matter StructureDefects and Mechanical Properties,1981,43(1):171-188.
    [121] Sieradzki K. Curvature Effects in Alloy Dissolution [J]. Journal of theElectrochemical Society,1993,140(10):2868-2872.
    [122] Sieradzki K., Dimitrov N., Movrin D., et al. The Dealloying Critical Potential [J].Journal of the Electrochemical Society,2002,149(8): B370-377.
    [123] Sing K.S.W. Adsorption methods for the characterization of porous materials [J].Advances in Colloid and Interface Science,1998,76:3-11.
    [124] Rotheli B.E., Cox G.L., Littreal W.B. Effect of pH on the corrosion products andcorrosion rate of zine in oxygenated aqueous solutions [J]. Metals and alloys,1932,3:73-76.
    [125] Hakamada M., Mabuchi M. Nanoporous Gold Prism Microassembly through aSelf-Organizing Route [J]. Nano Letters,2006,6(4):882-885.
    [126] Biener J., Hodge A.M., Hamza A.V., et al. Nanoporous Au: A high yield strengthmaterial [J]. Journal of Applied Physics,2005,97(2):024301-024304.
    [127] Parida S., Kramer D., Volkert C.A., et al. Volume Change during the Formation ofNanoporous Gold by Dealloying [J]. Physical Review Letters,2006,97(3):035504.
    [128] Senior N.A., Newman R.C. Synthesis of tough nanoporous metals by controlledelectrolytic dealloying [J]. Nanotechnology,2006,17(9):2311.
    [129] Sun Y., Balk T.J. A multi-step dealloying method to produce nanoporous goldwith no volume change and minimal cracking [J]. Scripta Materialia,2008,58(9):727-730.
    [130] Dursun A., Pugh D.V., Corcoran S.G. Dealloying of Ag-Au alloys inhalide-containing electrolytes-Affect on critical potential and pore size [J]. Journal of theElectrochemical Society,2003,150(7): B355-B360.
    [131] Hayes J.R., Hodge A.M., Biener J., et al. Monolithic nanoporous copper bydealloying Mn-Cu [J]. Journal of Materials Research,2006,21(10):2611-2616.
    [132] Keir D.S., Pryor M.J. The dealloying of copper-manganese alloys [J]. JElectrochem Soc,1980,127:2138.
    [133] Belmont O., Faivre C., Bellet D., et al. About the origin and the mechanismsinvolved in the cracking of highly porous silicon layers under capillary stresses [J]. Thin SolidFilms,1996,276:219-222.
    [134]李启楷,张跃,郭献忠等. Cu3Au中脱合金层产生内应力的分子动力学模拟[J].金属学报,2003,39(1):51-54.
    [135] Budinski M.K., Wilde B.E. Technical Note: An Electrochemical Criterion for theDevelopment of Galvanic Coating Alloys for Steel [J]. Corrosion,1987,43(1):60-62.
    [136] Luo X., Li R., Liu Z., et al. Three-dimensional nanoporous copper with highsurface area by dealloying Mg-Cu-Y metallic glasses [J]. Materials Letters,2012,76(0):96-99.
    [137] Rogacki K., Kubota M., Syskakis E.G., et al. Well-characterized sinteredsubmicrometer copper powder for low temperature heat exchangers [J]. Journal of LowTemperature Physics,1985,59(5-6):397-412.
    [138] Chaudhri I.H., McDougall I.R. Ageing studies in nucleate pool boiling ofisopropyl acetate and perchloroethylene [J]. International Journal of Heat and Mass Transfer,1969,12(6):681-688.
    [139] Couchman P.R., Jesser W.A. Thermodynamic Theory of Size Dependence ofMelting Temperature in Metals [J]. Nature,1977,269(5628):481-483.
    [140] Dick K., Dhanasekaran T., Zhang Z.Y., et al. Size-dependent melting ofsilica-encapsulated gold nanoparticles [J]. Journal of the American Chemical Society,2002,124(10):2312-2317.
    [141] Li R., Sieradzki K. Ductile-Brittle Transition in Random Porous Au [J]. PhysicalReview Letters,1992,68(8):1168-1171.
    [142] Sean G. Corcoran, David G. Wiesler, Sieradzki K. An in Situ Small Angle NeutronScattering Investigation of Ag0.7Au0.3Dealloying Under Potential Control [J]. Mater ResSoc Symp Proc,1997,451:93-98.
    [143] Newman R.C., Corcoran S.G., Erlebacher J., et al. Alloy corrosion [J]. MrsBulletin,1999,24(7):24-28.
    [144] Ding Y., Kim Y.J., Erlebacher J. Nanoporous Gold Leaf:“AncientTechnology”/Advanced Material [J]. Advanced Materials,2004,16(21):1897-1900.
    [145] Hodge A.M., Hayes J.R., Caro J.A., et al. Characterization and MechanicalBehavior of Nanoporous Gold [J]. Advanced Engineering Materials,2006,8(9):853-857.
    [146] Dona J.M., Gonzalezvelasco J. Mechanism of Surface-Diffusion of Gold Adatomsin Contact with an Electrolytic Solution [J]. Journal of Physical Chemistry,1993,97(18):4714-4719.
    [147] Garcia M.P., Gomez M.M., Salvarezza R.C., et al. Effect of the SolutionComposition and the Applied Potential on the Kinetics of Roughness Relaxation at GoldElectrodes in Slightly Acid Electrolytes [J]. Journal of Electroanalytical Chemistry,1993,347(1-2):237-246.
    [148] Biener J., Wittstock A., Baumann T.F., et al. Surface Chemistry in NanoscaleMaterials [J]. Materials,2009,2(4):2404-2428.
    [149] Nanda K.K., Maisels A., Kruis F.E., et al. Higher surface energy of freenanoparticles [J]. Physical Review Letters,2003,91:106102.
    [150] Medasani B., Park Y.H., Vasiliev I. Theoretical study of the surface energy, stress,and lattice contraction of silver nanoparticles [J]. Physical Review B,2007,75(23):235436.
    [151] Xiong S.Y., Qi W.H., Cheng Y.J., et al. Modeling size effects on the surface freeenergy of metallic nanoparticles and nanocavities [J]. Physical Chemistry Chemical Physics,2011,13(22):10648-10651.
    [152] Bonzel H.P. A Surface Diffusion Mechanism at High Temperature [J]. SurfaceScience,1970,21(1):45-60.
    [153] Seebauer E.G., Allen C.E. Estimating Surface-Diffusion Coefficients [J]. Progressin Surface Science,1995,49(3):265-330.
    [154] Jia M., Lai Y.Q., Tian Z.L., et al. Calculation of the surface free energy of fcccopper nanoparticles [J]. Modelling and Simulation in Materials Science and Engineering,2009,17(1):015006.
    [155] ner D., McCarthy T.J. Ultrahydrophobic Surfaces. Effects of Topography LengthScales on Wettability [J]. Langmuir,2000,16(20):7777-7782.
    [156] Cheng I.C., Hodge A.M. Morphology, Oxidation, and Mechanical Behavior ofNanoporous Cu Foams [J]. Advanced Engineering Materials,2012,14(4):219-226.
    [157] Wenzel R.N. Surface Roughness and Contact Angle [J]. Journal of Physical andColloid Chemistry,1949,53(9):1466-1467.
    [158] Ahn H.S., Park G., Kim J., et al. Wicking and Spreading of Water Droplets onNanotubes [J]. Langmuir,2012,28(5):2614-2619.
    [159] Theofanous T.G., Dinh T.N., Tu J.P., et al. The boiling crisis phenomenon: Part II:dryout dynamics and burnout [J]. Experimental Thermal and Fluid Science,2002,26:793-810.
    [160] Theofanous T.G., Tu J.P., Dinh A.T., et al. The boiling crisis phenomenon-Part I:nucleation and nucleate boiling heat transfer [J]. Experimental Thermal and Fluid Science,2002,26(6-7):775-792.
    [161] Bankoff S.G., Haute T. Ebullition from solid surfaces in the absence of apre-existing gaseous phase [J]. Trans ASME,1957,79:735-740.
    [162] Knapp R.T. Cavitation and nuclei [J]. Transactions of the ASME Journal of HeatTransfer,1958,80:1321.
    [163] Kim J.H. Enhancement of pool boiling heat transfer using thermally-conductivemicroporous coating techniques [D]; The University of Texas at Arlington,2006.
    [164] Forster H.K., Greif R. Heat transfer to a boiling liquid-mechanisms andcorrelations [J]. J Heat Transfer,1959,81:45.
    [165] Chi-Yeh H., Griffith P. The mechanism of heat transfer in nucleate poolboiling-part I: Bubble initiaton, growth and departure [J]. International Journal of Heat andMass Transfer,1965,8(6):887-904.
    [166] Mikic B.B., Rohsenhow W.M. A new correlation of pool boiling data including theeffect of heating surface characteristics [J]. J Heat Transfer,1969,9:245-250.
    [167] Snyder N.W., Edwards D.K. Summary of conference of bubble dynamics andboiling heat transfer at Jet Propulsion Laboratory [J]. JPL Memo,1956,20(137).
    [168] Moore F.D., Mesler R.B. The measurement of rapid surface temperaturefluctuations during nucleate boiling of water [J]. AICHE J,1961,7:620-624.
    [169] Demiray F., Kim J.H. Microscale heat transfer measurements during pool boilingof FC-72: effect of subcooling [J]. International Journal of Heat and Mass Transfer,2004,47(14-16):3257-3268.
    [170] Myers J.G., Yerramilli V.K., Hussey S.W., et al. Time and space resolved walltemperature and heat flux measurements during nucleate boiling with constant heat fluxboundary conditions [J]. International Journal of Heat and Mass Transfer,2005,48(12):2429-2442.
    [171] Wenzel R.N. Resistance of solid surfaces to wetting by water [J]. Industrial andEngineering Chemistry,1936,28:988-994.
    [172] Kline S.J. The Purposes of Uncertainty Analysis [J]. Journal of Fluids Engineering,1985,107(2):153-160.
    [173] Li C., Peterson G.P. Parametric Study of Pool Boiling on Horizontal HighlyConductive Microporous Coated Surfaces [J]. Journal of Heat Transfer,2007,129(11):1465-1475.
    [174] Hendricks T.J., Krishnan S., Choi C.H., et al. Enhancement of pool-boiling heattransfer using nanostructured surfaces on aluminum and copper [J]. International Journal ofHeat and Mass Transfer,2010,53(15-16):3357-3365.
    [175] Stutz B., Morceli C.H.S., da Silva M.d.F., et al. Influence of nanoparticle surfacecoating on pool boiling [J]. Experimental Thermal and Fluid Science,2011,35(7):1239-1249.
    [176] Wiesche S.A.D., Bardas U., Uhkotter S. Boiling heat transfer on large diamondand SiC heaters: The influence of thermal wall properties [J]. International Journal of Heatand Mass Transfer,2011,54(9-10):1886-1895.
    [177] Mann M., Stephan K., Stephan P. Influence of heat conduction in the wall onnucleate boiling heat transfer [J]. International Journal of Heat and Mass Transfer,2000,43(12):2193-2203.
    [178] Hosseini R., Gholaminejad A., Nabil M., et al. Concerning the Effect of SurfaceMaterial on Nucleate Boiling Heat Transfer of R-113[J]. ASME Conference Proceedings,2011(38921): T10238-T-6.
    [179] Shackelford J.F., Alexander W. CRC Materials Science and EngineeringHandbook (third ed.)[M]. CRC Press.2000.
    [180] Chien L.-H., Webb R.L. Measurement of bubble dynamics on an enhanced boilingsurface [J]. Experimental Thermal and Fluid Science,1998,16(3):177-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700